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Abstract. Applications of deep learning in communications systems are 

becoming popular today with their powerful solutions to complex problems. This 

study considers the utilization of deep learning detectors for small-scale multiple-

input multiple-output systems. Deep neural network, long short-term memory, and 

one-dimenisonal convolutional neural network architectures are discussed and the 

bit error rate performances of these deep learning based detectors are compared 

with the optimal maximum likelihood and sub-optimal minimum mean square error 

detectors. Simulation results show that the deep neural network architecture has the 

best detection performance among the discussed deep learning detectors and may 

outperform the sub-optimal minimum mean square error detector. For small-scale 

multiple-input multiple-output systems, the performance of the deep learning based 

detector is close to that of the optimal detector. 

 

 

1. Introduction 
 

Unlike the single-input single-output (SISO) systems, in a multiple-input multiple-

output (MIMO) system, both the transmitter and the receiver employ more than one 

antennas to transmit and receive signals at the same time. MIMO technique is a 

promising technology for the current and next generation systems with the aim of 

enhancing the spectral efficiency and increasing the reliability. To increase the 

reliability, in a diversity system the transmitter conveys the same information 

through multiple antennas, while a MIMO system using spatial multiplexing 

transmits different signals over a group of transmitter antennas to improve the 

spectral efficiency. 
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Traditional MIMO detection techniques have been discussed in the literature [1, 

2] for many years. Detection complexity and performance are among the biggest 

concerns in a typical MIMO system. Among these detection techniques, maximum 

likelihood (ML) detector has the optimum performance in terms of bit error rate. 

However, the increasing complexity with the number of antennas makes this 

technique unfeasible for practical systems. On the other hand, the sub-optimal 

detection techniques such as the minimum mean square error (MMSE), zero forcing 

(ZF), Gauss-Seidel, and conjugate-gradient (CG) cause a significant performance 

degradation while reducing the complexity [3-5]. 

Deep learning (DL) approaches have brought powerful solutions in many areas 

such as image and speech recognition, computer vision, and wireless 

communications for more than two decades [6]. In recent years, DL approaches are 

also considered as an auspicious solution for MIMO signal detection [7, 8]. DL based 

MIMO detection is mainly based on two different approaches, model-based and 

data-driven. Model-based approaches simply unfold the iterations of a well-known 

detection technique as the layers of a deep learning structure [9,10]. The combination 

of neural networks with an iterative detection method improves the detection 

performance and decreases the computation complexity. Also, although the model-

based structure is mainly based on DL approaches, it can be trained with much less 

training data than a traditional data-driven DL algorithm. 

In the literature, there are many recent studies that discuss model-based and data-

driven approaches. For instance, in [11], a model-based deep learning detection 

technique for MIMO systems is proposed. Authors state that the proposed technique 

has a better detection performance than the existing sub-optimal detectors and a 

lower computational complexity. Another model-based deep learning detection 

technique, which depends on the orthogonal approximate message passing (OAMP) 

algorithm, for a MIMO system is discussed in [12]. The proposed technique inserts 

new parameters to the iterative algorithm to improve the detection performance. The 

simulation results show that the proposed technique has a superior performance than 

does the iterative OAMP algorithm under different channel conditions. In [3], 

instead of adding new parameters to an iterative algorithm, the authors proposed to 

learn a universal step size value using a model-based DL technique based on 

conjugate gradient detector. The results show that proposed technique may 

outperform the performance of the iterative CG detector when the number of 

antennas is high. On the other hand, purely data-driven MIMO detection solutions 

are also discussed in the literature for a while. One of the first studies for MIMO 

detection in the literature is discussed in [13] in which an unsupervised deep learning 

structure for a MIMO system is proposed by using an autoencoder. Authors claim 

that DL based solution has a remarkable performance for the MIMO system 

compared to the existing methods. In [14], two deep neural networks are proposed 
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for MIMO detection and authors state that the proposed DL structures have a high 

detection accuracy. A recent study [15] discusses DL based MIMO detection for a 

conventional MIMO system by using deep neural network (DNN) and convolutional 

neural network (CNN) structures for fixed channel scenarios. The results show that 

