
84 

Süleyman Demirel University 
Journal of Natural and Applied Sciences 

Volume 27, Issue 1, 84-89, 2023 
 
 

 

Süleyman Demirel Üniversitesi 
Fen Bilimleri Enstitüsü Dergisi 
Cilt 27, Sayı 1, 84-89, 2023 

 

  DOI: 10.19113/sdufenbed.1141519 
 

Vulnerability of the Tukey M Robust Regression Method Against Multicollinearity 
 

Filiz KARADAĞ1 , Hakan Savaş SAZAK*2  

 
1,2 Ege University, Faculty of Science, Department of Statistics, 35100, İzmir 

 
(Alınış / Received: 06.07.2022, Kabul / Accepted: 14.02.2023, Online Yayınlanma / Published Online: 25.04.2023) 

 
  
Keywords 
Condition index, 
Correlation,  
Least squares, 
M estimators, 
Variance inflation factors 

Abstract: In this study, we investigate whether the Tukey M robust regression 
method provides a solution for the data sets suffering from multicollinearity 
problem. It is observed that high values of variance inflation factors (VIF) which is 
a sign of the multiple linear link among the explanatory variables, cannot be 
controlled by the robust methods which work through the residual values. The 
reason for this fact is that multicollinearity and high values of VIF which is a result 
of multicollinearity do not produce extreme residuals. For this reason, the robust 
methods cannot provide a solution for the high VIF problem. This fact is shown by 
an extensive simulation study. In the simulation study, the explanatory variables 
were derived from trivariate normal distribution for three different correlation 
values.  In this study, we also used two real-life data examples and we observed 
that the results support the findings of the simulation study. For all these reasons, 
we can conclude that specialized methods should be utilized in the case of 
multicollinearity. 

  
  

Tukey M Dayanıklı Regresyon Yönteminin Çoklu Doğrusal Bağlantıya Karşı Zafiyeti 
 
 

Anahtar Kelimeler 
Koşul indeksi, 
Korelasyon, 
En küçük kareler, 
M tahmin edicileri, 
Varyans şişirme faktörü 

 

Öz: Bu çalışmada, Tukey M dayanıklı regresyon metodunun, çoklu doğrusal 
bağlantı problemine sahip veri setleri için bir çözüm sunup sunmadığı 
araştırılmıştır. Çalışmada açıklayıcı değişkenler arasında çoklu doğrusal bağlantı 
göstergesi olan yüksek VIF (varyans şişirme faktörü) değerlerinin, artık değerler 
üstünden çalışan dayanıklı metotlarla kontrol edilemediği gözlenmiştir. Bunun 
sebebi çoklu doğrusal bağlantının ve bunun sonucu olan yüksek VIF değerlerinin 
ekstrem artık değerler üretmiyor olmasıdır. Dolayısıyla dayanıklı metotlar yüksek 
VIF problemine bir çözüm sunamamaktadır. Bu durum kapsamlı bir simülasyon 
çalışması ile gösterilmiştir. Simülasyon çalışmasında üç farklı korelasyon değeri 
için üç değişkenli normal dağılıma sahip açıklayıcı değişkenler üretilmiştir. 
Çalışmada ayrıca iki gerçek hayat veri örneği kullanılmış ve sonuçların simülasyon 
bulgularını desteklendiği görülmüştür. Tüm bu sebeplerden dolayı çoklu doğrusal 
bağlantı durumunda özel yöntemlerin kullanılması gerektiği sonucunu 
çıkarabiliriz. 

  
 
1. Introduction 
 
Multicollinearity can be defined as the high linear 
relationship among two or more explanatory 
variables. It is crucial to understand the causes and 
the extent of the multicollinearity. Thus, it should be 
determined whether the cause of the 
multicollinearity is the nature of the variables or the 
consequence of the data collection method which can 
be helpful in finding the remedies for this problem 
[1]. 
 
In a multiple regression analysis, first, it should be 
detected if multicollinearity exists because it has  

 
many adverse effects on the regression analysis. In  
the case of the existence of multicollinearity, the 
regression coefficients, extra sum of squares, the 
variability of the estimated regression coefficients, 
the fitted values, the predictions and the 
simultaneous tests of beta can be negatively affected 
[2]. Additionally, even if a definite statistical 
relationship exists between the dependent variable 
and the set of the predictor variables, many of the 
estimated regression coefficients individually may be 
statistically insignificant [3].  
 
