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Abstract
U -statistics represent a fundamental class of statistics from modeling quantities of interest
defined by multi-subject responses. U -statistics generalise the empirical mean of a random
variable X to sums over every m-tuple of distinct observations of X. Stute [Conditional
U -statistics, Ann. Probab., 1991] introduced a class of estimators called conditional
U -statistics. In the present work, we provide a new class of estimators of conditional
U -statistics. More precisely, we investigate the conditional U -statistics based on copula
representation. We establish the uniform-in-bandwidth consistency for the proposed es-
timator. In addition, uniform consistency is also established over φ ∈ F for a suitably
restricted class F , in both cases bounded and unbounded, satisfying some moment con-
ditions. Our theorems allow data-driven local bandwidths for these statistics. Moreover,
in the same context, we show the uniform bandwidth consistency for the nonparamet-
ric Inverse Probability of Censoring Weighted estimators of the regression function under
random censorship, which is of its own interest. We also consider the weak convergence
of the conditional U -statistics processes. We discuss the wild bootstrap of the conditional
U -statistics processes. These results are proved under some standard structural conditions
on the Vapnik-Chervonenkis class of functions and some mild conditions on the model.
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1. Introduction
Nonparametric density and regression function estimation has been the subject of in-

tense investigation for many years, leading to the development of many methods. For good
sources of references to the research literature in this area, along with statistical applica-
tions, consult [41, 55, 60, 78, 120, 128, 144] and the references therein. In the last decades,
empirical process theory has provided very useful and powerful tools to analyze the large
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sample properties of several nonparametric estimators of functionals of the distribution,
such as the regression function and the density function, refer to [57, 58, 97, 114, 142].
Nolan and Pollard [110] were the first to introduce the notion of uniform in bandwidth
consistency for kernel density estimators and they applied empirical process methods in
their study. In the series of papers, [11, 18, 19, 20, 21, 23, 28, 30, 45, 52, 53, 56, 61, 62, 105],
the authors established uniform consistency results for such estimators, where hn varies
within suitably chosen intervals indexed by n. U -statistics, first considered by [81] in
connection with unbiased statistics, and formally introduced by [84]. The theory of U -
statistics and U -processes has received considerable attention in the last decades due to
its great number of applications and usefulness for solving complex statistical problems.
Examples are density estimation, nonparametric regression tests and goodness-of-fit tests.
More precisely, U -processes appear in statistics in many instances, e.g., as the components
of higher-order terms in von Mises expansions. In particular, U -statistics play a role in
analyzing estimators (including function estimators) with varying degrees of smoothness.
For example, Stute [136] applies the a.s. uniform bounds for P-canonical U -processes to
analyze the product limit estimator for truncated data. Arcones and Wang [5] present
two new tests for normality based on U -processes. Making use of the results of [75, 76],
Schick et al. [119] introduced new tests for normality, which are based on the weighted
L1-distances between the standard normal density and local U -statistics based on stan-
dardized observations. Joly and Lugosi [91] discussed the estimation of the mean of the
multivariate functions in the case of possibly heavy-tailed distributions and introduced the
median-of-means, which is based on U -statistics. U -processes are important tools for a
broad range of statistical applications such as testing for qualitative features of functions
in nonparametric statistics [1, 72, 100], cross-validation for density estimation [110], and
establishing limiting distributions of M -estimators (see, e.g., [4, 50, 125, 126]). Infinite-
order U -statistics are useful tools for constructing simultaneous prediction intervals that
quantify the uncertainty of ensemble methods such as subbagging and random forests.
Peng et al. [113] develop in great detail the notion of generalized U -statistics random
forest predictions. The MeanNN approach estimation for differential entropy introduced
by [63] is a particular of the U - statistic. Using U -statistics, [102] proposed a new test
statistic for goodness-of-fit tests. Halmos [81], Hoeffding [84] and vonMises [143] provided
(amongst others) the first asymptotic results for the case that the underlying random
variables are independent and identically distributed. This paper uses the copula rep-
resentation to consider the so-called conditional U -statistics introduced by [135]. These
statistics may be viewed as generalizations of the Nadaraya-Watson [107, 145] estimates
of a regression function. To better understand the problem, we first introduce Stute’s
estimators.

Let (X1, Y1), . . . , (Xn, Yn) be independent random vectors with common joint density
function fX,Y : Rp × Rq → [0,∞[. Let φ : Rmq → R be a measurable function. In this
paper, we are primarily concerned with the estimation of the conditional expectation or
regression function

r(m)(φ, t) = E(φ(Y1, . . . , Ym) | (X1, . . . , Xm) = t), for t ∈ Rmp, (1.1)

whenever it exists, i.e., E(|φ(Y1, . . . , Ym)|) < ∞. We now introduce a kernel function
K : Rp → R with support contained in [−B,B]p, B > 0 satisfying

sup
x∈Rp

|K(x)| =: κ < ∞ and
∫
Rp
K(x)dx = 1 (K.i)
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introduced [135] and a class of estimators for r(m)(φ, t), called conditional U -statistics,
which is defined for each t ∈ Rmp to be

r̂(m)
n (φ, t;hn) =

∑
(i1,...,im)∈I(m,n)

φ(Yi1 , . . . , Yim)K
(
t1 −Xi1

hn

)
· · ·K

(
tm −Xim

hn

)
∑

(i1,...,im)∈I(m,n)
K

(
t1 −Xi1

hn

)
· · ·K

(
tm −Xim

hn

) , (1.2)

where
I(m,n) = {i = (i1, . . . , im) : 1 ≤ ij ≤ n and ij 6= ir if j 6= r} ,

is the set of all m-tuples of different integers between 1 and n and 0 < hn < 1 goes to
zero at a certain rate. Notice that r̂(m)

n (φ, t;hn) generalize the Nadaraya-Watson estimate
of a regression function, [107, 145]. Indeed, the particular case m = 1, the r(m)(φ, t)
is reduced to r(1)(φ, t) = E(φ(Y )|X = t) and Stute’s estimator becomes the Nadaraya-
Watson estimator of r(1)(φ, t) given by :

r̂(1)
n (φ, t, hn) =

n∑
i=1

φ(Yi)K
(
Xi − t

hn

)/ n∑
i=1

K

(
Xi − t

hn

)
. (1.3)

The work of [122] was devoted to estimating the rate of convergence of r̂(m)
n (φ, t;hn) to

r(m)(φ, t). In the paper of [115], the limit distributions of r̂(m)
n (φ, t;hn) are discussed

and compared with those obtained by Stute. Harel and Puri [82] extended the results
of [135], under appropriate mixing conditions, to weakly dependent data. Stute [139]
proposed symmetrized nearest neighbour conditional U -statistics as alternatives to the
usual kernel-type estimators. Sen [122] obtained results on the uniform in t consistency of
r̂

(m)
n (φ, t;hn). An important contribution is given in the paper [56] where a much stronger

form of consistency holds, namely, uniform in t and in bandwidth consistency (i.e., hn,
hn ∈ [an, bn] where an < bn → 0 at some specific rate) of r̂(m)

n (φ, t;hn). In addition,
uniform consistency is also established over φ ∈ F for a suitably restricted class F , for
recent references see [31, 32, 34, 35, 36, 37, 132]. The main tool in their result is the use
of the local conditional U process investigated in [75]. For excellent resource of references
on the U -statistics and U -processes the interested reader may refer to [4, 50, 99]. For the
U -statistics with random kernels of diverging orders we refer to [67, 83, 131, 133]. Infinite-
order U -statistics are useful tools for constructing simultaneous prediction intervals that
quantify the uncertainty of ensemble methods such as subbagging and random forests.

Consider a random vector (X,Y ) with joint cumulative distribution function [df] F(·)
and the corresponding marginal df’s Fi(xi) := P(Xi ≤ xi), i = 1, . . . , p and F0,j(yj) =
P(Yj ≤ yj), j = 1, . . . , q are continuous. The characterization theorem of [129] implies
that there exists a copula function C(·, ·), such that,

F(x1, . . . , xp, y1, . . . , yq) = C(F(x),F0(y)), for all (x, y) ∈ Rp×q, (1.4)
where F(x) = (F1(x1), . . . , Fp(xp)) and F0(y) = (F0,1(y1), . . . , F0,q(yq)). By definition, the
copula function C(·, ·) is a p+ q-variate cumulative distribution function, on the unit cube
[0, 1]p+q, the margins of which are standard uniform distributions on the interval [0, 1]. If
not stated otherwise, we assume that the Fi(·), i = 1, . . . , p and F0,j(·), j = 1, . . . , q are
continuous functions, in this case, the copula function C(·) is unique. In the monographs
by [89, 90, 108] the reader may find detailed ingredients of the modeling theory as well
as surveys of the commonly used copulas; we also refer to [43, 59, 124]. For in-depth and
overview historical notes, we refer to [49]. We can refer also to [130], where the author
sketches the proof of (1.4), develops some of its consequences, and surveys some of the work
on copulas. Copulas are a flexible and versatile tool for analyzing dependency structures.
More specifically, copula C(·) “couples” the joint distribution function F(·) to its univariate
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marginals, capturing as such the dependence structure between the components of (X,Y ).
Indeed, most conventional dependence measures can be explicitly expressed in terms of
the copula. This feature has motivated successful applications in actuarial science and
survival analysis (see, e.g., [68]). In the literature on risk management and, more generally,
in mathematical economics and mathematical finance modeling, a number of illustrations
are provided (refer to books of [44] and [106]), in particular, in the context of asset pricing
and credit risk management. Notice that we have the following representation

r(m)(φ, t) = E(φ(Y1, . . . , Ym) | (X1, . . . , Xm) = t)

=
∫
Rmq

φ(y1, . . . , ym)



m∏
j=1

f(tj , yj)

m∏
j=1

fX(tj)


dy1 . . . dym, for t ∈ Rmp. (1.5)

Let
c(u1, . . . , up, v1, . . . , vq) = ∂p+q

∂u1 · · · ∂up∂v1 · · · ∂vq
C(u1, . . . , up, v1, . . . , vq)

be the copula density, i.e., the density of W = (F(X),F0(Y )), that we assume to exist.
The copula density of F(X), is given by

c̆(u1, . . . , up) =
∫

[0,1]q
c(u1, . . . , up, v1, . . . , vq)dv1 . . . dvq.

Then, we have the following representations
fX,Y (x, y) = fX1(x1) . . . fXp(xp)fY1(y1) . . . fYq (yq)c(F(x),F0(y)),

gY |X(y | x) =
fX1(x1) . . . fXp(xp)fY1(y1) . . . fYq (yq)c(F(x),F0(y))

gX(x)

= fY1(y1) . . . fYq (yq)
c(F(x),F0(y))

c̆(F(x))
, (1.6)

where gY |X denotes the conditional density of Y given X = x, gX(·) and gY (·) are the
joint densities of X and Y respectively fXY (·) is the joint density of (X,Y ). Making use
of relation (1.5) and (1.6), we have the following identity, for t ∈ Rmp,

r(m)(φ, t) = E(φ(Y1, . . . , Ym) | (X1, . . . , Xm) = t)

=
∫
Rmq

φ(y1, . . . , ym)


m∏
j=1

gY |X(yj | tj)

 dy1 . . . dym,

=
∫
Rmq

φ(y1, . . . , ym)


m∏
j=1

fY1(y1,j) . . . fYq (yq,j)
c(F(tj),F0(yj))

c̆(F(tj))

 dy1 . . . dym.(1.7)

In the particular cases of a single covariate (p = 1) or mutually independent predictors,
c̆(F(x)) = 1, we have

r(m)(φ, t) =
∫
Rmq

φ(y1, . . . , ym)


m∏
j=1

fY1(y1,j) . . . fYq (yq,j)c(F(tj),F0(yj))

 dy1 . . . dym.

To illustrate the idea, we briefly cite two examples for m = p = q = 1. If the copula density
of (Y,X) belongs to the Farlie-Gumbel-Morgenstern (FGM) family with a parameter θ,
then we have

r(1)(Id, t) = E(Y | X = t)

= E(Y ) + θ(2GX(t) − 1)
∫

GY (y)(1 − GY (y))dy,
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where Id denotes the identity function. In this example m = q = 1, p ≥ 1. If the copula
of (Y,X>)> is Gaussian with correlation matrix

ΣY,X =
[

1 ρ>

ρ ΣX

]
,

then we have
r(1)(Id, t) = E(Y | X = t)

= E
(
G−1
Y

(
Φ
(

u>Σ−1
X ρ +

√
1 − ρ>Σ−1

X ρZ

)))
,

where u = (Φ−1(F1(x1), . . . ,Φ−1(Fd(xd))>, Z ∼ N(0, 1) and Φ(·) is the cdf of standard
normal distribution, we may refer to [101], we refer also to [38, 54, 71, 95, 109, 146]. In
the present work, we consider the regression-based copula representation given in (1.7).
We propose a new estimation methodology for the regression function r(m)(φ, t). The
present work largely extends and completes the work [22] to the multivariate setting in
several ways. In addition, we consider new results like the weak convergence and the
censored setting. More precisely, we will consider one of the most commonly used classes
of estimators formed by the so-called kernel-type estimators based on the copula regression
representation. There are no restrictions on the choice of the kernel function in our setup,
apart from satisfying some mild conditions that we will give after. The selection of the
bandwidth, however, is more problematic. It is worth noting that the choice of bandwidth
is crucial to obtain a good rate of consistency; for example, it greatly influences the size
of the estimate’s bias. In general, we are interested in the selection of bandwidth that
produces an estimator which has a good balance between the bias and the variance of the
considered estimators. It is more appropriate to consider the bandwidth varying according
to the criteria applied and to the available data and location, which cannot be achieved
by using classical methods. The interested reader may refer to [104] for more details and
discussion on the subject. In the present paper, we develop methods that permit the study
of kernel-type copula regression estimators using data or location-dependent bandwidth
sequences. To the best of our knowledge, the problems we investigate in the present paper
form an unsolved open problem in the literature, and it gives the main motivation for our
paper.

The layout of the article is as follows. The focus of Section 2 is on introducing the new
methodology of estimating U -statistics based on the copula representation. We establish
general uniform in bandwidth consistency results for kernel copula estimators in Theorems
2.2 and 2.3. In Section 3, the weak convergence of the U -processes are studied. Section 4
is devoted to the wild bootstrap of the U -proposed investigated in Section 3. In Section
6, we provide some potential applications: Simultaneous prediction intervals for random
forests in 6.1, Discrimination in 6.2, Ranking problems in 6.3. We provide some examples
of classes of functions together with conditional U -statistics in Section 7. In Section 8,
we present how to select the bandwidth through the cross-validation procedures. This
article concludes with a brief discussion in Section 9. All mathematical developments are
relegated to Section 10. A few relevant technical results are given in the appendix.