DNN based data-driven structure has a detection performance close to the optimum 

detection performance for a single-tap channel model, while for multi-tap fixed 

channel models both CNN and DNN have an acceptable performance at low SNR 

values. In [16] a DL detection performance for a MIMO system with an erroneous 

channel information is proposed. Authors state that DNN has a better bit error rate 

(BER) performance than the CNN structure. Also, authors in [17] discuss a 

combination of two DNN structures for MIMO detection. They state that the 

detection performance is close to the optimal maximum likelihood detector. In [18] 

DL based MIMO detection is studied in an optical transmission system and the 

results of the proposed structure are compared with traditional detectors. 

To sum up, both model-based and data-driven DL based MIMO detection 

structures have been discussed for the past few years as mentioned above. This study 

discusses the MIMO detection in terms of various data-driven DL networks such as 

DNN, long short-term memory (LSTM), and one-dimensional convolutional neural 

network (1DCNN) architectures. Several MIMO systems with different number of 

transmitter and receiver antennas are considered to compare the performance of the 

proposed detectors. Besides, binary phase-shift keying (BPSK), quadrature phase-

shift keying (QPSK), and 16-quadrature amplitude modulation (16-QAM) schemes 

are utilized. Simulation results show that DL based MIMO detectors have a 

remarkable detection performance and may surpass the detection performance of the 

sub-optimal detectors.  

Organization of this study is as follows. Section 2 describes the system model of 

the discussion. In Section 3, we will give the details of the proposed structures. 

Simulation parameters and results are given in Section 4. Finally, a brief conclusion 

is discussed in Section 5. 
 

2. MIMO System Model 
 

In this study, we discuss a conventional 𝑁𝑟x𝑁𝑡 MIMO system, given in Figure 1, 

using spatial multiplexing on the transmitter side. Thus, multiple symbols, 𝑥𝑁𝑡
 are 

transmitted at the same time with the 𝑁𝑡 transmitting antennas. The received 

symbols, 𝑦𝑁𝑟
 at the 𝑁𝑟 receiver antenna can be given as follows: 

 

 [

𝑦1
𝑦2

⋮
𝑦𝑁𝑟

] = [

ℎ1,1 … ℎ1,𝑁𝑡

⋮ … ⋮
ℎ𝑁𝑟,1 … ℎ𝑁𝑟,𝑁𝑡

] [

𝑥1
𝑥2

⋮
𝑥𝑁𝑡

] + [

𝑛1
𝑛2

⋮
𝑛𝑁𝑟

] (1) 
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where ℎ𝑁𝑟,𝑁𝑡
 is the entries of the channel matrix between the 𝑁𝑡-th transmitter 

antenna and 𝑁𝑟-th receiver antenna, 𝑛𝑁𝑟
-th is the additive white Gaussian noise 

(AWGN), having zero mean and 𝜎2 variance, in the  𝑁𝑟-th receiver antenna. 𝑥𝑁𝑡
, 

𝑦𝑁𝑟
, 𝑛𝑁𝑟

, and ℎ𝑁𝑟,𝑁𝑡
 are complex-valued numbers and the channel represents a flat 

Rayleigh fading. The channel entries, ℎ𝑁𝑟,𝑁𝑡
 are assumed to be independent and 

identically distributed (i.i.d) with zero mean and unit variance. 

 

 
 
 Figure 1.  Simplified block diagram of a MIMO system. 

 

We discuss two fundamental detection techniques within this section. The 

optimal maximum likelihood (ML) detector compares all the transmitted symbols 

and proceeds a likelihood test; therefore, the estimated symbol, 𝑥𝑀𝐿  can be given as 

follows: 

 𝑥𝑀𝐿 = arg 𝑚𝑖𝑛 ‖𝑦 − 𝐻𝑥‖2  (2) 

 

where 𝑦, 𝐻, and 𝑥 are the received symbol, perfectly known channel matrix, and 

transmitted symbol, respectively. 