The measurement of the marginal effect of the 
explanatory variables is not easy since the marginal 
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contribution of a predictor variable in reducing the 
error sum of squares can be affected by other 
variables which are already in the regression model. 
This is due to the fact that under multicollinearity, the 
explanatory variables that are already included in the 
model contain almost the same information [3]. The 
most well-known effect of the multicollinearity is its 
capability to inflate the variances of the estimators of 
the regression coefficients which also constitutes a 
barrier to establish the regression model correctly 
[2]. 
 
There are many tools to detect multicollinearity. 
Checking the scatterplots and correlations between 
the explanatory variables can be useful but we should 
keep in mind that correlation and multicollinearity 
are not the same things, thus, there can still be 
multicollinearity even when all the correlations are 
low. A similar diagnostic tool is to examine the whole 
correlation matrix of the explanatory variables. This 
gives the opportunity to see all the correlations at 
once but as we mentioned before, this is not enough 
to determine the existence of multicollinearity. 
Fortunately, in addition to these, several 
multicollinearity detection methods have been 
developed [3]. Now let us sort the eigenvalues of the 
variance-covariance matrix of the p explanatory 
variables (Σ) in descending order as 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥
𝜆𝑝   (see Chatterjee and Hadi [4] for details). If at least 

one of the eigenvalues is close to zero, there is a 
serious multicollinearity [5]. 
 
Many other symptoms of multicollinearity can be 
observed including a small determinant of the 
correlation matrix, improbable signs or size of the 
estimators of the regression coefficients, unexpected 
magnitudes of the standard errors of the regression 
coefficients and large confidence intervals of the 
regression coefficients [2, 5]. The sum of the 
reciprocals of 𝜆𝑘 , k=1,2,…,p  is also used as a 
multicollinearity diagnostic measure. If the sum of 
them is larger than 5p, then multicollinearity is 
present. This rule is given below 
 

∑ (
1

𝜆𝑘
)

𝑝
𝑘=1 > 5𝑝.     (1) 

 
Another measure of multicollinearity is the condition 
index and the kth condition index is found by 
 

𝐶𝐼𝑘 = √
𝜆𝑚𝑎𝑥

𝜆𝑘
  ,    𝑘 = 1,2, … 𝑝.     (2) 

 
The greater the condition index, the higher the 
multicollinearity is. If the condition index is between 
10 and 30, a moderate multicollinearity is expected 
while the condition index being greater than 30 
indicates a high multicollinearity [4, 6, 7]. 
 
There is another detection method suggested by 
Marquaridt [5] which is called variance inflation 

factors (VIF). VIF are the diagonal elements of the 
inverse of the variance-covariance matrix of the 
explanatory variables after the correlation 
transformation. Usage of VIF is widely recognized for 
detecting the presence of multicollinearity. VIF can be 
accepted as a tool in measuring the amount of 
inflation in the variances of the regression 
coefficients when the explanatory variables are 
linearly related compared to the case when they are 
linearly independent [3]. 
 
VIF can be mathematically shown below 
 

VIF = 𝑑𝑖𝑎𝑔(𝑟𝑥𝑥
−1) = 𝑑𝑖𝑎𝑔((𝑋∗′

𝑋∗)
−1

) (3) 

 

VIF𝑘 =
1

1−𝑅𝑘
2   𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑝, (4) 

 
where 𝑋∗ is the matrix of the explanatory variables 
after correlation transformation and 𝑅𝑘

2  is the 
coefficient of the multiple determination of 𝑋𝑘  on the 
remaining explanatory variables. The larger the VIF, 
the more variance of the estimators of the regression 
coefficients is inflated and so higher the severity of 
the multicollinearity is [3]. 
 
In order to handle the multicollinearity problem, 
there are many suggestions in the literature. One 
approach to dealing with multicollinearity is to 
collect more information or additional data but this 
may not be possible in most of the situations and 
even if it is possible it may not solve the problem if 
the additional data also possess the same problem. 
Removing one or more explanatory variables from 
the model, defining new predictors or respecification 
of the model are other remedies [8]. Using alternative 
estimation methods which are not influenced 
unfavorably by multicollinearity as Least Square (LS) 
is another remedy. One is the ridge regression 
method which was proposed by Hoerl and Kennard 
[9] as an alternative to the LS method. There is 
another method called principle component 
approach which is based on working with the 
eigenvalues and eigenvectors of the correlation 
matrix of the explanatory variables [4]. There are also 
some studies focused on using robust ridge 
regression methods but in this study, we investigate 
whether the Tukey M robust estimation for the 
regression coefficients provides a simpler solution 
for the adverse effects of multicollinearity in 
regression analysis [10, 11]. To do so, we conducted a 
simulation study including the LS method and the 
Tukey M robust estimation method for the regression 
coefficients and examine the effects of 
multicollinearity on the regression analysis based on 
them. As a classical robust estimation method we 
used the Tukey M estimators by utilizing MATLAB 
Robustfit module. Basically, we checked the 
differences in the variances of the regression 
coefficients produced by these methods. We will give 
more detailed information about the methods used in 
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this study in Section 2. Section 3 will present the 
simulation results and the related comments. Two 
real-life data examples are given in Section 4 for 
illustration. The final section includes discussion and 
some concluding remarks. 
 