2. Estimation
Recall the idea of [23]. To construct estimate of r(1)(φ, t), we estimate copula density

c(·, ·) by the usual kernel density estimator and estimate integration with respect to fY (·)
by integration with respect to the empirical measure, then delete the diagonal terms. No-
tice a similar idea was introduced in [80] in estimating the integral of a squared probability
density (derivative). As mentioned in the last paper, this avoids the addition of a type of
bias in the estimator. A similar idea was used in estimating other density functions like
the extropy; refer to [98] for definition. Jansen et al. [88] investigate the performance of
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Bernstein estimators for the copula partial derivatives; one can also refer to [140]. Using
the estimators of the copula first-order partial derivatives, Jansen et al. [88] also construct
estimators for the conditional distribution function and its important functional of it, like
the mean regression function and the quantile regression function. Let us introduce the
estimators

Fn(x) := 1
n

n∑
i=1

1{Xi ≤ x} for, x ∈ Rp,

Fn,j(xj) := 1
n

n∑
i=1

1{Xij ≤ xj} for, xj ∈ R, j = 1, . . . , p,

F0;n(y) := 1
n

n∑
i=1

1{Yi ≤ y} for y ∈ Rq,

F0;n,j(yj) := 1
n

n∑
i=1

1{Yij ≤ yj} for yj ∈ R, j = 1, . . . , q,

ĉjn−1;hn
(Fn(x),F0,n(y)))

:= 1
(n− 1)hp+q

n

n∑
i=1
i 6=j

K

(Fn(x) − Fn(Xi)
hn

)
K0

(F0,n(y) − F0,n(Yi)
hn

)
,(2.1)

where
Fn(x) = (Fn,1(x1), . . . , Fn,p(xp)),F0,n(y) = (F0,n,1(y1), . . . , F0,n,q(yq)),

and the kernel function K0 : Rp → R with support contained in [−B0, B0], B0 > 0
satisfying

sup
x∈Rq

|K0(x)| =: κ < ∞ and
∫
Rq
K(x)dx = 1 (K.i.0)

The kernel estimation of copula is a very rich topic of research; we only mention some
recent references [11, 32, 42, 111], see their lists of references for related studies.

Remark 2.1. For notational convenience, we have chosen the same bandwidth sequence
for each margin. This assumption can be dropped easily. If one wants to use the vector
bandwidths (see, in particular, Chapter 12 of [55]). With obvious changes of notation,
our results and their proofs remain true when hn is replaced by a vector bandwidth
hn = (h(1)

n , . . . , h
(p)
n ), where min h(i)

n > 0. In this situation we set hn =
∏p
i=1 h

(i)
n , and

for any vector v = (v1, . . . , vp) we replace v/hn by (v1/h
(1)
n , . . . , vp/h

(p)
n ).

The analogous estimators based on copula representations of (1.3) is given, for p = q = 1,
by

m̃n;hn(x, φ) := 1
n(n− 1)h2

n

∑
1≤i 6=j≤n

φ(Yi)

×K
(
ĜY ;n(Yj) − ĜY ;n(Yi)

hn

)
K

(
ĜX;n(x) − ĜX;n(Xj)

hn

)
. (2.2)

By setting φ(y) = y into (2.2) we get the copula kernel regression function estimator of
m(x) := E(Y | X = x) given by

m̃n;hn(x) := 1
n(n− 1)h2

n

∑
1≤i 6=j≤n

Yi

×K
(
ĜY ;n(Yj) − ĜY ;n(Yi)

hn

)
K

(
ĜX;n(x) − ĜX;n(Xj)

hn

)
, (2.3)
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By setting φt(y) = 1{y ≤ t}, t ∈ R, into (2.2) we obtain the kernel estimator of the
conditional distribution function F (t|x) := P(Y ≤ t|X = x) given by

F̃n;hn(t|x) := 1
n(n− 1)h2

n

∑
1≤i 6=j≤n

1{Yi ≤ t}

×K
(
ĜY ;n(Yj) − ĜY ;n(Yi)

hn

)
K

(
ĜX;n(x) − ĜX;n(Xj)

hn

)
. (2.4)

Let us introduce the weight, (i1, . . . , im), (ℓ1, . . . , ℓm) ∈ I(m,n),

W(i, ℓ, t;hn) =

1
h

m(p+q)
n

m∏
ν=1

K

(Fn(tν) − Fn(Xℓν )
hn

)
K

(F0,n(Yiν ) − F0,n(Yℓν )
hn

)
(n−m)!
n!hmpn

∑
(i1,...,im)∈I(m,n)

m∏
ν=1

K

(Fn(tν) − Fn(Xiν )
hn

) , (2.5)

where
I(m,n) = {i = (i1, . . . , im) : 1 ≤ ij ≤ n and ij 6= ir if j 6= r} ,

is the set of all m-tuples of different integers between 1 and n. Remark that we take
‘delete one’ observation estimators because they are natural in that they have more ex-
pressed expected values and lead to U -statistics rather than to V -statistics, but the bias
introduced if we did not delete the diagonal observations would make no difference what-
soever. By extending the idea of the construction of the estimator (2.2), we now introduce
our estimator of r(m)(φ, t)

r̃(m)
n (φ, t;hn) = (n−m)!

n!(n− 1)m
∑

(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)
ik 6=ℓk,k=1,...,m

φ(Yi1 , . . . , Yim)W(i, ℓ, t;hn).

In the particular cases of a single covariate (p = 1) or mutually independent predictors,
the weight reduces to

W(i, ℓ, t;hn) = 1
h
m(1+q)
n

m∏
ν=1

K

(Fn(tν) − Fn(Xℓν )
hn

)
K

(F0,n(Yiν ) − F0,n(Yℓν )
hn

)
. (2.6)

From our proofs, we have

E
(
r̃(m)
n (φ, t;hn)

)
= r(m)(φ, t) + o(1).

For m ≤ n, consider a class F of measurable functions g : Rqm → R such that

Eg2(Y1, . . . , Ym) < ∞,

which satisfies the following conditions, (F.i)–(F.iii). First, to avoid measurability prob-
lems, we assume that

F is a pointwise measurable class, (F.i)
that is, there exists a countable subclass F0 of F such that we can find, for any function
g ∈ F , a sequence of functions gm ∈ F0 for which

gm(y) → g(y), y ∈ Rqm.

This condition is discussed in [141, Example 2.3.4. p 110] and [97, 8.2. p. 110]. We also
assume that F has a measurable envelope function

F (y) ≥ sup
g∈F

|g(y)| for y ∈ Rqm. (F.ii)
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Notice that condition (F.i) implies that the supremum in (F.ii) is measurable. Finally,
we assume that F is of VC-type, with characteristics A and v (“VC” for Vapnik and
Červonenkis), meaning that for some A ≥ 3 and v ≥ 1,

N(F , L2(Q), ε) ≤
(
A‖F‖L2(Q)

ε

)v
, for 0 < ε ≤ 2‖F‖L2(Q), (F.iii)

where Q is any probability measure on (Rm,B), where B represents the σ-field of Borel
sets of Rm, such that

‖F‖L2(Q) < ∞,

and where for ε > 0, N(F , L2(Q), ε) is defined as the smallest number of L2(Q)-open balls
of radius ε required to cover F . For instance, see [114, Examples 26 and 38], [110, Lemma
22], [58, Section 4.7.], [141, Theorem 2.6.7], [97, Section 9.1] provide a number of sufficient
conditions under which (F.i) holds, we may refer also to [51, Section 3.2] for further
discussions. For instance, it is satisfied, for general p ≥ 1, whenever g(x) = ϕ(ι(x)), with
ι(x) is a polynomial in p variables and ϕ(·) is a real-valued function of bounded variation,
we refer the reader to [62, p. 1381].
Let Ψϕ = {g(x) : x ∈ Rd} be a class of functions such that g(x) = ψ(ϕ(x)), where ϕ(·) is
either a real polynomial or the αth power of the absolute value of a real polynomial, for
some α > 0, and ψ(r), r ∈ R, is some real-valued function of bounded variation.
To state our results, we need the following conditions for the measurable real-valued
function H(t), t ∈ Rp.

(K.1): H(t) is twice differentiable, and the second partial derivatives are bounded;
(K.2): H(t) is compactly supported;
(K.3): H(t) and its first partial derivatives belong to the class Ψϕ.

If (F.iii) holds for F , then we say that the VC-type class F admits the characteristics
A and v. Consider the class of functions

K :=
{
K

(
t1 − ·
h

)
K

(
t2 − ·
h

)
: h > 0, (t1, t2) ∈ Rp+q

}
.

Introduce the class of functions formed from the Lipschitz continuous copula density c(·, ·)

C =
{

m∏
k=1

c(tk,F0(·)) : tk ∈ [0, 1]p
}
.

We define the class of functions

F · C =
{
φ(·)

m∏
k=1

c(tk,F0(·)) : φ ∈ F , tk ∈ [0, 1]p
}
.

Making use of condition (F.iii) and the Lipschitz continuity of the copula density readily
implies that F · C is of VC-type for the envelope

F(·) = F (·)
m∏
k=1

max
tk∈[0,1]p

c(tk,F0(·)).

To prove the strong consistency of r̃(m)
n (φ, t;hn), we shall consider another, but more

appropriate and more computationally convenient, centering factor than the expectation
Er̃(m)

n (φ, t;hn), which is delicate to handle. We set

Er̃(m)
n (φ, t;hn)
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=

E

 1
h

m(p+q)
n

φ(Y1, . . . , Ym)
m∏
j=1

K

(Fn(tj) − Fn(Xj)
hn

)
K

(F0,n(Ym+1) − F0,n(Yj)
hn

)
E

 1
hmpn

m∏
j=1

K

(
Fn(tj) − Fn(Xij )

hn

)
.

We denote by I and J two fixed subsets of Rm such that

I =
m∏
j=1

[aj , bj ] ⊂ J =
m∏
j=1

[cj , dj ] ⊂ Rm,

where
−∞ < cj < aj < bj < dj < ∞, for j = 1, . . . ,m.

The main results in this section, concerning the uniform consistency of r̃(m)
n (φ, t;hn), to

be proved here may now be stated precisely as follows.

Theorem 2.2. Suppose that the copula density c(·) is Lipschitz continuous on (0, 1)p+q

and let an = ϱ(logn/n) for ϱ > 0. If the class of functions F · C is bounded, in the sense
that for some 0 < M < ∞,

F(y) < M.

Let K × K satisfy (K.1-2-3). Assume the conditions (F.i)-(F.iii) on F are satisfied.
Then, for all ϱ > 0 and 0 < b0 < 1, there exists a constant 0 < Σ < ∞ such that

lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Ip

√
nhp+q|r̃(m)

n (φ, t;h) − Er̃(m)
n (φ, t;h)|√

| log h| ∨ log logn
≤ Σ, a.s.

The proof of Theorem 2.2 is postponed until Section 10.

Theorem 2.3. Suppose that the copula density c(·) is Lipschitz continuous on (0, 1)p+q

and let an = ϱ(logn/n) for ϱ > 0. If F · C is unbounded, but satisfies

E(F2(Y )) < ∞. (2.7)

Let K × K satisfy (K.1-2-3). Assume the conditions (F.i)-(F.iii) on F are satisfied.
Then for all ϱ > 0 and 0 < b0 < 1, there exists a constant 0 < Σ̆ < ∞ such that

lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Ip

√
nhp+q|r̃(m)

n (φ, t;h) − Er̃(m)
n (φ, t;h)|√

| log h| ∨ log logn
≤ Σ̆, a.s.

The proof of Theorem 2.3 is postponed until Section 10.
To handle the bias term, we shall assume that the copula density c(·) admits derivatives
of order s such that

(C.i) There exists a constant 0 < C < ∞ such that

sup
u,v∈[0,1]p+q

∣∣∣∣∣ ∂sc(u, v)
∂j1u1 · · · ∂jpup∂jp+1vp+1 · · · ∂jp+qvq

∣∣∣∣∣ ≤ C,
p+q∑
i=1

ji = s.

(K.v) K(u, v) = K(u)K(v) is of order s ; i.e.,∫
Rp+q

uj1 · · ·ujpvjp+1 · · · vjp+qK(u, v)dudv = 0, ji ≥ 0,
p+q∑
i=1

ji = 1, . . . , s− 1,

∫
Rp+q

uj1 · · ·ujpvjp+1 · · · vjp+qK(u, v)dudv < ∞, ji ≥ 0,
p+q∑
i=1

ji = s.
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Remark 2.4. Notice that the conditions (K.v) and (K.i) are classical in the nonparametric
estimation procedures. In particular, by imposing the condition (K.v), the kernel function
exploits the smoothness of the copula density function. In the univariate case, it is well
known that the best obtainable rate of convergence of the kernel estimator, in the AMISE
sense, is of order n−4/5. If we lose the condition that the kernel function K(·) must
be a density, the convergence rate could be faster. Indeed, the convergence rate can be
arbitrarily close to the parametric n−1 as the order increases. In fact, Chacón and Duong
[40] showed that the parametric rate n−1 can be attained by using superkernels, and that
superkernel density estimators automatically adapt to the unknown degree of smoothness
of the density. In this situation, the main drawback of higher-order kernels is that the
negative contributions of the kernel may make the estimated density, not a density itself.
The interested reader may refer to, e.g., [92].

Corollary 2.1. Under the assumption of Theorem 2.3, in addition, we assume that (C.i)
and (K.v) hold. It follows that for all sequences 0 < an ≤ ãn ≤ bn satisfying bn → 0 and
nãn/ logn → ∞,

sup
ãn≤hp+q≤bn

sup
φ∈F

sup
t∈Ip

|r̃(m)
n (φ, t;h) − r(m)(φ, t)| → 0, a.s.

Remark 2.5. Deheuvels and Mason [53] consider local plug-in type estimators ĥn =
ĥn(x), which satisfy,

P
(
an ≤ ĥn(t) ≤ bn : t ∈ R

)
→ 1,

with an = c1hn and bn = c2hn, where 0 < c1 ≤ c2 < ∞, or fulfill, for any ε > 0

P
(

sup
x∈I

∣∣∣∣∣ ĥn(t)
hn

− η(t)
∣∣∣∣∣ > ε

)
→ 0, (2.8)

where η(·) is an appropriate continuous function on R and I = [a, b] ⊂ R, for a < b. We
refer to their Example 2.1 p. 246, where they show subject to smoothness conditions that
the optimal ĥn(t) satisfies (2.8) with hn = n−1/5, for d = 1, in terms of asymptotic mean
square error for estimating the density function f(·) or regression function m(·). Following
their methods, it will be interesting to derive our results for local plug-in estimators
ĥn(t), where the convergence is either in probability or with probability 1, depending on
conditions on ĥn(t). We omit the corresponding details here.

