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ABSTRACT In this paper we have introduced and investigated the collective behavior of a network of
memristive Hindmarsh-Rose (HR) neurons. The proposed model was built considering the memristive autapse
of the traditional 2D HR neuron. Using the one-parameter bifurcation diagram and its corresponding maximal
Lyapunov exponent graph, we showed that the proposed model was able to exhibit a reverse period doubling
route to chaos, phenomenon of interior and exterior crises. Three different configurations of the ring-star
network of the memristive HR neuron model, including ring-star, ring, and star, have been considered. The
study of those network configurations revealed incoherent, coherent , chimera and cluster state behaviors.
Coherent behavior is characterized by synchronization of the neurons of the network, while incoherent
behaviors are characterized by the absence of synchronization. Chimera states refer to a differet state where
there is a coexistence of synchroniaed and asynchronized nodes of the network. One of the interesting result
of the paper is the prevalence of double-well chimera states in both ring and ring-star network and has been
first mentioned in the case of memrisitve HR neuron model.
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INTRODUCTION

A brain, like a complex organ, is built from the interconnection of
a very large number of neurons. These interconnected neurons are
very important because they are the seat of the processing, calcula-
tion, storage, and transfer of information (Lin et al. 2021). These
neurons are connected to each other using a synapse.As a result, a
synapse is the part of the nervous system that allows a presynaptic
neuron the transmission of electrical or chemical signals to the
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postsynaptic neuron. (Zhang et al. 2018). As a result, several math-
ematical models have been developed and studied in the literature
to study some of the dynamical mechanisms of the brain. The Hop-
field neural network model (Njitacke et al. 2021a; Tabekoueng Nji-
tacke et al. 2020a; Doubla Isaac et al. 2020; Tabekoueng Njitacke et al.
2020b), the Hodgkin-Huxley neuron (Hodgkin and Huxley 1990),
the 2-D Hindmarsh-Rose (HR), the 3D-HR neuron models (Hind-
marsh and Rose 1982, 1984), the FitzHugh-Nagumo (FHN) neuron
model (Izhikevich and FitzHugh 2006), the MorrisLecar neuron
model (Tsumoto et al. 2006), the Chay neuron model (Chay 1985),
the Izhikevich neuron model (Izhikevich 2003), and the Rulkov
neuron model (Xu et al. 2021) are some examples. In the same vein,
several artificial synapse models for presynaptic and postsynap-
tic neuron coupling have been developed in the literature. Some
of them are hybrid synapse (Liu et al. 2019), Josephson junction
synapse (Zhang et al. 2020b), memristive synapse (Li 2021), elec-
trical synapse (Shaffer et al. 2016; Zhou et al. 2021a), and chemical
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synapse (Burić et al. 2008). Following that, a large number of single
neurons (Bao et al. 2018, 2019; Hou et al. 2021; Liu et al. 2020; Zhang
et al. 2020a; Zhou et al. 2021b; Cai et al. 2021; Li et al. 2021a) and cou-
pled neurons (Zhou et al. 2021b; Njitacke et al. 2022a, 2020, 2021b,c;
Tabekoueng Njitacke et al. 2020c; Guo et al. 2020; Joshi 2021; Li et al.
2021b; Lin et al. 2020; Wu et al. 2020; Yao et al. 2021; Wouapi et al.
2020, 2021) models have been introduced and addressed in the
literature using the quoted artificial synapses.

The authors of ref. (Qin et al. 2021) investigated the phe-
nomenon of phase-amplitude coupling in nonlinearly coupled
Stuart-Landau oscillators. Among the architectures used by the au-
thors, it can be found the high-frequency neural oscillation driven
by an external low-frequency input and two interacting local oscil-
lations with distinct, locally generated frequencies. The problem
of reconstructing the model equations for the network of 3rd or-
der neuron-like oscillators from time series has been addressed
in ref. (Sysoeva et al. 2021). The authors showed that by using
phase-locked loop systems as nodes of the networks, dynamical
regimes such as quasiharmonic oscillations, spiking, bursting, and
chaotic behavior are based on different network typologies such
as star, ring, chain, and random architectures. The dynamical
and physiological effects of the presence of electric field on an im-
proved version of FitzHugh-Nagumo model was investigated in
(Takembo et al. 2022). Using the multiple scale expansion method
on the system of N-differential equations, the authors obtained the
angular frequency of the modulated impulse wave along the net-
work. Finally, the formation of localized nonlinear wave patterns
was confirmed in the proposed network.