2. Material and Method 
 
The general linear regression (GLR) model can be 
given as follows 
 

𝑌𝑛×1 = 𝑋𝑛×(𝑝+1)𝛽(𝑝+1)×1 + 𝜀𝑛×1 (5) 
 
Here, 𝑌 is the vector of the response variable, 𝑋is the 
matrix of the explanatory variables, 𝛽 is the vector of 
the regression parameters, 𝜀 is the vector of the error 
term, n is the sample size and p is the number of 
slope parameters. The assumptions related to Eq. (5) 
are 
 

0)( =εE ,  

 

IσεVar 2)( = ,  

 

1)( += pXrank ,  

 

where 𝐼 is the identity matrix. Many estimators for 
the regression parameters were suggested in the 
literature. In this study, we include two of them, the 
LS estimators and one of the most commonly used 
robust estimators, the Tukey M estimators, for the 
regression parameters [12]. It is also reported by Yu 
and Yao [12] that the Tukey M estimators achieve 
both robustness and high efficiency for regression 
models. Here, we intend to observe the differences if 
any between the classical estimators and the Tukey M 
robust estimators for the regression parameters. 
 
The philosophy of the LS method is obtaining the 
estimators by minimizing the sum of the squared 
errors. Theoretically, the LS method can be defined as 
follows 
 

𝑚𝑖𝑛 ∑ 𝜀𝑖
2.

𝑛

𝑖=1

 (6) 

 

Since ε = Y − Xβ from Eq. (5), we can also express Eq. 
(6) by using the matrix format as 
 

min (Y − Xβ)′(𝑌 − 𝑋𝛽). (7) 
 
Taking derivative of Eq. (7) w.r.t. β and equating it to 
zero gives the following estimator as the LS estimator 
of β 
 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌. (8) 
 

The variance-covariance matrix of the LS estimator of 
β is 

Var(𝛽̂) = 𝜎2(𝑋′𝑋)−1. (9) 

The M estimators were found by Huber [13]. The 
principle of the M estimation is the minimization of 
the sum of a selected ρ function of the errors instead 
of the sum of squares of them. More specifically, the 
M estimators are found by minimizing the following 
expression 
 

min ∑ 𝜌(𝜀𝑖)

𝑛

𝑖=1

. (10) 

 
The M estimate for a given sample can be obtained by 
solving the equation given below 
 

∑ 𝜌′(𝜀𝑖) = 0  

𝑛

𝑖=1

(𝑜𝑟  ∑ 𝜓(𝜀𝑖)

𝑛

𝑖=1

= 0). (11) 

 
We used the following bisquare function 𝜓 in this 
study 
 

𝜓(𝑢𝑖) = {
𝑢𝑖(1 − 𝑢𝑖

2)2 𝑖𝑓 |𝑢𝑖| ≤ 1

0  𝑖𝑓  |𝑢𝑖| > 1
 (12) 

 
where 𝑢𝑖′𝑠 are the standardized residuals. There are 
many proposals in the standardization of the 
residuals. One needs to select a robust estimator of 
scale to do so. The most popular one is the re-scaled 
median absolute deviation (MAD). The procedure 
used in this study is given below which is the default 
option of the robustfit module of Matlab    
 

𝑢𝑖 =
𝑟𝑖,𝑎𝑑𝑗

𝑘∗𝑠
 , 𝑟𝑖,𝑎𝑑𝑗 =

𝑟𝑖

√(1 − ℎ𝑖𝑖)
 ,  

 

 

 

𝑘 = 4.685 , 𝑠 =
𝑀𝐴𝐷(𝑟𝑖)

0.6745
,  

 
𝑀𝐴𝐷(𝑟𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑟𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑖)|,         (13) 

 
where k is the tuning constant, 𝑟𝑖 ′𝑠  are the raw 
residuals and ℎ𝑖𝑖′𝑠  are the leverage values. The 
constant 0.6745 makes the scale estimation unbiased 
under normal distribution [13, 14]. 
 