Remark 2.6. We note that the main problem in using an estimator such as in (2.6)
is properly choosing the smoothing parameter h. The uniform in bandwidth consistency
results given in Theorems 2.2, 2.3 show that any choice of h between h′

n and h′′
n ensures the

consistency of r̃(m)
n (φ, t;h). Namely, the fluctuation of the bandwidth in a small interval

does not affect the consistency of the nonparametric estimator r̃(m)
n (φ, t;h) of r(m)(φ, t).

Remark 2.7. Note that the condition (2.7) may be replaced by more general hypotheses
upon moments of Y as in [51]. That is
(M.1)′′ We denote by {M(x) : x ≥ 0} a nonnegative continuous function, increasing on

[0,∞), and such that, for some s > 2, ultimately as x ↑ ∞,
(i) x−sM(x) ↓; (ii) x−1M(x) ↑ . (2.9)

For each t ≥ M(0), we define Minv(t) ≥ 0 by M(Minv(t)) = t. We assume further
that:

E (M (|F(Y)|)) < ∞.

The following choices of M(·) are of particular interest:
(i) M(x) = xp for some p > 2;
(ii) M(x) = exp(sx) for some s > 0.
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The introduction of the function φ(·) in our setting is motivated by Remark 1.2 of [53] or
Remark 1.1 of [51].

Remark 2.8. We start with examples of which θ varies within subsets of R. Such is the
case for the extreme value copulas, namely

CA(u1, u2) := exp
{

log u1u2A

( log u1
log u1u2

)}
, (2.10)

where A(·) is a convex function on [0, 1], satisfying
A : [0, 1] 7→ [1/2, 1] such that max(t, 1 − t) ≤ A(t) ≤ 1 for all 0 ≤ t ≤ 1.

For
A(t) := Aθ(t) = (tθ + (1 − t)θ)1/θ; θ ∈ [1,∞[ (2.11)

we have [77] family of copulas, which is one of the most popular model used to model
bivariate extreme values. For

Aθ(t) = 1 − (t−θ + (1 − t)−θ)−1/θ; θ ∈ [0,∞[ (2.12)
we obtain [69] family of copulas. Finally for

Aθ(t) = tΦ
(
θ−1 + 1

2
θ log

(
t

1 − t

))
+ (1 − t)Φ

(
θ−1 − 1

2
θ log

(
t

1 − t

))
, (2.13)

where θ ∈ [0,∞[ and Φ(·) denoting the standard normal N(0, 1) distribution function,
we obtain the [87] family of copulas. A useful family of copulas, due to, is given, for
0 < u1, u2 < 1, by

Cθ(u1, u2) := 1 −
[
(1 − u1)θ + (1 − u2)θ − (1 − u1)θ(1 − u2)θ

]1/θ
; θ ∈ [1,∞[. (2.14)

The Gumbel-Barnett copulas are given, for 0 < u1, u2 < 1, by
Cθ(u1, u2) := u1u2 exp {−(1 − θ)(log u1)(log u2)} ; θ ∈ [0, 1]. (2.15)

The Clayton copulas of positive dependence are such that, for 0 < u1, u2 < 1,

Cθ(u1, u2) =
(
u−θ

1 + u−θ
2 − 1

)−1/θ
; θ ∈]0,∞[. (2.16)

Parametric families of copulas with parameter θ varying in Rp, for some p ≥ 2, include
the following classical examples. Below, we set θ =

(
θ1, θ2

)> ∈ R2.

Cθ(u1, u2) :=
{

1 +
[
(u−θ1

1 − 1)θ2 + (u−θ1
2 − 1)θ2

]1/θ2
}−1/θ1

, θ ∈]0,∞[×[1,∞[; (2.17)

Cθ(u1, u2) := exp
{

−
[
θ2

−1 log
(

exp
(
−θ2(log u1)θ1

)
(2.18)

+ exp
(
−θ2(log u2)θ1

)
− 1

)]1/θ1}
, θ ∈ [1,∞[×]0,∞[.

For other examples of this kind, we refer to [89]. One can see, for example, that the copula
density function given in (2.16) is not bounded on [0, 1]2. It will be of interest to weak
conditions used in [121]. Let Vd,j = {u ∈ [0, 1]p+q : 0 < uj < 1} for j ∈ {1, . . . , p+ q}. For
every i, j ∈ {1, . . . , p+ q}, the second-order partial derivative of the copula function C̈ij is
defined and continuous on the set Vd,i ∩ Vd,j , and there exists a constant K > 0 such that

|C̈ij(u)| ≤ K min
( 1
ui(1 − ui)

,
1

uj(1 − uj)

)
, u ∈ Vd,i ∩ Vd,j .

A similar condition was used in [16] in approximating the Kac empirical copula processes
by appropriate Poisson processes. A weaker than imposing an Hölder condition on the
derivatives like in [121] was considered in [65], condition C.1. Another way to circumvent
the boundedness condition on the copula density function is to consider weighted versions
of Theorems 2.2 and 2.3 in a similar way as in Proposition 1.1 of [74]. We point out that
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we are not mainly concerned with estimating the copula density itself, with a particular
focus on estimation near the boundaries of the unit square. It is well known that the
estimations based on symmetric kernels are inconsistent on the boundaries. They suffer
from the so-called boundary bias. Such bias can be significant in the neighborhood of the
boundaries too, depending on the size of the bandwidth. Several solutions can be proposed
to cope with such issues: mirror image modification transformed kernels and boundary
kernels. In the last one, a smooth distortion is considered near the border so that the
bandwidth and the kernel shape can be modified. In this setting, the beta kernels have
received particular interest.

3. Weak convergence
Let us introduce the U -statistic process

un(φ, hn, t) :=
√
nhp+q

n (r̃(m)
n (φ, t;hn) − Er̃(m)

n (φ, t;hn)).
As in [4], we say that the CLT (Central Limit Theorem) holds for the process

{n1/2(Unm(f,P) − Ef) : f ∈ F}
if there is a Gaussian process {G(f) : f ∈ F} which has a version with bounded and
d-uniformly continuous paths, d being the pseudo distance defined by

d2(f, g) := Var(Pm−1(f − g)),
and if

n1/2(Unm(f,P) − Ef) L→ G(f) uniformly in ℓ∞(F ) (3.1)
where convergence is in the sense of Hoffmann-Jørgensen, see, e.g., [50, 97, 142] for defi-
nition and further details. Then {G(f) : f ∈ F} is a centered Gaussian process indexed
by the class F , with covariance, for f, g ∈ F ,

EG(f)G(g) = m2P[(Pm−1f)(Pm−1g)] −m2(Pmf)(Pmg).
It is well-known that (3.1) is equivalent to both (F , d) being totally bounded and

lim
δ→0

lim sup
n→∞

P∗
{

sup
d(f,g)≤δ

n1/2 |Unm(f,P) − Ef − Unm(g,P) + Eg| > ϵ

}
= 0 (3.2)

for all ϵ > 0, where P∗ is the outer measure if the variable within the bracket is not
measurable, refer to [97, 142] for definition. If {G(f) : f ∈ F} has a version with bounded,
ρ-uniformly continuous paths for some pseudodistance ρ on F , then (3.2) with d replaced
by ρ is sufficient for the CLT (3.1). We introduce now a few more notation to state the
asymptotic normality of r̃(m)

n (φ, t;hn). For 1 ≤ j, l, k ≤ m and t1, . . . , t3m ∈ R3pm, define
rj,l(t1, . . . , tm)

:= E
[
φ(Y1, . . . , Yj−1, Y, Yj+1, . . . , Ym)φ(Ym+1, . . . , Ym+l−1, Y, Ym+l+1, . . . , Y2m)∣∣X = tj ; Xi = ti, ∀i = 1, . . . ,m, i 6= j ; Xm+i = ti,∀i = 1, . . . ,m, i 6= l

]
, (3.3)

r̃j,l(t1, . . . , t2k)
:= E

[
φ(Y1, . . . , Yj−1, Y, Yj+1, . . . , Ym)

φ(Ym+1, . . . , Ym+l−1, Y, Ym+l+1, . . . , Y2m)∣∣Xj = tj ; Xi = ti, ∀i = 1, . . . , 2m, i /∈ {j,m+ i}
]
. (3.4)

rj,l,m(t1, . . . , t3k)
:= E

[
φ(Y1, . . . , Yj−1, Y, Yj+1, . . . , Ym)

φ(Ym+1, . . . , Ym+l−1, Y, Ym+l+1, . . . , Y2m)
φ(Y2m+1, . . . , Y2m+k−1, X, Y2m+k+1, . . . , Y3m)
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∣∣Xi = ti, ∀i = 1, . . . , 3m,X = tj , i /∈ {j,m+ l, 2m+ k}
]
. (3.5)

Assumption 3.1. [(i)]
(1) hn → 0 and nhpn → ∞ ;
(2) K = K ×K is symmetric at 0, bounded and compactly supported ;
(3) rj,l is continuous at (t1, . . . , tm) for all 1 ≤ j, l ≤ m ;
(4) r(m) is two times continuously differentiable in a neighborhood of (t1, . . . , tm) ;
(5) rj,l,k is bounded in a neighborhood of (t1, . . . , tm, t1, . . . , tm, t1, . . . , tm) ∈ R3pm, for

all 1 ≤ j, l, k ≤ m ;
(6) c̆ is twice differentiable in neighborhoods of ti, 1 ≤ i ≤ m.

Proposition 3.2. [Asymptotic normality of r̃(m)
n (φ, t;hn), Corollary 2.4 in [135]] Under

Assumption 3.1, we have√
nhp+q

n
(
r̃(m)
n (φ, t;hn) − r(m)(φ, t)

)
→ N(0, ρ2),

where

ρ2 :=
m∑

j,i=1
1{tj=tl}

(
rj,l(t1, . . . , tm) − r(m)2(φ, t

)
‖K‖2

2/c̆(F(tj)).

Moreover, let B be a positive integer, and
(
t
(1)
1 , . . . , t

(1)
m , . . . , t

(B)
1 , . . . , t

(B)
k

)
∈ Rpm×B.

Then under similar regularity conditions,√
nhp+q

n
(
r̃(m)
n (φ, t(i);hn) − r(m)(φ, t(i))

)
i=1,...,B → N(0,Σ),

where, for 1 ≤ j̃, ĩ ≤ B,

(Σ)j̃ ,̃i :=
k∑

j,i=1
1{

t
(j̃)
j =t(̃i)

i

}(rj,i (t(j̃)1 , . . . , t(j̃)m , t
(̃i)
1 , . . . , t(̃i)m

)
−r(m)(φ, t(̃i))r(m)(φ, t(̃j))

) ‖K‖2
2

c̆(F(t̃jj))
.

Note that the second part of Proposition 3.2 above is a consequence of the first one.
Indeed, for every (c1, . . . , cN ) ∈ RN , we can define

r
(
x

(1)
1 , . . . , x

(1)
k , . . . , x

(N)
1 , . . . , x

(N)
k

)
:=

N∑
ĩ=1

cĩr
(m)(φ, t(̃i))

and corresponding versions of φ, r̃(m)
n (φ, t;hn) and ρ2. Finally, the conclusion follows from

the Cramér-Wold device.

Theorem 3.3. Let F be a measurable class of symmetric functions on Sm such that
t2P{F > t} = 0. Then the following statement hold, in law,

{un(φ, hn, t) : φ ∈ F ,K ∈ K } → {mGP ◦ Pm−1ψ : ψ ∈ F · K }.

The proof of Theorem 3.3 is postponed until Section 10.

Remark 3.4. If φ is not symmetric we will need to symmetrize it. To do this we define
the following function

φ(y) := 1
m!

∑
σ∈Im

m

φ(yσ),

where yσ = (yσ1 , . . . , yσm). After symmetrization the expectation remain unchanged and
the U -statistic un(φ, hn, t) = un(φ,hn, t) do not change.
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4. Wild bootstrap
Define a sequence (Zn)n≥1 of i.i.d. replicæ of a strictly positive random variable Z with

distribution function G(·), independent of the (Xn, Yn)’s. In the sequel, the following
assumptions on the Zn’s will prevail:

(A1) E(Z) = 1; E(Z2) = 2 (or, equivalently, Var(Z) = 1).
We now introduce the wild bootstrap of the estimator of r(m)(φ, t)

r̃(m)∗
n (φ, t;hn) = (n−m)!

n!(n− 1)m
∑

(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)
ik 6=ℓk,k=1,...,m

Zi1 · · ·Zimφ(Yi1 , . . . , Yim)W(i, ℓ, t;hn).

Let us introduce the bootstrapped U -statistic process

u∗
n(φ, hn, t) :=

√
n(r̃(m)∗

n (φ, t;hn) − r̃(m)
n (φ, t;hn)).

Notice that

r̃(m)∗
n (φ, t;hn) − r̃(m)

n (φ, t;hn)

= (n−m)!
n!(n− 1)m

∑
(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)

ik 6=ℓk,k=1,...,m

(Zi1 · · ·Zim − 1)φ(Yi1 , . . . , Yim)W(i, ℓ, t;hn).

We have
E(r̃(m)∗

n (φ, t;hn) − r̃(m)
n (φ, t;hn)) = 0.

Let us introduce

Ψ(z1, . . . , zm, y1, . . . , ym) =
(
m∏
i=1

zi − 1
)
φ(y1, . . . , ym).

Remark that we have

u∗
n(φ, hn, t) =

√
nhp+q

n (r̃(m)∗
n (φ, t;hn) − r̃(m)

n (φ, t;hn))

=
√
nhp+q

n (r̃(m)∗
n (φ, t;hn) − r̃(m)

n (φ, t;hn)
−Er̃(m)∗

n (φ, t;hn) − r̃(m)
n (φ, t;hn))

= un(Ψ, hn, t).

In this setting, the envelope to be considered is given by

F̃(·) = F (·)
(
m∏
i=1

zi − 1
)

m∏
k=1

max
0≤tk≤1

c(tk,GY (·)).

The following theorem can be shown by following similar arguments as those used in
Theorem 2.3. More precisely, it suffices to replace φ by Ψ.