Sub-optimal detection methods are also available for conventional MIMO 

systems. For instance, well-known MMSE detector attempts to minimize the mean 

square error between the transmitted symbol and the received symbol. The estimated 

symbol, 𝑥𝑀𝑀𝑆𝐸 can be given as follows: 
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 𝑥𝑀𝑀𝑆𝐸 = 𝑊𝑀𝑀𝑆𝐸
𝐻 𝑦 = (𝐻𝐻𝐻 + 𝜎2𝐼𝑁𝑇

)−1𝐻𝐻𝑦  (3) 

 

where  𝑊𝑀𝑀𝑆𝐸
𝐻  represents the Gramian matrix and the superscript H denotes the 

Hermitian transpose operator. Besides, 𝜎2 and 𝐼𝑁𝑇
 are the noise variance and the 

identity matrix, respectively. 

Basically, both methods rely on the perfectly known channel matrix, while the 

MMSE detector has a lower complexity than the ML detector but causes degradation 

in detection performance in a conventional MIMO system.  

 
3. Data-Driven Deep Learning Architectures for MIMO 

Detection 
 

In this section, we will briefly present the utilization of DNN, LSTM, and 1DCNN 

architectures for MIMO detection. All of these DL architectures employ a supervised 

learning using a mapping function between the input and output variables.  

Typically, a DNN structure, shown in Figure 2, consists of the input layer, a series 

of hidden layers, and the output layer. The number of hidden layers and the number 

of hidden units of each layer vary depending on the complexity of the problem and 

the performance requirements. Hidden layers mainly provide both a linear and 

nonlinear relation between the input and output of each layer. This dependency 

consists of a multiplication matrix 𝑤, a bias vector 𝑏, and a nonlinear activation 

function, 𝑓. Therefore, depending on the previous layer, the 𝑛-th layer output, 𝑦𝑛 can 

be given as follows [19]: 

 𝑦𝑛 = 𝑓(𝑤𝑛. 𝑦𝑛−1 + 𝑏𝑛) (4) 

 

Although different activation functions such as hyperbolic tangent (tanh) or sigmoid 

can be employed to ensure the nonlinearity of this dependency, nowadays many 

DNN structure use rectified linear unit (ReLU) activation function, given in (5), 

which is also a powerful solution for the vanishing gradient problem: 

 

 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 (5) 

 

The output layer of a typical DNN architecture generally employs a softmax function 

to obtain the predicted output. Adam optimizer is usually employed to minimize the 

loss function based on cross-entropy.  

Hyper parameters also play a crucial role in deep learning algorithms during the 

training process. Learning rate, batch size, number of epochs, and normalization of 

data will definitely affect the performance of the network [15]. 
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 Figure 2.  Simplified deep neural network (DNN) architecture. 

 

MIMO channel model discussed in (1) is utilized for the DL network. Therefore, 

the complex-valued system model needs to be converted to an equivalent real 

domain representation, as shown in (6), to be processed by the deep learning 

functions. In this equation 𝑅𝑒{. } and 𝐼𝑚{. } represents the real and imaginary parts 

of the complex-valued number, respectively [12, 20]: 

 

 [𝑅𝑒{𝑦}

𝐼𝑚{𝑦}] = [𝑅𝑒{𝐻}   
𝐼𝑚{𝐻}   

−𝐼𝑚{𝐻}
   𝑅𝑒{𝐻}] [𝑅𝑒{𝑥}

𝐼𝑚{𝑥}] + [𝑅𝑒{𝑛}
𝐼𝑚{𝑛}]  (6) 

 

A classification of deep networks can be made by the direction of the data flow from 

the input layer to the output layer. In a feed-forward neural network (FFFN), input 

data can only move in the forward direction whereas a feedback loop exists in a 

recurrent neural network (RNN) [21]. In addition to the discussed DNN structure 

above, CNN is another subclass of FFFN, while LSTM is a typical example of RNN.  