3.  Simulation Results 
 
In order to compare the estimators mentioned in this 
paper, a simulation study was conducted including 
two different levels of sample sizes and several 
correlation levels for the explanatory variables. In 
this study, all the programs were written in Matlab 
for the GLR model given in Eq. (5) but for simplicity, 
the simulations were conducted for the model given 
below 
 

Y = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜀.            (14) 
 

In this model, 𝛽0 is the intercept, 𝛽1, 𝛽2  and 𝛽3 are the 
slope parameters and ε is the error term. We took  
𝛽0 = 0  and 𝛽1 = 𝛽2 = 𝛽3 = 1  without loss of 
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generality. Simulations were conducted for 
nn=(10000/n) Monte Carlo runs and for the sample 
sizes n=50 and 100 with the correlation levels 𝜌 = 0, 
0.95 and 0.98. Since we have observed that high VIF 
values can be obtained at least with the correlation 
value of 0.95, we did not conduct simulations 
between 0 and 0.95. We simulated the samples with 
independent and identically distributed error terms 
from standard normal distribution and with the 
explanatory variables having trivariate standard 
normal distribution with several correlation levels as 
specified earlier. The simulation results are given in 
Tables 1 and 2. We conducted the simulations for two 
different levels of sample sizes to observe the 
possible effect of the increase in the sample size. 
Depending on the simulation results, first we should 
note that other than the natural effect of the sample 
size on the variance of the estimators, we did not 
 

observe any difference between the results for two 
different sample sizes. Second, as expected, we did 
not observe any bias for the estimators for any 
situation. Regarding to the correlation levels, we 
observe that as the correlation increases, the 
variances of the estimators of the slope parameters 
(𝛽1, 𝛽2, 𝛽3) have a tendency to increase for both LS 
and robust estimators. For 𝛽0, we do not observe any 
difference between the correlation levels. When we 
compare the LS and robust estimators in terms of 
their variances, the best performance is shown by the 
LS estimators even for high correlation levels. This 
fact shows that the Tukey M robust method cannot be 
a remedy for the multicollinearity problem. The 
reason of this fact is that the Tukey M robust 
estimators are based on the residuals but based on 
our observations, multicollinearity does not affect 
residuals. 
 

Table 1. The simulated values for n=50 with three levels of correlations 

 
Table 2. The simulated values for n=100 with three levels of correlations 

 0=ρ  95.0=ρ  98.0=ρ  

Estimator: LS Robust LS Robust LS Robust 

bias 

0
β  -0.0005 -0.0011 0.0014 0.0011 0.0033 0.0034 

1
β  0.0030 0.0029 0.0035 0.0026 0.0043 0.0051 

2
β  -0.0008 -0.0006 -0.0012 0.0002 0.0012 0.0010 

3
β  -0.0026 -0.0024 -0.0021 -0.0029 -0.0054 -0.0060 

nxvar 

0
β  1.0684 1.1288 1.0691 1.1247 1.0541 1.1199 

1
β  1.0978 1.1678 15.1204 16.1211 37.1836 39.9254 

2
β  1.1155 1.1905 14.5919 15.5283 36.5866 39.0565 

3
β  1.1068 1.1724 14.8718 15.8277 38.1899 40.3686 

nxmse 

0
β  1.0685 1.1289 1.0692 1.1248 1.0547 1.1205 

1
β  1.0982 1.1682 15.1210 16.1214 37.1845 39.9267 

2
β  1.1155 1.1905 14.5920 15.5283 36.5866 39.0566 

3
β  1.1071 1.1727 14.8720 15.8281 38.1913 40.3704 

 0=ρ  95.0=ρ  98.0=ρ  

Estimator:  LS Robust LS Robust LS Robust 

bias 

0
β  -0.0002 0.0000 -0.0019 -0.0020 -0.0005 -0.0002 

1
β  -0.0002 -0.0003 0.0020 0.0032 0.0064 0.0087 

2
β  0.0021 0.0019 0.0005 0.0002 0.0007 0.0003 

3
β  0.0012 0.0011 -0.0011 -0.0021 -0.0084 -0.0103 

nxvar 

0
β  1.0379 1.0940 1.0409 1.1026 1.0203 1.0832 

1
β  1.0559 1.1093 14.4161 15.2945 35.3720 37.2375 

2
β  1.0437 1.1041 14.0303 14.8097 35.9366 37.9109 

3
β  1.0308 1.0893 14.2437 15.1038 35.7273 37.6315 

nxmse 

0
β  1.0379 1.0940 1.0413 1.1029 1.0203 1.0832 

1
β  1.0559 1.1093 14.4165 15.2955 35.3761 37.2451 

2
β  1.0441 1.1045 14.0303 14.8097 35.9366 37.9109 

3
β  1.0310 1.0894 14.2438 15.1042 35.7343 37.6421 
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4. Applications 
 
In this section, we give two real-life data examples for 
the illustration and comparison between the LS and 
Tukey M robust estimators.  
 