Theorem 4.1. Suppose that the copula density c(·, ·) is continuous and let an = ϱ(logn/n)
for ϱ > 0. If F · C is unbounded, but satisfies

E(F̃2(Y )) < ∞, (4.1)

then we can infer, under the above-mentioned assumptions on F and K , that for all
ϱ′ > 0 and 0 < b0 < 1, there exists a constant 0 < Σ′ < ∞ such that

lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Ip

√
nhp+q|r̃(m)∗

n (φ, t;h) − r̃(m)
n (φ, t;h))|√

| log h| ∨ log logn
≤ Σ′, a.s.
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The main application of this result is the following

lim sup
n→∞

sup
φ∈F

sup
t∈Ip

|r̃(m)
n (φ, t;h) − Er̃(m)

n (φ, t;h)|
|r̃(m)∗
n (φ, t;h) − r̃(m)

n (φ, t;h))|
≤ Γ,

where Γ is a positive constant. It will be of interest to refine this result by showing

lim sup
n→∞

sup
φ∈F

sup
t∈Ip

|r̃(m)
n (φ, t;h) − Er̃(m)

n (φ, t;h)|
|r̃(m)∗
n (φ, t;h) − r̃(m)

n (φ, t;h))|
= 1 + o(1).

The last relation may be used to construct a uniform asymptotic certainty band similar
to Remark 2.3 of [51].

Theorem 4.2. Let F be a measurable class of symmetric functions on Sm such that
v2P{F > v} = 0. Then the following statement hold, in law,

{u∗
n(φ, hn, t) : φ ∈ F ,K ∈ K } → {mG∗

P ◦ Pm−1ψ : ψ ∈ F · K },

where G∗
P is an independent copy of the Gaussian process GP defined in Theorem 3.3.

Application of Theorem 4.2, is well documented, we may refer for example to [11, 13,
14, 17, 26, 27, 33, 35, 132, 133].

Remark 4.3. It is well known that Theorem 4.2 can be used easily through routine
bootstrap sampling, which we describe briefly as follows. Let N be a large integer. Let
Z

(k)
1 , . . . , Z

(k)
n , for k = 1, . . . , N , be a sample of weights satisfying the preceding conditions

and independent of (Xn, Yn)’s. Moreover, for any k = 1, . . . , N , let

u∗k
n (φ, hn, t) =

√
nhp+q

n (r̃(m)∗k

n (φ, t;hn) − r̃(m)
n (φ, t;hn)),

where, r̃(m)∗k

n (φ, t;hn) is defined by

r̃(m)∗k

n (φ, t;hn)

= (n−m)!
n!(n− 1)m

∑
(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)

ik 6=ℓk,k=1,...,m

Z
(k)
i1

· · ·Z(k)
im
φ(Yi1 , . . . , Yim)W(i, ℓ, t;hn).

Now, according to Theorem 4.2, we readily obtain that,

{u∗k
n (φ, hn, t) : φ ∈ F ,K ∈ K } → {mGkP ◦ Pm−1ψ ∈ F · K }.

where G1
P, . . . , G

N
P are independent copies of GP. In order to approximate the limiting

distribution of {u∗
n(φ, hn, t) : φ ∈ F ,K ∈ K }, one can use the empirical distribution of

{u∗k
n (φ, hn, t) : φ ∈ F ,K ∈ K }, k = 1, . . . , N , for N large enough. To be more precise, if

we are interested in performing a statistical test based on a smooth functional

Sn := φ(un(φ, hn, t)),

with the convention that large values of Sn lead to the rejection of the null hypothesis, H0
say, under some regularity conditions, a valid approximation to the p-value for the test
based on Sn, for N large enough, is given by

1
N

N∑
k=1

1I{S(k)
n ≥ Sn},

where
S(k)
n := φ(u∗k

n (φ, hn, t)).
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5. The censored case
Consider a triple (Y,C,X) of random variables defined in R × R × Rd. Here Y is the

variable of interest, C a censoring variable and X a concomitant variable. Throughout, we
will use [103] notation and we work with a sample {(Yi, Ci,Xi)1≤i≤n} of independent and
identically distributed replication of (Y,C,X), n ≥ 1. Actually, in the right censorship
model, the pairs (Yi, Ci), 1 ≤ i ≤ n, are not directly observed and the corresponding
information is given by Zi := min{Yi, Ci} and δi := 1{Yi ≤ Ci}, 1 ≤ i ≤ n. Accordingly,
the observed sample is

Dn = {(Zi, δi,Xi), i = 1, . . . , n}.
For example, survival data in clinical trials or failure time data in reliability studies are
often subject to censoring. More specifically, many statistical experiments result in in-
complete samples, even under well-controlled conditions. For example, clinical data for
surviving most types of disease are usually censored by other competing risks to life, which
result in death. In the sequel, we impose the following assumptions upon the distribution
of (X, Y ). Denote by I a given compact set in Rd with nonempty interior and set, for any
α > 0,

Iα = {x : inf
u∈I

‖x − u‖ ≤ α}.

We will assume that, for a given α > 0, (X, Y ) [resp. X] has a density function fX,Y [resp.
fX] with respect to the Lebesgue measure on Iα × R [resp. Iα]. For −∞ < t < ∞, set

FY (t) = P(Y ≤ t), G(t) = P(C ≤ t), and H(t) = P(Z ≤ t),

the right-continuous distribution functions of Y , C and Z respectively. For any right-
continuous distribution function L defined on R, denote by

TL = sup{t ∈ R : L(t) < 1}

the upper point of the corresponding distribution. Now consider a pointwise measurable
class F of real, measurable functions defined on R, and assume that F is of VC-type. In
this section, we will mostly focus on the regression function of ψ(Y ) evaluated at X = x,
for ψ ∈ F and x ∈ Iα, given by

r(1)(ψ,x) = E(ψ(Y ) | X = x),

when Y is right-censored. To estimate r(1)(ψ, ·), we make use of the Inverse Probability
of Censoring Weighted (I.P.C.W.) estimators wish have recently gained popularity in the
censored data literature (see [39, 94]). The key idea of I.P.C.W. estimators is as follows.
Introduce the real-valued function Φψ(·, ·) defined on R2 by

Φψ(y, c) = 1{y ≤ c}ψ(y ∧ c)
1 −G(y ∧ c)

. (5.1)

Assuming the function G(·) to be known, first note that Φψ(Yi, Ci) = δiψ(Zi)/(1 −G(Zi))
is observed for every 1 ≤ i ≤ n. Moreover, under the Assumption (I) below,

(I): C and (Y,X) are independent.
We have

r(1)(Φψ,x) := E(Φψ(Y,C) | X = x)

= E
{
1{Y ≤ C}ψ(Z)

1 −G(Z)
| X = x

}
= E

{
ψ(Y )

1 −G(Y )
E(1{Y ≤ C} | X, Y ) | X = x

}
= r(1)(ψ,x). (5.2)
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Therefore, any estimate of r(1)(Φψ, ·), which can be built on fully observed data, turns out
to be an estimate for r(1)(ψ, ·) too. Thanks to this property, most statistical procedures
that provide estimates of the regression function in the uncensored case can be naturally
extended to the censored case. For instance, kernel-type estimates are particularly easy
to construct. Set, for x ∈ I, h ≥ 0, 1 ≤ i ≤ n,

ω
(1)
n,K,h,i(x) := K

(x − Xi

h

)/ n∑
j=1

K

(x − Xj

h

)
. (5.3)

In view of (5.1), (5.2), and (5.3), whenever G(·) is known, a kernel estimator of r(1)(ψ, ·)
is given by

r̆(1)
n (ψ,x;hn) =

n∑
i=1

ω
(1)
n,K,h,i(x) δiψ(Zi)

1 −G(Zi)
. (5.4)

The function G(·) is generally unknown and has to be estimated. We will denote by G∗
n(·)

the Kaplan-Meier estimator of the function G(·) [93]. Namely, adopting the conventions∏
∅

= 1

and 00 = 1 and setting

Nn(u) =
n∑
i=1

1{Zi ≥ u},

we have

G∗
n(u) = 1 −

∏
i:Zi≤u

{
Nn(Zi) − 1
Nn(Zi)

}(1−δi)
, for u ∈ R.

Given this notation, we will investigate the following estimator of r(1)(ψ, ·)

r̆(1)∗
n (ψ,x;hn) =

n∑
i=1

ω
(1)
n,K,h,i(x) δiψ(Zi)

1 −G∗
n(Zi)

, (5.5)

refer to [94] and [103]. Adopting the convention 0/0 = 0, this quantity is well defined, since
G∗
n(Zi) = 1 if and only if Zi = Z(n) and δ(n) = 0, where Z(k) is the kth ordered statistic

associated with the sample (Z1, . . . , Zn) for k = 1, . . . , n and δ(k) is the δj corresponding to
Zk = Zj . When the variable of interest is right-censored, functionals of the (conditional)
law can generally not be estimated on the complete support. To obtain our results, we
will work under the following assumptions.

(A.1): F = {ψ := ψ1{(−∞, τ)m}, ψ ∈ F}, where τ < TH and F1 is a pointwise
measurable class of real measurable functions defined on R and of type VC.

(A.2): The class of functions F has a measurable and uniformly bounded envelope
function Υ with,

Υ(y1, . . . , ym) ≥ sup
ψ∈F

| ψ(y1, . . . , ym) |, yi ≤ TH .

(A.3): The class of functions M is relatively compact with respect to the sup- norm
topology on Imα .

In what follows, we will study the uniform convergence of m̃∗
ψ,n,h(x) centered by the

following centering factor

Êr̆(1)∗
n (ψ,x;hn) =

E
(
ψ(Y )K

(x − X
h

))
E
(
K

(x − X
h

)) .
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This choice is justified by the fact that under hypothesis (I), we have

E
{

Φψ(Y,C)K
(x − X

h

)}
= E

{
1{Y ≤ C}ψ(Z)

1 −G(Z)
K

(x − X
h

)}
(5.6)

= E


ψ(Y )K

(x − X
h

)
1 −G(Y )

E[1{Y ≤ C} | X,Y]


= E

{
ψ(Y )K

(x − X
h

)}
.

A natural extension of the function defined in (5.1) is given by

Φψ(y1, . . . , ym, c1, . . . , cm) =
∏m
i=1{1{yi ≤ ci}ψ(y1 ∧ c1, . . . , ym ∧ cm)∏m

i=1{1 −G(yi ∧ ci)}
.

From this, we have an analogous relation to (5.2) given by

E(Φψ(Y1, . . . , Ym, C1, . . . , Cm) | (X1, . . . ,Xm) = t)

= E
(∏m

i=1{1{Yi ≤ Ci}ψ(Y1 ∧ C1, . . . , Ym ∧ Cm)∏m
i=1{1 −G(Yi ∧ Ci)}

| (X1, . . . ,Xm) = t
)

= E
(

ψ(Y1, . . . , Ym)∏m
i=1{1 −G(Yi)}

E
(
m∏
i=1

{1{Yi ≤ Ci} | (Yi, Xi)1≤i≤m

)
| (X1, . . . ,Xm) = t

)
= E (ψ(Y1, . . . , Ym) | (X1, . . . ,Xm) = t)

An analog estimator to (1.2) in the censored case is given by

r̆(m)
n (ψ, t;hn) =

∑
(i1,...,im)∈I(m,n)

δi1 · · · δimψ(Zi1 , . . . , Zim)
(1 −G(Zi1) · · · (1 −G(Zim))

ω
(m)
n,K,h,i(t), (5.7)

where, for i = (i1, . . . , im) ∈ I(m,n),

ω
(m)
n,K,h,i(t) :=

K

(t1 − Xi1

hn

)
· · ·K

(tm − Xim

hn

)
∑

(i1,...,im)∈I(m,n)
K

(t1 − Xi1

hn

)
· · ·K

(tm − Xim

hn

) . (5.8)

The estimator that we will investigate is given by

r̆(m)∗
n (ψ, t;hn) =

∑
(i1,...,im)∈I(m,n)

δi1 · · · δimψ(Zi1 , . . . , Zim)
(1 −G∗

n(Zi1) · · · (1 −G∗
n(Zim))

ω
(m)
n,K,h,i(t). (5.9)

In the copula representation, this is given by

r̆(m)
n (ψ, t;hn)

= (n−m)!
n!(n− 1)m

∑
(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)

ik 6=ℓk,k=1,...,m

δi1 · · · δimψ(Zi1 , . . . , Zim)
(1 −G(Zi1) · · · (1 −G(Zim))

W(i, ℓ, t;hn),

and

r̆(m)∗
n (ψ, t;hn)

= (n−m)!
n!(n− 1)m

∑
(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)

ik 6=ℓk,k=1,...,m

δi1 · · · δimψ(Zi1 , . . . , Zim)
(1 −G∗

n(Zi1) · · · (1 −G∗
n(Zim))

W(i, ℓ, t;hn).
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Let
Ẽr̆(m)∗

n (φ, t;hn)

= E
{

1
h
m(p+q)
n

ψ(Zi1 , . . . , Zim)
(1 −G∗

n(Zi1) · · · (1 −G∗
n(Zim))

m∏
j=1

K

(Fn(tj) − Fn(Xj)
hn

)
K

(F0,n(Ym+1) − F0,n(Yj)
hn

)
×E

 1
hmpn

m∏
j=1

K

(
Fn(tj) − Fn(Xij )

hn

)
−1

.

we will let h > 0 vary in such a way that h′
n ≤ h ≤ h′′

n, where {h′
n}n≥1 and {h′′

n}n≥1 are
two sequences of positive constants such that 0 < h′

n ≤ h′′
n < ∞ and, for either choice of

hn = h′
n or hn = h′′

n, conditions (H .1-2-3) below are fulfilled by {hn}n≥1

(H.1) hn ↓ 0, 0 < hn < 1, and nhdn ↑ ∞;
(H.2) nhdn/ logn → ∞ as n → ∞
(H.3) log (1/hn) / log logn → ∞ as n → ∞.

Assumptions (H.1)-(H.3) are classical in the empirical process theory and are often re-
ferred to as the Csörgő-Révész-Stute (CRS) conditions [48, 134]. They primarily allow
the controlling of variance-type terms. The condition hn ↓ 0 is used to obtain the asymp-
totic unbiasedness of the kernel (density or regression) type estimators. We need a more
restrictive assumption on hn for the consistency, this is given by the condition nhdn ↑ ∞;
one can refer to [2, 112, 118].

Theorem 5.1. Suppose that the copula density c(·) is Lipschitz continuous on [0, 1]p+1

and let an = ϱ(logn/n) for ϱ > 0. If the class of functions F · C is bounded, in the sense
that for some 0 < M < ∞,

F(y) < M.