While two-dimensional CNN (2DCNN) architecture is a powerful solution for 

image processing, in this study for MIMO signal detection, we implement the 

1DCNN architecture, which is an influential technique for times series and vector 

data. In a typical CNN structure, in addition to the fully connected layer a 

convolutional layer is employed to filter the input data by the linear convolution 

operation. Besides, a pooling layer, which separates the data into sub-blocks to get 

the maximum or average of each block, is often utilized in a CNN structure. In 

1DCNN architecture, both convolutional filter and pooling layers are employed to 

the one dimensional inputs. A typical activation function such as ReLU and a fully 

connected layer are also required to construct the 1DCNN structure. 

As an RNN structure, LSTM can also be utilized for problems involving 

correlated samples or time series [20, 21]. Unlike DNN or CNN as examples of 

FFFN, LSTM allow both forward and reverse flow of data. In an LSTM network 
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architecture, an LSTM layer consists of input, forget, and output gates. Depending 

on these gates, LSTM architecture decides which information will be passed to other 

layers, whether it is important to remember, and how this information will affect the 

dependency in the input data. Although LSTM architecture is considered as a 

suitable solution for time series and correlated samples, it can also be employed in 

MIMO signal detection [15, 20]. An LSTM architecture basically consists of LSTM 

layers with different number of hidden units and a fully connected layer. 

In general, DL based algorithms require a large amount of training data for the 

architecture to learn variables and provide high performance, which increase the 

computational complexity. In addition, number of layers, number of filters, filter 

sizes, type of activation function also affect both the complexity and the learning 

performance of the network. However, in many practical deep learning applications, 

training is an offline process and the computational complexity of learning 

algorithms is not considered as a major burden for the feasibility of these approaches. 

 
4. Simulation Parameters and Results  

 

In this study, we utilized three different deep learning network architectures of 

similar complexity, DNN, 1DCNN, and LSTM, to discuss the detection performance 

of a conventional MIMO system with different modulation levels and number of 

antennas. Besides, ML and MMSE detectors were implemented to compare the 

detection performance of the proposed DL based architectures with optimal and sub-

optimal detectors, respectively. Main simulation parameters used for DL based 

detectors are given in Table 1. 

 
Table 1. Main simulation parameters. 

Parameter Value 

Number of Transmitter Antennas 2, 4 

Number of Receiver Antennas 2, 4, 8, 16 

Modulation Types BPSK, QPSK, 16-QAM 

Detector Types ML, MMSE, DNN, LSTM, 1DCNN 

Activation Function ReLU 

Mini Batch Size 10000 

Maximum Number of Epochs 1000 

Optimizer Adam 

Learning Rate 0.001 

Number of Training Trials 500,000 

Number of Test Trials 100,000 
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Within this section, we will present the bit error rate performance of the 

mentioned detectors over several signal-to-noise ratio (SNR) values. In all 

simulations, we assume that the channel is perfectly known at the receiver for 

conventional detectors and for DL based detectors the channel matrix is given to the 

DL input layer along with the received signal. In each trial a new channel was 

randomly generated and used to transmit the symbols simultaneously. A MIMO 

simulator in Python was implemented to generate and transmit symbols over a 

Rayleigh fading channel with additive white Gaussian noise, having different noise 

variances. 

DNN architectures employed five fully connected layers with different number 

of hidden units to perform the detection of the symbols, while LSTM architecture 

used three LSTM layers and one fully connected layer. 1DCNN architecture has two 

one-dimensional convolutional layers and one fully connected layer. In all 

simulations, number of hidden parameters, filter sizes, and number of filters were set 

the same regardless of the difficulty of the detection problem. During the training 

process, ReLU activation function and Adam optimizer were used with a fixed 

learning rate. 

 

a) BPSK b) QPSK 

Figure 3.  Bit error rate performance of detectors over 2x2 MIMO system. 
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For all DL based detectors, the input consists of the channel matrix and received 

symbols and is expressed as a one-dimensional vector of real and imaginary parts of 

these values. Besides, softmax layer and one-hot encoding were employed to 

perform the classification at the output layer, in which the number of labels depend 

on the number of modulation order and the number of antennas at the transmitter.  

Figure 3 shows the BER performance of the discussed detectors over a 2x2 

MIMO system with BPSK and QPSK modulations. 