4.1. Body Fat Data 
 
The data set which is based on body fats was 
investigated in detail by Kutner et al. [3]. Body fat 
data set contains three explanatory variables (triceps 
skinfold thickness (𝑋1), thigh circumference (𝑋2) and 
midarm circumference (𝑋3), all in cm.) with a sample 
size of 20. The dependent variable is the body fat 
percentage (𝑌). We obtained the maximum condition 
index value as 53.33 and the VIF values as 708.84, 
564.34 and 104.61. We also examined the scatter 
plots and the correlation matrix of the explanatory 
variables. All the information gathered here indicates 
that multicollinearity exists for this data set. Now we 
give the regression coefficient estimates and the 
standard errors of the regression estimators for the 
LS and robust estimators in Tables 3 and 4 
respectively. In Table 3 we do not see much 
difference between the LS and robustfit estimates. 
Table 4 shows that the standard errors of the LS 
estimators are smaller than their counterparts. This 
result is very consistent with the simulations we have 
conducted. In the simulations we have found that the 
LS estimators have a better performance than the 
Tukey M robust estimators in terms of their 
variances. 
 
Table 3: The regression estimates for “the body fat data 
set” 

 LS Robust 

0
β

 117.0847 122.5170 

1
β

 
4.3341 4.4953 

2
β

 
-2.8568 -2.9953 

3
β

 -2.1861 -2.2733 

 
Table 4: The standard errors of the regression estimators 

 LS Robust 

0
β

 99.7823 108.4804 

1
β

 
3.0166 3.2711 

2
β

 
2.5884 2.8107 

3
β

 1.5811 1.7321 

 

4.2. Longley Data 
 

Another real-life data example with multicollinearity 
problem is the Longley econometric data set. It 
consists of a macroeconomic data set with 7 
economic variables observed annually from 1947 to 
1962 and includes  6 explanatory variables with 16 
observations (GNP (Gross National Product) (𝑋1),  
 
number of people unemployed (𝑋2 ), number of 
people in the armed forces (𝑋3), population (≥ 14 

years old) (𝑋4), years (𝑋5),  number of people 
employed (𝑋6)). The dependent variable is the GNP 
Deflator percentage (𝑌) [15]. 
 
We obtained the maximum condition index value as 

15159.33 and the VIF values as 1214.57, 83.96, 

12.16, 230.91, 2065.73 and 220.42. The processes 
followed in the previous example are also followed 
for this example. Tables 5 and 6 show the regression 
coefficient estimates and the standard errors of the 
regression estimators for the LS and robust 
estimators, respectively. 
 
Table 5: The regression estimates for “the Longley data 
set” 

  LS Robust 

0
β

 
2946.856 2686.2 

1
β

 
0.2635 0.2589 

2
β

 0.0365 0.0355 

3
β

 0.0112 0.011 

4  -1.7370 -1.7377 

5  -1.4188 -1.2833 

6  0.2313 0.2011 

 
Table 6: The standard errors of the regression estimators 

  LS Robust 

0
β

 
5647.977 6053.459 

1
β

 
0.1082 0.1159 

2
β

 
0.0302 0.0324 

3
β

 
0.0155 0.0166 

4  0.6738 0.7222 

5  2.9446 3.156 

6  1.3039 1.3976 

 
According to Table 6, the results are consistent with 
the simulation results and the previous real-life data 
example. We observe that the standard errors of the 
Tukey M estimators are larger than the LS estimators.  
 
5.  Discussion and Conclusion   
 

The main focus of this study is to investigate whether 
the Tukey M robust estimation method enables us to 
handle the regression analysis in the presence of 
multicollinearity. First, in the simulations we have 
found that one has to take at least a correlation value 
of 0.95 between the explanatory variables to obtain 
high VIF values. The most important result is that the 
classical robust estimators such as the Tukey M 
estimators cannot be a remedy for the 
multicollinearity problem. The real-life data examples 
also supported this fact. The reason of this fact is that 
the Tukey M robust regression method is focused on 
the residuals but we observed that multicollinearity 
does not cause an increase in the residuals (in 
magnitude) and thus the Tukey M robust regression 
estimators cannot cope with this problem. This 
shows that specialized methods should be utilized for 
the data sets possessing multicollinearity. 
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