We infer, under (A.1)-(A.3), (H.1)-(H.3), (I) and the above-mentioned assumptions on
F and K , that for all ϱ > 0 and 0 < b0 < 1, there exists a constant 0 < Σ′′ < ∞ such
that

lim sup
n→∞

sup
h′

n≤h≤h′′
n

sup
ψ∈F

sup
t∈Ip

√
nhp+1|r̆(m)∗

n (ψ, t;hn) − Ẽr̆(m)∗
n (ψ, t;h)|√

| log h| ∨ log logn
≤ Σ′′, a.s.

The proof of Theorem 5.1 is postponed until Section 10.
The proof of this theorem, when combined with [56] results, gives the following

lim sup
n→∞

sup
h′

n≤h≤h′′
n

sup
ψ∈F

sup
t∈Ip

√
nhmp|r̆(m)∗

n (ψ, t;hn) − Ẽr̆(m)∗
n (ψ, t;h)|√

| log h| ∨ log logn
≤ ˘̆Σ, a.s.

for some constant 0 < ˘̆Σ < ∞. Refer to [30] for recent references.

6. Potential applications
6.1. Simultaneous prediction intervals for random forests

This example is given in [131]. Consider a training dataset of size n,
{(Y1, Z1), . . . , (Yn, Zn)} = {X1, . . . , Xn} = Xn

1 ,

where Yi ∈ Y is a vector of features and Zi ∈ R is a response. Let h be a deterministic
prediction rule that takes a sub-sample {Xi1 , . . . , Xim} with 1 ≤ m ≤ n as input and
outputs predictions on d testing points (y∗

1, . . . , y
∗
d) in the feature space Y. The tree-based

prediction rule is constructed on each sub-sample with additional randomness for random
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forests. Specifically, let {Wι : ι ∈ I(m,n)} be a collection of i.i.d. random variables
taking value in a measurable space (S′, S′) that are independent of the data Xn

1 . Let
H : Sm × S′ → Rd be an Sm ⊗ S′-measurable function such that E[H(x1, . . . , xm,W )] =
h(x1, . . . , xm). Then predictions of random forests are given by a d-dimensional U -statistic
with random kernel H:

Ûn := (n−m)!
n!

∑
i∈I(m,n)

H(Xi1 , . . . , Xim ,Wi). (6.1)

where the random kernel H varies with m.

6.2. Discrimination
Now, we apply the results of the problem of discrimination described in Section 3 of

[138], refer to also to [137]. We will use a similar notation and setting. Let φ(·) be any
function taking at most finitely many values, say 1, . . . ,M . The sets

Aj = {(y1, . . . , ym) : φ(y1, . . . , yk) = j} , 1 ≤ j ≤ M

then yield a partition of the feature space. Predicting the value of φ(Y1, . . . , Ym) is tan-
tamount to predicting the set in the partition to which (Y1, . . . , Ym) belongs. For any
discrimination rule g, we have

P(g(X) = φ(Y)) ≤
M∑
j=1

∫
{x:g(x)=j}

maxmj(x)dx,

where
mj(x) = P(φ(Y) = j | X = x), x ∈ Rd.

The above inequality becomes equality if

g0(x) = arg max
1≤j≤M

mj(x).

g0(·) is called the Bayes rule, and the pertaining probability of error

L∗ = 1 − P(g0(X) = φ(Y)) = 1 − E
{

max
1≤j≤M

mj(x)
}

is called the Bayes risk. Each of the above unknown function mj ’s can be consistently
estimated by one of the methods discussed in Section 2. Let, for 1 ≤ j ≤ M ,

mj
n(x) = (n−m)!

n!(n− 1)m
∑

(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)
ik 6=ℓk,k=1,...,m

1{φ(Yi1 , . . . , Yim) = j}W(i, ℓ, t;hn).

Set
g0,n(x) = arg max

1≤j≤M
mj
n(x).

Let us introduce
L∗
n = P(g0,n(X) 6= φ(Y)).

Then, one can show that the discrimination rule g0,n(·) is asymptotically Bayes’ risk
consistent

L∗
n → L∗.

This follows from the obvious relation

|L∗ − L∗
n| ≤ 2E

[
max

1≤j≤M

∣∣∣mj
n(X) −mj(X)

∣∣∣] .
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6.3. Ranking problems
For its great importance, the problem of ranking instances has received special atten-

tion in machine learning. In some specific ranking problems, it is necessary to compare
two different observations based on their observed characteristics and decide which one is
better instead of simply classifying them. The ordering problems have many applications
in different areas of banking (Data mining process for direct marketing data extraction),
document type classification and so on. The problems of ordering/ranking are frequent
problems in which U -statistics come into play. In this challenge, the aim is to establish
a universal and consistent ordering method. Suppose that we want to establish an order
between the first components of the two pairs (X,Y ) , (X ′, Y ′) of independent and iden-
tically distributed observations in X × R. The variables Y and Y ′ are respective labels of
the variables X and X ′ that we want to order by observing them (and not their labels).
Usually, we decide that X is better than X ′ if Y > Y ′. To see things more clearly, we
introduce the new variable:

Z = Y − Y ′

2
,

then Y > Y ′ is equivalent to Z > 0. As mentioned, the goal is to establish a classification
rule between X and X ′ with minimal risk, i.e., the probability that the label of the highest
ranked variable is the smallest, is small. Mathematically speaking, the decision rule is given
by the function:

r(x, x′) =
{

1 if x > x′,
−1 else.

The following ranking risk gives the performance measure of r:
L(r) = P

(
Z.r

(
X,X ′)) .

A natural estimate for L(·) according to [47] is:

Ln(r) := 1
n(n− 1)

∑
i 6=j

1{Zi,j .r(Xi,Xj)<0},

where (X1, Y1) , . . . , (Xn, Yn) are n independent, identically distributed copies of (X,Y ),
and Zi,j = Yi−Yj

2 . One can easily see that Ln is a U -statistic with m = 2. For more details
the reader is invited to consult [47] and [117].

7. Examples
7.1. Examples of classes of functions
Example 7.1. The set F of all indicator functions 1I{(−∞,t]} of cells in R satisfies :

N
(
ϵ,F , d

(2)
P

)
≤ 2
ϵ2
,

for any probability measure P and ϵ ≤ 1. Notice that :∫ 1

0

√
log

(1
ϵ

)
dϵ ≤

∫ ∞

0
u1/2 exp(−u)du ≤ 1.

For more details and discussion on this example, refer to Example 2.5.4 of [142] and [97,
p. 157]. The covering numbers of the class of cells (−∞, t] in higher dimension satisfy a
similar bound, but with higher power of (1/ϵ), see Theorem 9.19 of [97].

Example 7.2. (Classes of functions that are Lipschitz in a parameter, Section 2.7.4 in
[142]). Let F be the class of functions x 7→ φ(t, x) that are Lipschitz in the index
parameter t ∈ T . Suppose that:

|φ(t1, x) − φ(t2, x)| ≤ d(t1, t2)κ(x)
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for some metric d on the index set T , the function κ(·) defined on the sample space X,
and all x. According to Theorem 2.7.11 of [142] and Lemma 9.18 of [97], it follows, for
any norm ‖ · ‖F on F , that :

N(ϵ‖F‖F ,F , ‖ · ‖F ) ≤ N(ϵ/2, T, d).

Hence if (T, d) satisfy

J(∞, T, d) =
∫ ∞

0

√
logN(ϵ, T, d)dϵ < ∞,

then the conclusions holds for F .

Example 7.3. Let us consider as an example the classes of functions that are smooth up to
order α defined as follows, see Section 2.7.1 of [142] and Section 2 of [141]. For 0 < α < ∞
let bαc be the greatest integer strictly smaller than α. For any vector k = (k1, . . . , kd) of
d integers define the differential operator

Dk. := ∂k.

∂k1 · · · ∂kd
,

where

k. :=
d∑
i=1

ki.

Then, for a function f : X → R, let

‖f‖α := max
k.≤bαc

sup
x

|Dkf(x)| + max
k.=bαc

sup
x

Dkf(x) −Dkf(y)
‖x− y‖α−bαc ,

where the suprema are taken over all x, y in the interior of X with x 6= y. Let CαM (X) be
the set of all continuous functions f : X → R with

‖f‖α ≤ M.

Note that for α ≤ 1 this class consists of bounded functions f that satisfy a Lipschitz
condition. Kolmogorov and Tihomirov [96] computed the entropy of the classes of CαM (X)
for the uniform norm. As a consequence of their results van der Vaart [141] shows that
there exists a constant K depending only on α, d and the diameter of X such that for every
measure γ and every ϵ > 0,

logN[ ](ϵMγ(X), CαM (X), L2(γ)) ≤ K

(1
ϵ

)d/α
,

N[ ] is the bracketing number, refer to Definition 2.1.6 of [142] and we refer to Theorem
2.7.1 of [142] for a variant of the last inequality. By Lemma 9.18 of [97], we have

logN(ϵMγ(X), CαM (X), L2(γ)) ≤ K

( 1
2ϵ

)d/α
.

7.2. Examples of U-kernels
Example 7.4. For :

φ(Y1, Y2) = 1
2

(Y1 − Y2)2,

we obtain :

r(2)(φ, t1) = Var(Y1 | X1 = t1).
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Example 7.5. Let φ(Y1, Y2) = Y1Y2, then :

r(2)(φ, t1, t2) = E(Y1Y2 | X1 = t1, X2 = t2)
= E(Y1 | X1 = t1)E(Y2 | X2 = t2)
= r(1)(t1)r(1)(t2),

where r(2) denoting the regression of Y on X = t. The above φ(·) is a simple example of
the kernel for a conditional U -statistic where one is interested in functions of r(2).

Example 7.6. Let :

ψ(Y1, Y2, Y3) = 1{Y2 ≤ Y1} − 1{Y3 ≤ Y1}

and for m = 5 define :

φ(Y1, . . . , Y5) = 1
4
ψ(Y1, Y2, Y3)2ψ(Y1, Y4, Y5)2.

We have :

r(5) (φ, t1, t2, t3, t4, t5)
= E (φ(Y1, . . . , Y5) | X1 = X2 = X3 = X4 = X5 = t) .

The corresponding U -statistics may be used to test the conditional independence.

Example 7.7. For φ(Y1, Y2) = 1{Y1 ≤ Y2} :

r(2)(φ, t1, t2) = P(Y1 ≤ Y2 | X1 = t1, X2 = t2), for t1 6= t2

equals the probability that the output pertaining to t1 is less than or equal to the one
pertaining to t2.

Example 7.8. Assume
{

Yi = (Yi,1, Yi,2)>
}
i=1,2

and define φ by :

φ(y1,y2) := 1
2

(y1,1y1,2 + y2,1y2,2 − y1,1y2,2 − y1,2y2,1),

and :

r(2)(φ, t1, t2) = 1
2

{E(Y1,1Y1,2 | X1 = t1) + E(Y2,1Y2,2 | X2 = t2)

− E(Y1,1Y2,2 | X1 = t1, X2 = t2) − E(Y1,2Y2,1 | X1 = t1, X2 = t2)} .

In particular :

r(2)(φ, t1) = E(Y1,1Y1,2 | X1 = t1) − E(Y1,1 | X1 = t1)E(Y1,2 | X1 = t1)

is the conditional covariance of Y1 given X1 = t1.

Example 7.9. For m = 3, let :

φ(Y1, Y2, Y3) = 1{Y1 − Y2 − Y3 > 0},

We have
r(3)(φ, t1, t2, t3) = P(Y1 > Y2 + Y3 | X1 = X2 = X3 = t)

and the corresponding conditional U -Statistic can be looked upon as a conditional analog
of the Hollander-Proschan test-statistic [85]. It may be used to test the hypothesis that
the conditional distribution of Y1 given X1 = t, is exponential, against the alternative that
it is of the New-Better than-Used-type.
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Example 7.10. Let Ŷ1Y2 denote the oriented angle between Y1, Y2 ∈ T , T is the circle of
radius 1 and center 0 in R2. Let :

φt(Y1, Y2) = 1{Ŷ1Y2 ≤ t} − t/π, for t ∈ [0, π).
Silverman [127] has used this kernel in order to propose U -process to test uniformity on
the circle. Let

r(2)(φt, t1, t2) = E(φt(Y1, Y2) | X1 = X2 = t).
In this setting, one can propose a conditional U -process to test conditional uniformity on
the circle.

Example 7.11. Hoeffding [84] introduced the parameter

4 =
∫ ∞

−∞

∫ ∞

−∞
D2(y1, y2)dF (y1, y2),

where D(y1, y2) = F (y1, y2) −F (y1,∞)F (∞, y2) and F (·, ·) is the distribution function of
Y1 and Y2. The parameter 4 has the property that 4 = 0 if and only if Y1 and Y2 are
independent. From [99], an alternative expression for 4 can be developed by introducing
the functions

ψ (y1, y2, y3) =


1 if y2 ≤ y1 < y3
0 if y1 < y2, y3 or y1 ≥ y2, y3
−1 if y3 ≤ y1 < y2

and

φ (y1,1, y1,2, . . . , y5,1, y5,2) = 1
4
ψ (y1,1, y1,2, y1,3)ψ (y1,1, y1,4, y1,5)

×ψ (y1,2, y2,2, y3,2)ψ (y1,2, y4,2, y5,2) .
We have

4 =
∫
. . .

∫
φ (y1,1, y1,2, . . . , y5,1, y5,2) dF (y1,1, y1,2) . . . dF (y1,5, y2,5) .

We have
r(5) (φ, t1, t2, t3, t4, t5)

= E (φ((Y1,1, Y1,2), . . . , (Y5,1, Y5,2)) | X1 = X2 = X3 = X4 = X5 = t) .
The corresponding U -statistics may be used to test the conditional independence.

Example 7.12. (Hoeffding’s D). From the symmetric kernel,
hD (z1, . . . , z5)

:= 1
16

∑
(i1,...,i5)∈P5

[{1 (zi1,1 ≤ zi5,1) − 1 (zi2,1 ≤ zi5,1)} {1 (zi3,1 ≤ zi5,1) − 1 (zi4,1 ≤ zi5,1)}]

× [{1 (zi1,2 ≤ zi5,2) − 1 (zi2,2 ≤ zi5,2)} {1 (zi3,2 ≤ zi5,2) − 1 (zi4,2 ≤ zi5,2)}] ,
we recover Hoeffding’s D statistic, which is a rank-based U-statistic of order 5 and gives
rise to Hoeffding’s D correlation measure EhD.