The behavior of both single and a network of FHN neuron with
memristors were investigated in ref. (Njitacke et al. 2022c). The
investigation of the single neuron revealed the presence of hidden
dynamics, which is an interesting feature in the qualitative theory
of dynamical systems. The biophysical energy of that model was
established using the famous the Helmholtz theorem. The authors
found that variation of external current on the model had no effect
on the energy. Interestingly, the autapse coupling strength affects
the energy released by the neuron. A plethora of spiking and burst-
ing patterns is observed in the model. Hysteretic dynamics due to
the coexistence of different firing patterns was confirmed. To verify
both the analytical, numerical results, an equivalent electronic cir-
cuit was constructed. It was found that the results obtained from
the circuit are in good agreement with the numerical simulations.
In the end, information pattern stability was explored statistically
via modulational instability under memristive autapse strength
using a chain network of 500 identical neurons. It was discov-
ered that the new network enables localized information patterns
with attributes of synchronization as a means of information cod-
ing when initial conditions are considered as slightly modulated
plane waves. The improved information coding pattern and po-
tential mode transition were also confirmed by stronger autaptic
couplings caused by fixing the stimulation current.

After researchers have studied coupled pendulums and their
dynamical behavior Willms et al. (2017), there has been a plethora
of studies on network of oscillators. When the network elements
have similar phases and frequencies the oscillators get synchro-
nized. If the phases and frequencies are different they get desyn-
chronized. Kuramoto found a new type of network state in which
oscillators synchronize and desynchronize in a network of oscil-
lators and these were termed as chimera states Kuramoto and
Battogtokh (2002). There has been a lot of works on chimeras
thereafter Schöll (2016); Majhi et al. (2019); Omel’chenko (2018);
Panaggio and Abrams (2015), just to name a few. Scientists have

even uncovered epilepsy and schizophernia as topological diseases
that depend on the topology of the neurons interconnected in the
brain Uhlhaas and Singer (2006). Neurons can also be considered
as dynamical oscillators and in brain millions of neurons are inter-
connected in a complex fashion and neurons transmit nerve signals
and sensory informations. This motivates to study the behavior of
networks in neuron oscillators.

An autapse is a specific synapse developed from an auxiliary
loop that enables it to connect the axon and the dendrite of the
same neuron together. In this contribution, a memristor is intro-
duced in a 2D Hindmarsh-Rose neuron model. Therefore, the
memristive Hindmarsh-Rose neuron thus obtained is also called
the 2D Hindmarsh-Rose neuron with a memristive autapse. The
study of the network is based on the ring-star, ring, and star con-
nection from the introduced model. So the outline of the paper is
as follows: In Section 2, the mathematical model of the memris-
tive Hindmarsh-Rose model is discussed. Its complex dynamical
behavior is revealed through some numerical simulations. Its
network topology is also presented. In Section 3, numerical simu-
lations are used to explore the collective behavior of the various
network topologies considered. Lastly, in Section 4, we conclude
and present scope for further research work. All the simulations in
the paper is carried out using M AT L A B.

PRESENTATION OF THE NEURON MODEL

Framework of memristive autapse
When an axon is injured, such as by poisoning in ion channels
or heterogeneity in a local area of the axon, signal transmission
can be terminated or blocked during neuronal communication.
As a result, neurons can develop new loops or secondary loops
to help with signal transmission. This auxiliary loop is known
as an autapse, which can be electrical autapse current, chemical
autapse current, or memristive autapse current. Using memristor
definition (Galinsky and Frank 2021) and applying Ohm’s law, we
get Eq.(1).The term G(u) represents the memductance and i, u, v
are state variables. im = G (u) v = α cos (u) v,

du
dt = g (u, v) = sin (u) + ev.