As shown in Figure 3, all three DL based detectors have a high detection 

performance in terms of bit error rate. Performance of the DNN and 1DCNN is close 

to that of the optimal ML detector for BPSK modulation, while for QPSK 

modulation DNN outperforms the 1DCNN detector. In both cases, DL based 

detectors have a better detection performance than the MMSE detector. Simulation 

results show that DNN has the best detection performance among these three DL 

based detectors for both BPSK and QPSK modulation over a 2x2 MIMO system. 

In Figure 4, we now compare the detection performance of the mentioned 

detectors for a 4x4 MIMO system both with BPSK and QPSK modulations. 

 
a) BPSK b) QPSK 

Figure 4.  Bit error rate performance of detectors over 4x4 MIMO system. 
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As shown in Figure 4, performance of the DNN detector has a reasonable BER 

performance compared to the ML detector for BPSK modulation. For QPSK 

modulation DNN detector has still a higher detection performance than all other 

detectors except the ML detector. Nevertheless, DNN performance is not as high for 

QPSK as for BPSK modulation. The degradation of DNN performance for QPSK 

modulation depends on the increasing number of one-hot encoding labels which is 

related with the number of antennas and modulation order. We consider that by 

increasing the number of hidden layers and the number of layers in the DNN 

architecture, the degradation in the detection performance will vanish for the high 

order modulation case. Still, DNN has the best detection performance among the 

other DL based detectors for both BPSK and QPSK modulations and outperforms 

the MMSE detector.   

In Figure 5, the bit error rate performances of the DNN, LSTM, 1DCNN, MMSE, 

and ML detectors for BPSK and QPSK modulations are given when the number of 

transmitter and receiver antennas are not equal to each other. 

 

 
a) 8x4 MIMO with QPSK b) 16x4 MIMO with BPSK 

Figure 5.  Bit error rate performance of detectors when the number of antennas is not 

equal. 
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In Figure 5, simulation results show that in the 8x4 MIMO system with QPSK 

modulation, the bit error rate performance of the DNN for low SNR values is close 

to that of the MMSE and ML detectors, while for high SNR values the performance 

of the DNN detector degrades. Moreover, performance of the DNN detector is not 

satisfactory for 16x4 MIMO system with BPSK modulation. On the other hand, 

DNN still has the best performance over 1DCNN and LSTM detectors for both 

systems.  

Finally, in Figure 6 we consider a 2x2 MIMO system with 16-quadrature 

amplitude modulation (16-QAM) to compare the performance of the discussed 

detectors.    

 
Figure 6.  Bit error rate performance of detectors over 2x2 MIMO with 16-QAM. 

 

The results in Figure 6 show significant differences from the results in the 

previous figures. As shown in Figure 6, although DNN, LSTM, and 1DCNN 

architectures give results close to optimal detector performance at low SNR, for high 

SNR values performance of the all DL based detectors decreases but still better than 

the MMSE detector for a limited range. The degradation of the detection 

performance of the DL based detectors can be explained by the increasing number 

of labels and complexity of the higher order modulation. 
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5. Conclusion  
 

In this study, a conventional MIMO system is considered to show the detection 

performance of the different types of DL based detectors. In addition to a fully 

connected DNN architecture, performances of the LSTM and 1DCNN structures are 

discussed. Besides, well-known ML and MMSE detectors are utilized to compare 

the DL based detectors for different MIMO systems with various modulation types. 

Simulation results show that DL based detectors have a detection performance 

close to the optimal ML detector and outperform the MMSE detector when the 

number of antennas and the modulation order is low. DNN architecture has the best 

detection performance compared to the performance of the LSTM and 1DCNN 

architectures. On the other hand, when the number of antennas and the modulation 

order are high, the detection performance of the DL based detectors may degrade.  

The same parameters were employed in all simulations regardless of the difficulty 

of the problem to ensure the similar complexity of DL architectures. Therefore, the 

performance of the detectors can be improved by determining the appropriate 

network setting for each discussed scenario. 

As a future study, the performance of the DNN detectors with different inputs for 

the input layer can be analyzed to improve the detection performance; however, the 

ultimate goal is to develop a deep learning detector based solely on the received 

signal. 
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