Example 7.13. (Blum-Kiefer-Rosenblatt’s R). The symmetric kernel

hR (z1, . . . , z6) := 1
32

∑
(i1,...,i6)∈P6

× [{1 (zi1,1 ≤ zi5,1) − 1 (zi2,1 ≤ zi5,1)} {1 (zi3,1 ≤ zi5,1) − 1 (zi4,1 ≤ zi5,1)}]
× [{1 (zi1,2 ≤ zi6,2) − 1 (zi2,2 ≤ zi6,2)} {1 (zi3,2 ≤ zi6,2) − 1 (zi4,2 ≤ zi6,2)}]

yields Blum-Kiefer-Rosenblatt’s R statistic [8], which is a rank-based U -statistic of order
6. At this point, we refer to [10, 12, 15, 24, 25].
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Example 7.14. (Bergsma-Dassios-Yanagimoto’s τ∗). Bergsma and Dassios [7] introduced
a rank correlation statistic as a U -statistic of order 4 with the symmetric kernel

hτ∗ (z1 , . . . , z4)

:= 1
16

∑
(i1,...,i4)∈P4

{1 (zi1,1, zi3,1 < zi2,1, zi4,1) + 1 (zi2,1, zi4,1 < zi1,1, zi3,1)

−1 (zi1,1, zi4,1 < zi2,1, zi3,1) − 1 (zi2,1, zi3,1 < zi1,1, zi4,1)}
× {1 (zi1,2, zi3,2 < zi2,2, zi4,2) + 1 (zi2,2, zi4,2 < zi1,2, zi3,2)
−1 (zi1,2, zi4,2 < zi2,2, zi3,2) − 1 (zi2,2, zi3,2 < zi1,2, zi4,2)}

Here, 1 (y1, y2 < y3, y4) := 1 (y1 < y3)1 (y1 < y4)1 (y2 < y3)1 (y2 < y4) .

Example 7.15. The sample covariance matrix

Ŝn = (n− 1)−1
n∑
i=1

(
Xi − X̄n

) (
Xi − X̄n

)>
,

is an unbiased estimator of the covariance matrix Σ = Cov (X1). Here, Ŝn is a matrix-
valued U-statistic with the quadratic kernel h (x1, x2) = (x1 − x2) (x1 − x2)> /2 for x1, x2 ∈
Rp.

Example 7.16. Two generic vectors y = (y1, y2) and z = (z1, z2) in R2 are said to be
concordant if (y1 − z1) (y2 − z2) > 0. For m, k = 1, . . . , p, define

τℓk = 1
n(n− 1)

∑
1≤i 6=j≤n

1 {(Xiℓ −Xjℓ) (Xik −Xjk) > 0} .

Then Kendall’s tau rank correlation coefficient matrix T = {τℓk}pℓ,k=1 is a matrix-valued
U -statistic with a bounded kernel. It is clear that τℓk quantifies the monotonic dependency
between (X1ℓ, X1k) and (X2ℓ, X2k) and it is an unbiased estimator of P((X1ℓ−X2ℓ)(X1k−
X2k) > 0), that is, the probability that (X1ℓ, X1k) and (X2ℓ, X2k) are concordant.

Example 7.17. The Gini mean difference. The Gini index provides another popular
measure of dispersion. It corresponds to the case where E ⊂ R and h(x, y) = |x− y| :

Gn = 2
n(n− 1)

∑
1≤i<j≤n

|Xi −Xj |

Example 7.18. The Wilcoxon Statistic. Suppose that E ⊂ R is symmetric around zero.
As an estimate of the quantity∫

(x,y)∈E2

{
21{x+y>0} − 1

}
dF (x)dF (y),

it is pertinent to consider the statistic

Wn = 2
n(n− 1)

∑
1≤i<j≤n

{
2 · 1{Xi+Xj>0} − 1

}
,

which is relevant for testing whether or not µ is located at zero.

Example 7.19. The Takens estimator. Suppose that E ⊂ Rd, d ≥ 1. Denote by ‖ · ‖ the
usual Euclidean norm on Rd. In [9], the following estimate of the correlation integral,

CF (r) =
∫

I{‖x−x′‖≤r}dF (x)dF
(
x′) , r > 0,

is considered:
Cn(r) = 1

n(n− 1)
∑

1≤i 6=j≤n
I{‖Xi−Xj‖≤r}
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In the case where a scaling law holds for the correlation integral, i.e., when there exists
(α, r0, c) ∈ R∗3

+ such that CF (r) = c · r−α for 0 < r ≤ r0, the U -statistic

Tn = 1
n(n− 1)

∑
1≤i 6=j≤n

log
(‖Xi −Xj‖

r0

)
,

is used in order to build the Takens estimator α̂n = −T−1
n of the correlation dimension α.

8. The bandwidth selection criterion
Many methods have been established and developed to construct, in asymptotically

optimal ways, bandwidth selection rules for nonparametric kernel estimators, especially
for Nadaraya-Watson regression estimator we quote among them [29, 56, 79, 116]. This
parameter has to be selected suitably, either in the standard finite-dimensional case or in
the infinite-dimensional framework to insuring good practical performances. The leave-
one-out cross-validation procedure allows to define, for any fixed i = (i1, . . . , im) ∈ I(m,n):

r̃
(m)
n,i (φ, t;hn) = (n−m)!

n!(n− 1)m
∑

(i1,...,im),(ℓ1,...,ℓm)∈Im
n (i)

ik 6=ℓk,k=1,...,m

φ(Yi1 , . . . , Yim)W(i)(j, ℓ, t;hn),(8.1)

where
Imn (i) := {j ∈ I(m,n) and j 6= i} = I(m,n)\{i},

and the weight, (i1, . . . , im), (ℓ1, . . . , ℓm) ∈ I(m,n)\{i},

W(i)(j, ℓ, t;hn) =

1
h

m(p+q)
n

m∏
ν=1

K

(Fn(tν) − Fn(Xℓν )
hn

)
K

(F0,n(Yiν ) − F0,n(Yℓν )
hn

)
(n−m)!
n!hmpn

∑
(i1,...,im)∈I(m,n)

m∏
ν=1

K

(Fn(tν) − Fn(Xiν )
hn

) . (8.2)

The equation (8.1) represents the leave-out-(Xi,Yi) estimator of the functional regression
and also could be considered as a predictor of φ (Yi). In order to minimize the quadratic
loss function, we introduce the following criterion, we have for some (known) non-negative
weight function W(·) :

CV (φ, h) := (n−m)!
n!(n− 1)m

∑
i∈I(m,n)

(
φ (Yi) − r̃

(m)
n,i (φ,Xi;h)

)2
W̃ (Xi) , (8.3)

where

W̃ (t) :=
m∏
i=1

W(ti).

Following the ideas developed by [116], a natural way for choosing the bandwidth is to
minimize the precedent criterion, so let’s choose ĥn ∈ [an, bn] minimizing among h ∈
[an, bn] :

sup
φ∈F

CV (φ, h) ,

we can conclude, by Corollary 2.1, that :

sup
φ∈F

sup
t∈Ip

∣∣∣r̂(m)
n (φ, t; ĥn) − r(m)(φ, t)

∣∣∣ −→ 0, p.s.

The main interest of our results is the possibility to derive the asymptotic properties of our
estimate even if the bandwidth parameter is a random variable, like in the last equation.
Following [6] where the bandwidths are locally chosen by a data-driven method based on
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the minimization of a functional version of a cross-validated criterion, one can replace
(8.3) by

CV (φ, h) := (n−m)!
n!(n− 1)m

∑
i∈I(m,n)

(
φ (Yi) − r̂

(m)
n,i (φ,Xi;h)

)2
Ŵ (Xi, t) , (8.4)

where

Ŵ (s, t) :=
m∏
i=1

Ŵ (si, ti).

In practice, one takes for i ∈ I(m,n), the uniform global weights W̃ (Xi) = 1, and the
local weights

Ŵ (Xi, t) =
{

1 if ‖Xi − t‖ ≤ h,
0 otherwise.

For the sake of brevity, we have just considered the most popular method, that is, the cross-
validated selected bandwidth. This may be extended to any other bandwidth selector, such
as the bandwidth based on Bayesian ideas [123].

Remark 8.1. We can use a different bandwidth criterion suggested by [128], the rule
of thumb. Strictly speaking, since the cross-validated bandwidth mn is random, the as-
ymptotic theory can only be justified using a specific stochastic equicontinuity argument.
For testing a parametric model for conditional mean function against a nonparametric
alternative, Horowitz and Spokoiny [86] proposed an adaptive-rate-optimal rule. Gao and
Gijbels [70] present the other method for selecting a proper bandwidth. Gao and Gijbels
[70] propose, utilizing the Edgeworth expansion of the asymptotic distribution of the test,
to select the bandwidth such that the power function of the test problem is maximized
while the size function is controlled. Although any choice of bandwidth hn that satisfies
the assumption will produce the result in Corollary 2.1, we need guidance on choosing hn
in practice. Idealistically, we should choose a mn that provides the greatest power (e.g.,
test based on the Kendall tau) or small MSE for a given sample size, but deriving this
procedure is complicated enough to warrant a separate study.

9. Concluding remarks
In this work, we have considered the nonparametric conditional U -statistics estimation.

Using the copula representation, we have proposed an alternative estimator of Stute’s
conditional U -statistics estimator, which is a generalization of the Nadaraya - Watson
estimator. Similarly, our estimator is a direct extension of the copula regression estimator
proposed in [23] and [22]. We have obtained the uniform-in-bandwidth consistency of the
proposed estimator, which may be interesting in some applications. Copula regression
models provide flexible tools, e.g., elliptical copulas have been used to combine general-
ized linear models for the components of auto or multi-peril homeowners insurance claims,
Gaussian copula regression with Gamma margins to model whole-life and term insurance
demand jointly. The copula models have to be used in cases when the errors are not
jointly normally distributed; for example, in risk management, the marginal distributions
of the error terms are far from normal. The conditions used in our analysis are close to
those imposed in some papers dealing with the uniformity in bandwidth; for instance,
refer [56]. As mentioned in the introduction, there are no restrictions on the choice of
the kernel function, but copula density estimation has a crucial role. There are at least
two reasons for this. First, copula densities are defined on bounded supports, but the
standard kernel estimators are known to suffer from boundary biases. Second, the consis-
tency of kernel density estimators requires that the underlying densities are bounded on
their supports. However, many copula densities are unbounded at the boundaries. This
unboundedness violates a key assumption of the kernel density estimation and renders it
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inconsistent. Since we need the copula density estimation as an intermediate step, it is
important to consider the boundaries-related problems by using adapted kernels like beta
kernels or wavelets. Another problem to be studied in the future is the characterization
of the asymptotic properties of our estimator in the serially dependent setting. We would
be interested in extending our work to k-nearest neighbours estimators. Presently it is be-
yond reasonable hope to achieve this program without new technical arguments. Another
direction of research is to consider the projection pursuit regression and projection pursuit
conditional distribution, which need an extension and generalization of the methods used
in the present work. If we assume that the regression function r(m)(φ, ·) is smooth enough,
that is differentiable at a fixed t0, it will be better to use the local polynomial regression
techniques, refer to [64], to obtain a more appropriate estimate at t0 than that given by
the Nadaraya-Watson type estimator. We will not treat the uniform consistency of such
estimators in the present paper and leave for future investigation.

10. Mathematical developments
This section is devoted to the proof of our results. The previously presented notation

continues to be used in the following.

Proof of Theorem 2.3
Let L be a kernel function of m variables, symmetric in its entries. Then, for 1 ≤ k ≤ m,

the Hoeffding projections with respect to P are defined as

πkL(x1, . . . , xk) = (δx1 − P) × · · · × (δxk
− P)Pm−k(L)

with π0L = EL(X1, . . . , Xm), where

Q1 · · ·QmL =
∫

· · ·
∫
L(x1, . . . , xm)dQ1(x1) · · · dQm(xm).

For more details refer to [50]. If a function L is not necessarily symmetric, we will write
SmL for its symmetrization, that is,

SmL(x1, . . . , xm) = 1
m!
∑

L(xσ(1), . . . , xσ(m)), (10.1)

where the summation is over all permutations σ of {1, . . . ,m}. The [84] decomposition
states the following, which is easy to check:

U (m)
n (L) − EL =

m∑
k=1

(
m

k

)
U (k)
n (πkL),

where for a kernel L of k variables, 1 ≤ k ≤ m, and we set

U (k)
n = (n− k)!

n!
∑

i∈I(k,n)
L(Xi1 , . . . , Xik).

Assuming L is in L2(Pm), this is an orthogonal decomposition and

E(πkL | X2, . . . , Xk) = 0, for k ≥ 1,

that is, the kernels πkL are canonical for P (or completely degenerate, or completely
centered). Also, πk, k ≥ 1, are nested projections, that is

πk ◦ πℓ, if k ≤ ℓ,

and

E((πkL)2(X1, . . . , Xk)) ≤ E((L− EL)2(X1, . . . , Xm)) ≤ EL2(X1, . . . , Xm).
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Let us now recall the following definitions and notation from [3]. The reproducing kernel
Hilbert space Hp associated with random variable δx−P is the subspace ℓ∞(F ) consisting
of all functions of the form

uh(f) = Ef(X)h(X), for f ∈ F ,

with h in the closed linear span in L2(P) of

π1,1F = {f − Pf : f ∈ F}.

The unit ball of Hp, under the inner product 〈uh1 , uh2Ph1h2〉 is

KF = {uh ∈ Hp : ‖h‖2 ≤ 1}.

Let Pn be the empirical measure associated with these random variables is defined as
placing mass 1/n on each of the observations Xi, i = 1, . . . , n, i.e.,

Pn := 1
n

n∑
i=1

δXi .

Let f : X 7→ R be a measurable function. In the modern theory of the empirical, it is
customary to identify P and Pn with the mappings given by

f → Pf =
∫
X
fdP, and f → Pnf =

∫
X
fdPn = 1

n

n∑
k=1

f(Xi).

For any class F of measurable functions f : X 7→ R, an empirical process

{Gnf =
√
n (Pnf − Pf) : f ∈ F}

can be defined. Then the law of iterated logarithm is said to hold for F if

{(n/2 log logn)1/2(Pn − P)f : f ∈ F}

is almost surely compact and its limit set is KF . In the U -process case, we say that F
satisfies the law of iterated logarithm (LIL) if

π1F satisfies the LIL (10.2)

and

lim
n→∞

{
n

log logn

}1/2
sup
f∈F

|Un(πkf)| = 0, a.s. for k = 2, . . . ,m. (10.3)

Then
{(n/2 log logn)1/2(Un(f) − Ef) : f ∈ F}

is almost surely compact and its limit set is Kπ1F . Let us introduce the following process

Un(ψ, t) = (n−m)!
n!