(1)

Figure 1 Complex interconnections of millions of neurons in the
brain(Galinsky and Frank 2021)

The memristive nature of the autapse proposed in (1) is sup-
ported by the well-known fingerprint of the memristor, charac-
terized by a pinched hysteresis loop at the origin of the current-
voltage characteristic when applying an external stimulus in the
form v = A sin (Ft). For the sake of brevity, that result is not
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provided. Recall that the memristive neuron model used for this
investigation was previously introduced in (Njitacke et al. 2022b).
In that work, the global dynamical behavior as well as the effect of
the initial condition on the behavior of the neuronal model have
been investigated. The authors discovered the considered neuron
model with memristive autapse was able to exhibit a homogenous
extreme multistability characterized by the coexistence of an in-
finite number of patterns of the same shape. Since the work was
focused only on the dynamics of a single neuron, the investiga-
tion of the collective behavior of such a model with homogeneous
extreme multistability has further supported the aim of this study.

Design of the coupled neurons
Neurons are the central organs of the brain since they enable com-
putation, processing, and storage of information, just to name a few.
As it can be seen in Fig.(1), the brain is made up of interconnections
of a very large number of neurons. As a result, the investigation
of a ring-star network of neurons composed of Hindmarsh-Rose
neurons with memristive autapse will be addressed in this contri-
bution. The mathematical model of the memristive HR neuron is
given in (2). 

ẋ = y − ax3 + bx2 + α cos (u) x + is

ẏ = c − dx2 − y

u̇ = sin (u) + ex

(2)

In (2), x is the membrane potential of the HR neuron, y repre-
sents the retrieval variable related to a fast current of either Na+ or
K+. The state variable u stands for the inner variable of the memris-
tive autapse , variable is = m sin (2π f t) represents outward input
current and α indicates the connection strength of the memristive
autapse. For parameters a = 1, b = 3, c = 1, d = 5, e = 0.5, m =
2, f = 0.5 and α is tuneable. As it can be seen in Fig.(2). The single
HR neuron with a memristive autapse is able to exhibit very rich
and striking bifurcations. When decreasing the control parameter,
phenomena such as reverse period doubling bifurcation, interior
and exterior crises are observed.

These crises occur when a chaotic motion is suddenly destroyed
and gives birth to periodic motion, or when a chaotic motion is
suddenly created from a periodic one instead of being destroyed.
As it can be seen in Fig.(3), four phase space trajectories have
been computed to further support the phenomenon of the reverse
period doubling bifurcation when the memristive autapse strength
α is decreased. When decreasing α, it is observed that period-1 for
α = 2, period-2 for α = 1.5, period-4 for α = 1.15 and a chaotic
attractor for α = 1.

In addition, as the control parameter in the system is var-
ied, alternating transitions of periodic and chaotic behavior is
observed. When the control parameter α is tuned to 0.5, some
two-dimensional and three-dimensional projections of the chaotic
activity, generated by the memristive neuron of the network con-
sidered in this work, are provided in Fig.(4).

Figure 2 In (a), one-parameter bifurcation diagram of u vs α
showing reverse period-doubling route to chaos as parameter
α is increased. In (b), the corresponding Lyapunov exponent is
estimated numerically. The parameters are set as f = 0.5, m = 2
with the initial condition (0, 0, 1).

Figure 3 Phase space trajectories showing the phenomenon of
the reverse period doubling bifurcation for some discrete values
of the control parameter α

Figure 4 Phase space trajectories for a discrete value α = 0.5
of model of the neuron memristive autapse displaying chaotic
dynamics.
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RING-STAR NETWORK OF MEMRISTIVE HINDMARSH-
ROSE MODEL

After exploring the dynamical analysis of the memristive
Hindmarsh-Rose neuron model in brief, we explore the collective
behavior in a ring-star network of memristive Hindmarsh-Rose
neuron model. An advantage of this mixed topological network
is we get three different networks for free (ring-star, ring, and star
network).

Ring and star networks find their applications in various real
world systems (Roberts and Wessler 1970), gene regulatory net-
works (Shu et al. 2021), just to name a few. It is an important
fundamental network to study first for a dynamical oscillator. A
sketch of a ring-star network is illustrated in Fig. 5.
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Figure 5 The memristive Hindmarsh-Rose neuron system con-
nected in a ring-star network. Here we consider N = 100 mem-
ristive HR neurons where the central one is labeled i = 1 and
the end nodes are labeled from i = 2, . . . , N. The ring and star
coupling strengths are denoted by σ and µ respectively.
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Figure 6 Ring-Star network of memristive Hindmarsh Rose neu-
ron model with σ ̸= 0, µ ̸= 0. Random initial conditions are set
with the coupling range of P = 70. Number of nodes considered
is N = 100. Asynchronous behavior in (a), synchronous behavior
in (b), chimera state in (c) is shown.

The dynamical equations of the ring-star network are given by

ẋi = fx + µ(xi − x1) +
σ

2P

n=i+P

∑
n=i−P

(xi − xn),

ẏi = fy,

u̇i = fu,

ẇi = fw.

(3)

The central node (i = 1) is governed by the following system of
differential equations:

ẋ1 = fx +
N

∑
j=1

µ(xj − x1),

ẏ1 = fy,

u̇1 = fu,

ẇ1 = fw.

(4)

where

fx = yi − ax3
i + bx2

i − αxi cos(ui) + m sin(wi),

fy = c − dx2
i − yi,

fu = sin(ui) + exi,

fw = 2π f .

with periodic boundary conditions:

xi+N(t) = xi(t),
yi+N(t) = yi(t),
ui+N(t) = ui(t),
wi+N(t) = wi(t)

for i = 2, 3, . . . , N. The parameters used throughout this study are:
a = 1, b = 3, c = 1, d = 5, e = 0.5, α = 0.5, f = 0.5. The size of the
network is considered to be of 100 nodes with P nearest neighbors
connected to each other. The network parameters such as the ring
coupling strength σ, star coupling strength µ, and the coupling
range P will be varied to explore different synchronization patterns
arising in the ring-star network of memristive Hindmarsh-Rose
neuron system.

Note that the ring-star network transforms to a ring network
when µ = 0 and it transforms to a star network when σ = 0. The
mixed topological ring-star network prevails when σ ̸= 0 and
µ ̸= 0. We have divided our whole network analysis into three
categories: category A: ring-star network, category B: ring network,
category C: star network.

Characterization of chimera states
In order to characterize the spatiotemporal patterns obtained in the
study, we use the measure of strength of incoherence (SI). SI was
developed as a measure to characterize different spatiotemporal
patterns exhibited by the network of neurons. Many studies have
shown that SI is able to characterize different spatiotemporal states
in a network of neurons.

Here we give a sketch of the method adapted by the Strength
of Incoherence. The idea lies in transforming the original variables
into new variables. Suppose xi, i = 1, . . . , N represents the original
set of variables of the network system. Next, define new set of
variables as zi = xi − xi−1, i = 1, . . . , N. The average of zi’s is
denoted by

⟨z⟩ = 1
N

N

∑
i=1

zi.
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We then evaluate the quantity

χ(m) =

〈√√√√ nm

∑
j=n(m−1)+1

(zj − ⟨z⟩)2⟩t

〉
.

We calculate sm = Θ(δ−χ(m)), where δ is a predetermined thresh-
old based on which different characterizations of the network is
carried out, and m denotes the number of bins the network is
grouped, m = N/n. Strength of Incoherence (SI) is then defined as

SI = 1 − ∑M
m=1 sm

M
(5)

If SI ≈ 1, it denotes incoherent state, if SI = 0, it denotes a syn-
chronized state, cluster state, and if 0 < SI < 1, it denotes chimera
state.

Ring-star network
Here we consider the effect of both ring and star coupling strengths
(σ ̸= 0, µ ̸= 0) for our network and analyse the spatiotemporal
patterns. When σ = 0.05, µ = 0.04, the neuron nodes exhibit asyn-
chronous patterns, see Fig. 6 (a) showing the nodes oscillating in
an asynchronous fashion. The SI value is also 1, signifying inco-
herence. The leftmost plot shows the variation of the membrane
potential (x) as time evolves. The right most plot illustrates the
recurrence plot of the nodes of the network under study by consid-
ering the Euclidean norm of the x state values of different nodes.
Each point (i, j) on the grid is color coded depending on the value
of the Rij = ||xi − xj||, where 1 ≤ i, j ≤ N and ||.|| denotes the
Euclidean norm.