∑
(i1,...,im)∈I(m,n)

φ(Yi1 , . . . , Yim)
{

m∏
k=1

c(F(tk),F0(Yik))
}
, for ψ ∈ F ·C .

Under the condition of Theorem 2.2, making use of Theorem 2.2. of [3], we infer that

{(n/2 log logn)1/2(Un(ψ, t) − Eψ) : ψ ∈ F · C }

is almost surely compact and its limit set is Kπ1F ·C . We have also

sup
ψ∈F ·C

{
n

log logn

}1/2
∣∣∣∣∣Un(ψ, t) − Eψ − 1

n

n∑
i=1

π1ψ(Yi)
∣∣∣∣∣ = 0. a.s.

For positive constant ϱ, we have

sup
ψ∈F ·C

{
n

log logn

}1/2
|Un(ψ, t) − Eψ| ≤ ϱ. (10.4)
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Let us introduce the copula density estimator

c̆n;hn (Fn(x)) := 1
nhpn

n∑
i=1
K

(Fn(x) − Fn(Xi)
hn

)
. (10.5)

We define the following kernel estimate when the margins are known

c̃jn;hn
(F(x),F0(y))) := 1

nhp+q
n

n∑
i=1
K

(F(x) − F(Xi)
hn

)
K0

(F0(y) − F0(Yi)
hn

)
,(10.6)

˘̆cn;hn (F(x)) := 1
nhpn

n∑
i=1
K

(F(x) − F(Xi)
hn

)
. (10.7)

The next step in our proof is to give bounds to the following terms

∆̆(m)
1,n (x) =

{
m∏
k=1

c̆n;hn (Fn(xk))
}

−
{

m∏
k=1

˘̆cn;hn (F(xk))
}
, (10.8)

∆̆(m)
2,n (x) =

{
m∏
k=1

˘̆cn;hn (F(xk))
}

−
{

m∏
k=1

E˘̆cn;hn (F(xk))
}
, (10.9)

∆̆(m)
3,n (x) =

{
m∏
k=1

E˘̆cn;hn (F(xk))
}

−
{

m∏
k=1

c(F(xk))
}
. (10.10)

Similarly, we will treat the following terms

∆(m)
1,n (x,y) =

{
m∏
k=1

ĉn;hn (Fn(xk),Fn,0(yk))
}

−
{

m∏
k=1

c̃n;hn (F(xk),F0(yk))
}
,(10.11)

∆(m)
2,n (x,y) =

{
m∏
k=1

c̃n;hn (F(xk),F0(yk))
}

−
{

m∏
k=1

Ec̃n;hn (F(xk),F0(yk))
}
,(10.12)

∆(m)
3,n (x,y) =

{
m∏
k=1

Ec̃n;hn (F(xk),F0(yk))
}

−
{

m∏
k=1

c(F(xk),F0(yk))
}
. (10.13)

Notice that the terms ∆̆(m)
3,n (x) and ∆(m)

3,n (t,y) will be used in the evaluation of the bias
term. Let us give the following that we need in the sequel.

Lemma 10.1. [Telescoping] Let ai, i = 1, . . . , k, bi i = 1, . . . , k be real number
k∏
i=1

ai −
k∏
i=1

bi =
k∑
i=1

(ai − bi)
i−1∏
j=1

bj

k∏
h=1+i

ah. (10.14)

This can be easily verified (see, e.g., [73]). Firstly, according to [105, eq. (4.10)], we have,
for any j = 1, . . . , p,

lim sup
n→∞

sup
{u,v:|Fj(u)−Fj(v)|≥n−1 logn}

{√
n

2 logn
|(Fn,j(u) − Fn,j(u)) − (Fj(u) − Fj(v))|

|Fj(u) − Fj(v)|1/2

}
< ∞.

(10.15)
This, in turn, implies, for all large n, whenever

|Fj(u) − Fj(v)| ≥ logn
n

,

and, for some constant D > 0, that

|(Fn,j(u) − Fn,j(u)) − (Fj(u) − Fj(v))| ≤ 2D|Fj(u) − Fj(v)|1/2

√
logn
n

.

Notice that we can restrict ourselves to the set{
u, v ∈ [0, 1] : |Fj(u) − Fj(v)| ≤ D′h

}
, for j = 1, . . . , p, and D′ > 1.
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An application of the Chung law of the iterated logarithm (see, e.g. [46]), shows that, for
each j = 1, . . . , d, almost surely,

lim sup
n→∞

{
(log logn)−1/2 sup

u∈[0,1]
|
√
n(Fn,j(u) − Fj(u))|

}
= 2−1/2. (10.16)

Let

Wn(F(u),F(v)) =


(Fn,1(u1) − F (u1)) − (Fn,1(v1) − F (v1))

...

...
(Fn,p(up) − F (up)) − (Fn,p(vp) − F (vp))

 ,

∇K(u) =


∂
∂u1

K(u)
...
...

∂
∂ud

K(u)

 ,

∇2K(u) =



∂2

∂u2
1
K(u) . . . ∂2

∂u1∂ud
K(u)

... · · ·
...

... · · ·
...

∂2

∂ud∂u1
K(u) . . . ∂2

∂u2
d
K(u)

 .

By successive Taylor expansions, we readily obtain

c̆n;hn (Fn(x)) − ˘̆cn;hn (F(x))

= 1
nhp+1

n

n∑
i=1

Wn(F(x),F(Xi))>∇K
(F(x) − F(Xi)

hn

)

+ 1
nhp+2

n

n∑
i=1

Wn(F(x),F(Xi))>∇2K

(
Xi
hn

)
Wn(F(x),F(Xi)), (10.17)

where Xi = (Xi,1, . . . ,Xi,p), is a point between F(x) − F(Xi) and Fn(x) − Fn(Xi). Making
use of (10.15) with (10.17), we obtain

sup
x∈Rp

|c̆n;hn (Fn(x)) − ˘̆cn;hn (F(x)) | = O

√ logn
n

1
h
p+1/2
n

 . (10.18)

By Lemma 10.1 and condition (K.i), we infer that we have

∆̆(m)
1,n (x) =

{
m∏
k=1

c̆n;hn (Fn(xk))
}

−
{

m∏
k=1

˘̆cn;hn (F(xk))
}

=
m∑
j=1

{
c̆n;hn (Fn(xj)) − ˘̆cn;hn (F(xj))

}

×


j−1∏
ℓ=1

˘̆cn;hn (F(xℓ))




m∏
s=j+1

˘̆cn;hn (F(xs))


≤ κ2m−2

m∑
j=1

{
c̆n;hn (Fn(xj)) − ˘̆cn;hn (F(xj))

}
≤ mκ2m−2 max

1≤j≤m

{
c̆n;hn (Fn(xj)) − ˘̆cn;hn (F(xj))

}
. (10.19)
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By using (10.18), we infer that

sup
x∈Rmp

∣∣∣∆̆(m)
1,n (x)

∣∣∣ = O

√ logn
n

1
h
p+1/2
n

 . (10.20)

By using similar arguments, we infer that we have

∆̆(m)
2,n (x) =

{
m∏
k=1

˘̆cn;hn (F(xk))
}

−
{

m∏
k=1

E˘̆cn;hn (F(xk))
}

=
m∑
j=1

{
˘̆cn;hn (F(xj)) − E˘̆cn;hn (F(xj))

}

×


j−1∏
ℓ=1

˘̆cn;hn (F(xℓ))




m∏
s=j+1

E˘̆cn;hn (F(xs))


≤ κ2m−2

m∑
j=1

{
˘̆cn;hn (F(xj)) − E˘̆cn;hn (F(xj))

}
≤ mκ2m−2 max

1≤j≤m

{
˘̆cn;hn (F(xj)) − E˘̆cn;hn (F(xj))

}
. (10.21)

By Theorem 1 of [62] or Theorem A in the Appendix, when c̆(·) is bounded, we have for
each ϱ > 0, and for a suitable function Σ(ϱ), with probability 1,

lim sup
n→∞

sup
ϱn−1 logn≤hp≤1

√
nhp‖˘̆cn;h − E˘̆cn;h‖∞√
log(1/hp) ∨ log logn

≤ Σ(ϱ) < ∞. (10.22)

This implies that

lim sup
n→∞

sup
ϱn−1 logn≤hp≤1

√
nhp‖∆̆(m)

2,n ‖∞√
log(1/hp) ∨ log logn

≤ mκ2m−2Σ(ϱ) < ∞. (10.23)

We first bound the bias. Let M > 1, such that c̆(u) < M,

∆̆(m)
3,n (x) =

{
m∏
k=1

E˘̆cn;hn (F(xk))
}

−
{

m∏
k=1

c(F(xk))
}

=
m∑
j=1

{
E˘̆cn;hn (F(xj) − c(F(xj)))

}

×


j−1∏
ℓ=1

E˘̆cn;hn (F(xℓ))




m∏
s=j+1

c(F(xs))


≤ κmMm

m∑
j=1

{
E˘̆cn;hn (F(xj)) − c(F(xj))

}
≤ mκmMm max

1≤j≤m

{
E˘̆cn;hn (F(xj)) − c(F(xj))

}
.

We have as usual
E˘̆cn;hn(u) − c(u)

= 1
hp

∫
[0,1]p

K

(
u− v

hn

)
c(v)dv − c(u)

=
∫∏p

i=1

[
ui−1

hn
,

ui
hn

] c(u− hnv)K(v)dv − c(u)
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=
∫∏p

i=1

[
ui−1

hn
,

ui
hn

](c(u− hnv) − c(u))K(v)dv

+c(u)
{∫∏p

i=1

[
ui−1

hn
,

ui
hn

]K(v)dv − 1
}

:= ∇1;n(u) + ∇2;n(u).

Making use of condition (K.4) in combination with Taylor expansion of order s, we readily
obtain that,

sup
u∈[0,1]p

|∇1;n(u)|

= sup
u∈[0,1]d

∣∣∣∣∣
∫∏p

i=1

[
ui−1

hn
,

ui
hn

](c(u− hnv) − c(u))K(v)dv
∣∣∣∣∣

= hsn
s!

sup
u∈[0,1]p

∣∣∣∣∣∣
∫∏p

i=1

[
ui−1

hn
,

ui
hn

] ∑
j1+···+jp=s

vj11 . . . vjpp
∂sc(u− hnθv)
∂uj11 . . . ∂u

jp
p

K(v)dv

∣∣∣∣∣∣ ,
where

θ = (θ1, . . . , θp) and 0 < θi < 1.
Thus, a routine application of Lebesgue dominated convergence theorem, in turn, implies
that

h−s
n sup

u∈[0,1]p
|∇1;n(u)|

= 1
s!

sup
u∈[0,1]p

∣∣∣∣∣∣
∑

j1+···+jp=s

∂sc(u)
∂uj11 . . . ∂u

jp
p

∫
Rp
vj11 . . . v

jp
d K(v)dv

∣∣∣∣∣∣ . (10.24)

Condition (F.iii) allows us to infer from the last statement (10.24) that,

sup
u∈[0,1]p

|∇1;n(u)| = O(hsn). (10.25)

Making use of the condition (K.2), we readily obtain that, for n enough large,

sup
u∈[0,1]p

|∇2;n(u)| = o(1). (10.26)

From equations (10.25) and (10.26), we infer, in turn, that

sup
u∈[0,1]p

∣∣∣E˘̆cn;hn(u) − c(u)
∣∣∣ = O(hsn).

Using the last equation gives

sup
x∈Rmp

∣∣∣∆̆(m)
3,n (x)

∣∣∣ = O(hsn). (10.27)

In a similar way as in (10.20), (10.22) and (10.27), we have

sup
(x,y)∈Rm(p+q)

∣∣∣∆(m)
1,n (x,y)

∣∣∣ = O

√ logn
n

1
h
p+q+1/2
n

 ,(10.28)

lim sup
n→∞

sup
ϱn−1 logn≤hp+q≤1

√
nhp+q‖∆(m)

2,n ‖∞√
log(1/hp+q) ∨ log logn

≤ mκ2m−2Σ′(ϱ) < ∞, (10.29)

sup
(x,y)∈Rm(p+q)

∣∣∣∆(m)
3,n (x,y)

∣∣∣ = O(hγn). (10.30)
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Let us introduce the weight when the margins are known

W(i, ℓ, t;hn) =

1
h

m(p+q)
n

m∏
ν=1

K

(F(tν) − F(Xℓν )
hn

)
K

(F0(Yiν ) − F0(Yℓν )
hn

)
(n−m)!
n!hmpn

∑
(i1,...,im)∈I(m,n)

m∏
ν=1

K

(F(tν) − F(Xiν )
hn

) . (10.31)

By combining (10.20) and (10.28), we obtain

sup
t∈Rmp

|W(i, ℓ, t;hn) − W(i, ℓ, t;hn)| = O

√ logn
n

1
h
p+q+1/2
n

 .
This gives

r̃(m)
n (φ, t;hn) = (n−m)!

n!(n− 1)m
∑

(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)
ik 6=ℓk,k=1,...,m

φ(Yi1 , . . . , Yim)W(i, ℓ, t;hn)

+O

√ logn
n

1
h
p+q+1/2
n


= r̆(m)

n (φ, t;hn) +O

√ logn
n

1
h
p+q+1/2
n

 . (10.32)

By using (10.22), (10.26), (10.27) and (10.29), we have

r̆(m)
n (φ, t;hn) = (n−m)!

n!
∑

(i1,...,im)∈I(m,n)
φ(Yi1 , . . . , Yim)


m∏
j=1

c(F(tj),F0(Yij ))
c̆(F(tj))


+O

(√
log(1/hp+q) ∨ log logn

nhp+q
n

)
+O(hγn). (10.33)

By combining the results (10.4), (10.32) and (10.33), we obtain the desired result

lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Rpm

√
nhp+q|r̃(m)

n (φ, t;h) − Er̃(m)
n (φ, t;h)|√

| log h| ∨ log logn
≤ Σ(ϱ).

Hence the proof of Theorem 2.3 is complete. 2

Proof of Theorem 2.2
The proof of this theorem is very similar to the preceding one. By the preceding steps,

using the fact that the class of functions F ·C is bounded, we infer that, as in the preceding
proof,

r̃(m)
n (φ, t;hn)

= (n−m)!
n!

∑
(i1,...,im)∈I(m,n)

φ(Yi1 , . . . , Yim)


m∏
j=1

c(F(tj),F0(Yij ))
c̆(F(tj))


+O

√ logn
n

1
h
p+q+1/2
n

+O

(√
log(1/hp+q) ∨ log logn

nhp+q
n

)
+O(hγn).