Let us consider the figure on the left of Fig. 6 (a). The x-state
variable is color coded according to its value. This gives us an
idea as to how the oscillators are evolving with time, are they
synchronized with their neighboring elements or not? This can be
seen if the oscillators have same value or color. The leftmost plot
illustrates the evolution of the network with time. The recurrence
plot on the right, measures the Euclidean norm of the i th oscillator
node versus the j th oscillator node. The color coding is done based
on the Euclidean norm. If the norm between the i th and j th node
is zero, then the nodes are synchronized. The shades represent the
magnitude of the Euclidean norm of the ith oscillator versus the
jth oscillator. When i = j, observe that the diagonal line is always
blue denoting zero norm.

When the ring coupling strength σ is decreased to −6, the node
gets synchronised. This is illustrated in Fig. 6 (b). Observe that
the values of the x state variable are all arranged horizontally. The
SI value here is 0 signifying synchronized state. This can also be
confirmed from the spatiotemporal plot and the recurrence plot.

The ring-star network of memristive Hindmarsh-Rose neuron
system shows chimera state when σ = 7, µ = 1, see Fig. 6
(c). Observe that initial nodes and final nodes remain synchro-
nised whereas nodes in the middle (30 ≤ Nodes ≤ 60 ) oscillate
asynchronously. From such coexistence of synchronous and asyn-
chronous states, it can confirmed as a chimera state. This can also
be seen from the spatiotemporal plot on the left and the formation
of the regular structures of colours other than blue in the recur-
rence plot. The SI value in this case is 0.7, confirming a chimera as
0 < SI < 1. Interestingly, double-well chimera state is found in this
system. We refer the reader to the author’s previous work in (Muni
and Provata 2020), where double well chimera state were found
in the ring-star network of Chua circuits. Double well chimera
state is an important type of chimera state which traverses both
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Figure 7 Ring-Star network of memristive Hindmarsh Rose neu-
ron model with σ ̸= 0, µ ̸= 0. Random initial conditions are set
with the coupling range of P = 70. Number of nodes considered
is N = 100. Double well chimera in (a), another double well
chimera in (b), two synchronized cluster state in (c) is shown.

the positive and negative values of x state variable. It is interesting
to observe in the case of memristive HR neuron system.

Such a double well chimera state is shown in Fig. 7 (a). Observe
that in the middle plot, some nodes are in synchronous pattern in
the positive range of x and some in the negative range of x. Notice
that the spatiotemporal pattern on the left, has alternating strips of
both red (in negative region) and blue (in positive regions). The
regular structures in the recurrence plot on the right also confirms
this as a double well chimera state.The SI value in this case is 0.68
and denotes a chimera. Another such double well chimera state is
shown in Fig. 7 (b). The SI value is 0.68, denoting a chimera state.

The prevalence of the double-well chimera state was found to
be robust with the variation of σ till σ < 15. When σ = 15, µ = 1,
the double well chimera state is destroyed and formation of the
two clustered state takes place as shown in Fig. 7 (c). The SI value is
around 0.02 ≈ 0, signifying a cluster state. The middle plot shows
the two almost synchronized clusters traversing both positive and
negative values of x. The right most plot shows very tiny square
like regular structures indicating the presence of clusters and the
recurrence plot differs topologically form other patterns such as
synchronous, chimera states. In the next section, we discuss about
the topological patterns shown by the ring network.

Ring network
In this section, we address various spatiotemporal patterns in the
ring network of memristive Hindmarsh Rose neuron system by
setting σ ̸= 0, µ = 0. In Fig. 8 (a), we showcase the asynchronous
behavior of the end nodes of the ring network. This can be con-
firmed from the spatiotemporal plot and the recurrence plot. The
SI value is 1 denoting an asynchronous state. In Fig. 8 (b), we
showcase a double well chimera state. This can be confirmed by
the regular structures in the recurrence plot on the right and the
spatiotemporal plot on the left. The SI value is 0.44, signifying a
chimera state.
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Figure 8 Ring network of memristive Hindmarsh Rose neuron
model with σ ̸= 0, µ = 0. Random initial conditions are set with
the coupling range of P = 70. Number of nodes considered is
N = 100. Asynchronous behavior in (a), double well chimera
state in (b) is shown.

Moreover, cluster states are also possible in ring network, see
Fig. 9 (a). The SI value is 0.02, signifying synchronous state/ cluster
state. This can be shown by the presence of small square structures
in the recurrence plots. A single cluster synchronization state is
shown in Fig. 9 (b).The SI value is 0, denoting a synchronized state.
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Figure 9 Ring network of memristive Hindmarsh Rose neuron
model with σ ̸= 0, µ = 0. Random initial conditions are set
with the coupling range of P = 70. Number of nodes consid-
ered is N = 100. Two cluster synchronized state behavior in (a),
synchronized state in (b) is shown.

Star network
In this section, we explore the spatiotemporal patterns exhbited
by the star network of memristive Hindmarsh Rose neuron model.
Star networks is useful in many engineering systems, network hub
system. Study on the synchronization aspect of star connected
Chua oscillator were carried out in (Muni and Provata 2020). Un-
like previous cases of ring-star and ring network, chimera state
seems to be absent in the case of star networks.

The presence of sole central node drives more information to the
end nodes of the network and hence chances of full synchroniza-
tion is much more common in star networks. When µ = −0.5, the
star network enters the regime of asynchronization. The SI value
is 1, signifying asynchronization. Increasing the star coupling
strength µ to 1, we observe full synchronization in the system.The
SI value is 0, signifying synchronization.
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Figure 10 Star network of memristive Hindmarsh Rose neuron
model with σ = 0, µ ̸= 0. Random initial conditions are set with
the coupling range of P = 70. Number of nodes considered is
N = 100. Asynchronous behavior in (a), synchronized state in (b)
is shown.

Variation of the Strength of Incoherence with respect to coupling
strength
Here we observe the variation of the strength of incoherence
(SI) with respect to the ring coupling strength (σ), star coupling
strength (µ). In Fig. 11 (a), (b), and (c), we have considered the vari-
ation of the strength of incoherence with the variation of the star
coupling strength µ for three different values of coupling range
P = 30, 70, and 90. In Fig. 11 (a), with negative µ, the SI value is
almost same and then increases as µ becomes positive and then
follows an increasing trend as µ is increased.

The behavior is robust with the change in the coupling range
P as evident from Fig. 11 (b), (c). In Fig. 11 (d), (e), (f), we have
considered the variation of the strength of incoherence with the
variation of ring coupling strength σ for three different values of
coupling range P = 30, 70, and 90. As can be seen in Fig. 11 (d),
SI is 1 for negative values of σ and starts to decrease for positive
σ and reaches to zero. So variation of σ from negative to positive
value, we see a variation from asynchronous to synchronous state
or cluster state. The behavior is robust for different other values of
coupling ranges in Fig. 11 (e), and (f).
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Figure 11 Variation of the strength of incoherence (SI) with re-
spect to the star coupling strength (µ) in panels (a), (b), (c) for
various coupling ranges P = 30, 70, and 90 respectively. Simi-
larly, variation of the strength of incoherence (SI) with respect
to the ring coupling strength σ for various values of coupling
ranges P = 30, 70, and 90 respectively. The network size is
N = 100.

CONCLUSION

In this manuscript, we have considered a memristive version of the
Hindmarsh-Rose neuron model. We found the proposed model
was able to exhibit a reverse period doubling route to chaos, as
well as phenomena of interior and exterior crises. Three differ-
ent networks (ring-star, ring, and star) networks of memristive
Hindmarsh Rose neuron models were explored. Chimera states,
including double well chimera states, were found in the ring-star
and ring network, which shows that the memristive Hindmarsh-
Rose neuron model is a promising neuron model to be explored
further in the future. Many future directions emerge from this
study. Study of lattice Shepelev et al. (2020a, 2021a), multilayer net-
works Shepelev et al. (2021c) of the neuron model can be explored.
Emergence of spiral waves can be studied in the latter networks
and a proper quantification can be carried similar to the methods
used in Shepelev et al. (2020b).

The basin of attraction of double-well chimera state, syn-
chronous and asynchronous state, can be explored in the future.
Does the system exhibit anti-phase synchronization Shepelev et al.
(2021b) is a topic that can be thought of. Does a discretized version
of the proposed model in the present paper show extra qualitative
dynamics is a future direction that can be looked upon in a similar
spirit in Muni et al. (2022). Recently extreme multistability was
found in memrisitve Hindmarsh-Rose model in Njitacke Tabek-
oueng et al. (2022), can this model also exhibit extreme multistabil-
ity? A deep investigation of the global dynamics of the memristive
Hindmarsh-Rose neuron proposed in this work will be carried out.
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