This suffices to complete the proof of the theorem. 2
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Proof of Corollary 2.1
We have to evaluate

Er̃(m)
n (φ, t;hn) − r(m)(φ, t).

From (10.20), (10.22) and (10.27), we readily infer that

lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Rpm

|Er̃(m)
n (φ, t;hn) − Ẽr̃(m)

n (φ, t;hn)| = o(1),

where
Er̃(m)

n (φ, t;hn)

=

E

 1
h

m(p+q)
n

φ(Y1, . . . , Ym)
m∏
j=1

K

(Fn(tj) − Fn(Xj)
hn

)
K

(F0,n(Ym+1) − F0,n(Yj)
hn

)
m∏
j=1

c̆(F(tj))


.

In a similar way, by combining (10.28), (10.29) and (10.30), we obtain that

lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Rpm

|Ẽr̃(m)
n (φ, t;hn) − r(m)(φ, t)| = o(1).

Hence we have
lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Rpm

|Er̃(m)
n (φ, t;hn) − r(m)(φ, t)| = o(1).

This when combined with Theorem 2.3, implies that
lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Rpm

|r̃(m)
n (φ, t;h) − r(m)(φ, t)|

≤ lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Rpm

|r̃(m)
n (φ, t;h) − Er̃(m)

n (φ, t;hn)|

+ lim sup
n→∞

sup
an≤hp+q≤b0

sup
φ∈F

sup
t∈Rpm

|Er̃(m)
n (φ, t;hn) − r(m)(φ, t)|

= o(1).
Hence the proof is complete. 2

Proof of Theorem 3.3
Recall that

r̆(m)
n (φ, t;hn) = (n−m)!

n!(n− 1)m
∑

(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)
ik 6=ℓk,k=1,...,m

φ(Yi1 , . . . , Yim)W(i, ℓ, t;hn).

Let us center r̃(m)
n (φ, t;hn) and r̆

(m)
n (φ, t;hn) as follows

r̃(m,0)
n (φ, t;hn)

= (n−m)!
n!(n− 1)m

∑
(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)

ik 6=ℓk,k=1,...,m

{
φ(Yi1 , . . . , Yim) − r(m)(φ, t)

}

×W(i, ℓ, t;hn),

r̆(m,0)
n (φ, t;hn)

= (n−m)!
n!(n− 1)m

∑
(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)

ik 6=ℓk,k=1,...,m

{
φ(Yi1 , . . . , Yim) − r(m)(φ, t)

}
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×W(i, ℓ, t;hn).
Following [139], we have the following decomposition

r̃(m)
n (φ, t;hn) − r(m)(φ, t)

= r̆(m,0)
n (φ, t;hn) +

{
r̃(m,0)
n (φ, t;hn) − r̆(m,0)

n (φ, t;hn)
}

+ (n−m)!
n!(n− 1)m

∑
(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)

ik 6=ℓk,k=1,...,m

{W(i, ℓ, t;hn) − W(i, ℓ, t;hn)}

×
{
r(m)(φ,Xi1 , . . . , Xim) − r(m)(φ, t)

}
+ (n−m)!
n!(n− 1)m

∑
(i1,...,im),(ℓ1,...,ℓm)∈I(m,n)

ik 6=ℓk,k=1,...,m

W(i, ℓ, t;hn)

×
{
r(m)(φ,Xi1 , . . . , Xim) − r(m)(φ, t)

}
+ oP((nhp+q)−1/2)

:= I + II + III + IV.

An application of Proposition 3.2, implies that√
nhp+q

n I → N(0, ρ2),
where

ρ2 :=
m∑

j,i=1
1{tj=tl}

(
θj,l(t1, . . . , tm) − r(m)2(φ, t

)
‖K‖2

2/c̆(F(tj)).

An application of Lemmas 3, 4, 5 of [139], permits us to conclude that

√
nhp+q

n II → 0,√
nhp+q

n III → 0,√
nhp+q

n IV → 0.

Since r̆(m)
n (φ, t;hn) is very close to r̃(m)

n (φ, t;hn), we will obtain our results for r̆(m)
n (φ, t;hn).

Let us introduce some notation from [56] and follow the steps of their proofs. Let us denote
Kh(z) = Kh(z/h) and the product kernel

K̃(t1, t2) :=
m∏
j=1

K(tj,1)K0(tj,2), (t1, t2)

=
m∏
j=1

(tj,1,1, . . . , tj,1,p, tj,2,1, . . . , tj,2,q) ∈ Rm(p+q).

For a function g ∈ F , consider the U -kernel

Gg,hn,t(x,y1,y2) := g(y)K̃hn(t − x,y1 − y2), x, t ∈ Rpm, y1,y2 ∈ Rqm,
and for the sample (X1, Y1), . . . , (Xn, Yn), define

Un(g, hn, t) := U (m)
n (Gg,hn,t) = (n−m)!

n!
∑

i,ℓ∈Im
n ,i6=ℓ

Gg,hn,t(Xℓ,Yi,Yℓ),

where, throughout this paper, we shall use the notation
X = (X1, . . . , Xm) ∈ Rmp and Xi = (Xi1 , . . . , Xik) ∈ Rkp, i ∈ Ikn,

Y = (Y1, . . . , Ym) ∈ Rmq and Yi = (Yi1 , . . . , Yik) ∈ Rkq, i ∈ Ikn,
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Now, introduce the U -process

η(m)
n (g, hn, t) :=

√
nhmn {Un(g, hn, t) − EUn(g, hn, t)}. (10.34)

In the sequel, we will need to symmetrize the functions Gg,hn,t(·, ·), see Remark 3.4. To
do this, we set

Gg,hn,t(x,y1,y2) = (m!)−1 ∑
σ1,σ2∈Im

m

Gg,hn,t(xσ2 ,yσ1 ,yσ2)

= (m!)−1 ∑
σ1,σ2∈Im

m

g(yσ1)K̃hn(t − xσ2 ,yσ1 − yσ2),

where zσ = (zσ1 , . . . , zσm). Obviously, the expectation of Gg,hn,t(·, ·) remains unchanged
after symmetrization and

U (m)
n (Gg,hn,t(x,y1,y2)) = Un(g, hn, t),

so the U -statistic process in (10.34) may be redefined using the symmetrized kernels, that
is, we consider

η(m)
n (g, hn, t) :=

√
nh

m(p+q)
n {U (m)

n (Gg,hn,t) − EU (m)
n (Gg,hn,t)}. (10.35)

Since we assume F to be of VC-type with an envelope function F and K to be of VC-type
with envelope κ, it is readily checked (via Lemma A.1 in [61]) that the class of functions
on Rpm × Rqm given by {hm(p+q)Gg,hn,t(·, ·) : g ∈ F , t ∈ Rpm} is of VC-type, as well as
the class

G = {hm(p+q)Gg,hn,t(·, ·) : g ∈ F , h, t ∈ Rpm}, (10.36)
for which we denote the VC-type characteristics by A1 and v1, and the envelope function
by

F̃ (y1) ≡ F̃ (x,y1,y2) = κm(p+q) ∑
σ∈Im

m

F (yσ), y ∈ Rqm. (10.37)

Next, for k = 1, . . . ,m, introduce the following classes of function on Rkp × R2kq

G (k) = {hm(p+q)πkGg,hn,t(·, ·, ·) : g ∈ F , h, t ∈ Rpm}, (10.38)

An argument in [75] then shows that each class G (k) is of VC-type with characteristics A1
and v1 and envelope function

Fk ≤ 2k‖F̃‖∞. (10.39)
The linear term

m
√
nU (1)

n (π1Gg,hn,t(·, ·, ·)) = m√
n

n∑
i=1

π1Gg,hn,t(Xi, Yi, Yi),

from the definition of the Hoeffding projections and recalling that the sample (X1, Y1), . . . ,
(Xn, Yn) are i.i.d., we can say, for all (x, y) ∈ R, that

π1Gg,hn,t(x, y, y)
= E(Gg,hn,t((x,X2, . . . , Xm), (y, Y2, . . . , Ym), (y, Ym+1, . . . , Y2m)))

−E(Gg,hn,t(X,Y,Y)
= E(Gg,hn,t(X,Y,Y) | (X1, Y1) = (x, y)) − E(Gg,hn,t(X,Y,Y)).

Introduce the following function on Rpm × Rqm:

Sg,hn,t : Rpm × Rqm → R
(x, y) 7→ mhm(p+q)

n E(Gg,hn,t(X,Y,Y) | (X1, Y1) = (x, y)).
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Using this notation, we write

mhmn π1Gg,hn,t(x, y, y) = Sg,hn,t(x, y, y) − E(Sg,hn,t(X1, Y1, Y1)).

and hence for all g ∈ F , and t ∈ Rpm, the linear term of the Hoeffding decomposition
times hm(p+q)

n is given by

mU (1)
n (π1Gg,hn,t)

= |η̃g,h,t − Eη̃g,h,t|

= 1
nh

m(p+q)
n

n∑
i=1

Sg,hn,t(Xi, Yi, Yi) − E(Sg,hn,t(X,Y,Y))

= αn(Sg,hn,t)

where this last expression is an empirical process αn based on the sample (X1, Y1), . . . ,
(Xn, Yn) and we set for t ∈ I, g ∈ F and h ≥ 0 the class of functions on Rpm × Rqm,

Sn = {Sg,hn,t : g ∈ F , h ≥ ln, t ∈ I}.

Clearly, Sn ⊂ mG (1) and the class mG (1) has envelope function mF1, where F1 is the
envelope function of the class G (1) defined in (10.38). From the above discussion, this
class is of VC-type with the same characteristics as G and, the conclusion of the theorem
follows from the classical theory of the empirical processes. 2.

Proof of Theorem 5.1
In the following proposition, we show that Theorem 5.1 naturally follows from Theorem

2.2. We first establish the version of Theorem 5.1 corresponding to the case where G(·)
is known (i.e., with r̆

(m)∗
n (ψ, t;hn) replaced by r̆

(m)
n (ψ, t;hn)). To complete the proof of

Theorem 5.1, the consistency of the Kaplan-Meier estimator will be helpful (see Lemma
10.3 below)

Proposition 10.2. Under assumptions (A.1- 3), (I), and conditions of Theorem 2.2,
assume that h satisfies (H.1-3), with probability 1; then

lim sup
n→∞

sup
an≤hp+1≤b0

sup
ψ∈F

sup
t∈Ip

√
nhp+1|r̆(m)

n (ψ, t;hn) − Er̃(m)
n (ψ, t;h)|√

| log h| ∨ log logn
≤ Σ′′(ϱ).

Proof of Proposition 10.2
Recalling the definition 5.1 of Φψ

Φψ(y1, . . . , ym, c1, . . . , cm) =
∏m
i=1{1{yi ≤ ci}ψ(y1 ∧ c1, . . . , ym ∧ cm)∏m

i=1{1 −G(yi ∧ ci)}
.

Φψ(y, c) = 1{y ≤ c}ψ(y ∧ c)
1 −G(y ∧ c)

. (10.40)

it is obvious that Φψ is uniformly bounded on R2m and ψ ∈ F, since F is uniformly
bounded, ψ(t) = 0 for all t > τ and G(τ) < 1. This property, when combined with the
VC property of F , ensures that the class of function

FΦ := {Φψ : ψ ∈ F}

verifies (F.ii), (F.iii). Similarly, it can be shown that FΦ is a pointwise measurable class
of functions (F.i). Moreover, by (A.3) and (5.2), the class

MΦ := {r(m)(Φψ, t) | fX, ψ ∈ F}
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is almost surely relatively compact with respect to the sup- norm topology on Iα. So we
can apply Theorem 2.2 with Y = (Y,C) and Ψ = Φψ. The result of Proposition 10.2 is
straightforward. 2

To complete the demonstration of Theorem 5.1, we will use the result of the next approx-
imation Lemma 10.3 as in [18].

Lemma 10.3. Under assumptions of Theorem 5.1, we have with probability one,

sup
an≤hp+1≤b0

sup
t∈I

sup
ψ∈F

∣∣∣r̆(m)∗
n (ψ, t;hn) − r̆(m)

n (ψ, t;hn)
∣∣∣ = o

√ log(1/h)
nhp+1

 as n → ∞.

(10.41)

Proof of Lemma 10.3
Since

sup
ψ∈F

|ψ(t)| < ∞,

the kernel K(·) is uniformly bounded and
τ < TH = TF ≤ TG,

the law of iterated logarithm for G∗
n(·) established in [66] ensures that

sup
t≤τ

|G∗
n −G(t)| = O

√ log logn
n

 almost surely as n → ∞.

By combining the results of Proposition 10.2 and Lemma 10.3, the result of the Theorem
5.1 is immediate by noting that, under the conditions (H.1-3), we have, for n sufficiently
large,

sup
t≤τ

|G∗
n −G(t)| = o

√ log(1/h)
nhp+1

 almost surely as n → ∞.

Hence this permits to conclude the proof. 2

Appendix
Let G denote a class of measurable real valued functions g(·) of (u, h) ∈ [0, 1]d × (0, 1].

We shall assume that G satisfies:
(G.i):

sup
0<h≤1

sup
g∈G

‖g(·;h)‖∞ =: κ < ∞.

Assume that there exists a constant C > 0, such that, for all h ∈ (0, 1],
(G.ii):

sup
g∈G

E[g2(ξ;h)] ≤ Ch.

For ε > 0, set
N(ε,G) = sup

Q
N(κε,G, dQ),

where the supremum is taken over all probability measures Q on (Rd,B), where B repre-
sents the σ-field of Borel sets of Rd. We shall also assume that the class of functions G
satisfies the following uniform entropy condition.

(F.i): For some C0 > 0 and ν0 > 0,
N(ε,G) ≤ C0ε

−ν0 , for 0 < ε < 1.
Finally, to avoid using outer probability measures in all of the statements, we impose the
following measurability assumption.
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(F.ii): G is a pointwise measurable class, that is, there exists a countable subclass
G0 of G such that we can find for any function g ∈ G a sequence of functions
{gm : m ≥ 1} in G0 for which

gm(z) −→ g(z), for z ∈ Rd.
For any n ≥ 1, g ∈ G and 0 < h < 1, let us define

gn,h := 1
n

n∑
k=1

g(ξk;h).

Mason and Swanepoel [105] have proved the following general result.

Theorem A. Assuming (G.i), (G.ii), (F.i) and (F.ii), we have for ϱ > 0 and 0 < h0 <
1, with probability one,

lim sup
n→∞

sup
ϱ log n

n
≤h≤h0

sup
g∈G

√
n|gn,h − Egn,h|√

h(| log h| ∨ log logn)
=: A(ϱ) < ∞. (10.42)
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