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Some Characterizations of PS-Statistical Manifolds
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Abstract. In the present study, firstly we state symmetry properties for curvatures of a statistical manifold
and give some relations between the Riemannian curvature R̂ and the curvatures R, R∗ and RS. After, by
defining the notion of para-Sasakian statistical manifold, we give the necessary and sufficient conditions for
a structure (D, h,Ψ,w, ζ) to be a para-Sasakian structure when (D, h) is a statistical structure and (Ψ,w, ζ, h)
is an almost paracontact Riemannian manifold. Also, we give some results for curvatures R, R∗, RS and
Ricci tensor of these curvatures on a para-Sasakian statistical manifold. We construct an example of
para-Sasakian statistical manifold of dimension 3. Finally, we examined the Einsteinian of para-Sasakian
statistical manifolds according to certain conditions.

1. INTRODUCTION

The theory of statistical manifolds, (at the same time it is called information geometry), has started with
a study in 1945, where a statistical model was considered as a Riemannian manifold with the tensor given
by the Fisher information matrix [15]. After that, the information geometry, which is typically deals with
the study of various geometric structures on a statistical manifold, has begun as a study of the geometric
structures possessed by a statistical model of probability distributions.

The notion of dual connection, which is also called conjugate connection in affine geometry, has been
first introduced into statistics by Amari in 1985 [2]. A statistical model equipped with a Riemannian metric
together with a pair of dual affine connections is called a statistical manifold. For details about statistical
manifolds and information geometry, one can see [3], [5], [6], [10], [11], [12], [13], [14], [19] and etc.

Also, if Ψ is a tensor field of type (1, 1), w is a 1-form and ζ is a vector field on a (2n + 1)-dimensional
differentiable manifold M, then almost contact structure (Ψ,w, ζ) which is related to almost complex struc-
tures and satisfies the conditionsΨ2 = −I+w⊗ζ, w(ζ) = 1 has been determined by Sasaki in 1960 [16]. After
in 1976, on an n-dimensional differentiable manifold M, almost paracontact structure which is a similar
structure with almost contact structure, related to almost product structures and satisfies the conditions
Ψ2 = I −w ⊗ ζ, w(ζ) = 1 has been determined by Sato [17]. With the aid of these definitions, different types
of manifolds have been defined and studied by many mathematicians.

According to these notions, nowadays lots of studies have been started to be done by scientists. For
example, in [22] the authors have defined the concept of quaternionic Kähler-like statistical manifold and
derived the main properties of quaternionic Kähler-like statistical submersions, extending in a new setting
some previous results obtained by K. Takano concerning statistical manifolds endowed with almost complex
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(in [20]) and almost contact structures (in [21]). In [7], the authors have introduced the notion of Sasakian
statistical structure and obtained the condition for a real hypersurface in a holomorphic statistical manifold
to admit such a structure. Also in [8], the notion of a Kenmotsu statistical manifold is introduced, which is
locally obtained as the warped product of a holomorphic statistical manifold and a line by authors. And
they have showed that, a Kenmotsu statistical manifold of constant Ψ-sectional curvature is constructed
from a special Kahler manifold, which is an important example of holomorphic statistical manifold.

In this paper, after giving some basic notions about statistical structures and para-Sasakian manifolds
in Preliminaries, in Section 3 we give symmetry properties of curvatures R and R∗ which are the curvatures
of the connections D and D∗, respectively and RS which is statistical curvature of a statistical manifold and
obtain some results for relations between the Riemannian curvature R̂ and the curvatures R, R∗ and RS.
In fourth section, we define the notion of para-Sasakian statistical manifold and give the necessary and
sufficient coditions for a structure (D, h,Ψ,w, ζ) to be a para-Sasakian structure when (D, h) is a statistical
structure and (Ψ,w, ζ, h) is an almost paracontact Riemannian manifold. Also, we give some results about
the curvatures R, R∗, RS and Ricci tensor of these curvatures on a para-Sasakian statistical manifold. We
construct an example of 3-dimensional para-Sasakian statistical manifold and give its all of connections
and components of curvature tensors. And in the fifth section, we study on Ricci semi-symmetric and
Ricci pseudo-symmetric para-Sasakian statistical manifolds and after we give some characterizations for
ζ-projectively flat, projectively flat andΨ-projectively semi-symmetric para-Sasakian statistical manifolds.

2. PRELIMINARIES

In this section, we recall some notions about statistical structures and para-Sasakian manifolds, respec-
tively. Througout this paper, we suppose that M is an n-dimensional manifold, h is a Riemannian metric
and Γ(TM(p,q)) means the set of tensor fields of type (p, q) on M.

On M, a parametric family of torsion-free connections D(α) indexed by α ∈ R can be defined by

D(α) =
1 + α

2
D −

1 − α
2

D∗, (1)

with
D(1) = D, D(−1) = D∗, D(0) =

1
2

(D +D∗) := D̂. (2)

Here D̂ denotes the Levi-Civita (L-C) connection associated with h.
Also, a pair (D, h) is called a statistical structure on M, if D is torsion-free and

(DΩ1 h)(Ω2,Ω3) = (DΩ2 h)(Ω1,Ω3), ∀Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)) (3)

holds, where the equation (3) is generally called Codazzi equation. In this case (M,D, h) is called a statistical
manifold.

If (D, h) is a statistical structure on M, then the connection D∗ which is given by

Ω1h(Ω2,Ω3) = h(DΩ1Ω2,Ω3) + h(Ω2,D∗Ω1
Ω3) (4)

is called conjugate or dual connection of D with respect to h. If (D, h) is a statistical structure on M, then (D∗, h)
is a statistical structure on M, too.

For a statistical structure (D, h), the difference tensor field κ ∈ Γ(TM(1,2)) can be defined as

κ(Ω1,Ω2) = DΩ1Ω2 − D̂Ω1Ω2, ∀Ω1,Ω2 ∈ Γ(TM(1,0)). (5)

Moreover, κ satisfies

κ(Ω1,Ω2) = κ(Ω2,Ω1), (6)
κ̃(Ω1,Ω2,Ω3) = h(κ(Ω1,Ω2),Ω3) = h(Ω2, κ(Ω1,Ω3)) = κ̃(Ω1,Ω3,Ω2), (7)
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where κ̃ ∈ Γ(TM(0,3)). Furthermore, we have

κ = D̂ −D∗ =
1
2

(D −D∗). (8)

For a more detailed treatment, we refer to [6], [7] and [23].
Now, let us recall some fundamental informations about para-Sasakian manifolds.
A differentiable manifold M is said to admit an almost paracontact Riemannian structure (Ψ,w, ζ, h), where

Ψ is a tensor field of type (1,1), ζ is a vector field, w is a 1-form and h is a Riemannian metric on M such that

Ψζ = 0, w(ζ) = 1, h(ζ,Ω1) = w(Ω1),

Ψ2Ω1 = Ω1 − w(Ω1)ζ, (9)
h(ΨΩ1,ΨΩ2) = h(Ω1,Ω2) − w(Ω1)w(Ω2),

for any vector fields Ω1, Ω2 on M. In addition, if (Ψ,w, ζ, h) satisfy the equations

dη = 0, D̂Ω1ζ = ΨΩ1, (10)

(D̂Ω1Ψ)Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2w(Ω1)w(Ω2)ζ, (11)

then M is called a para-Sasakian (PS) manifold. On a PS-manifold, for ∀Ω1,Ω2 ∈ Γ(TM(1,0)) we have the
following equations:

R̂ic(Ω1, ζ) = (1 − n)w(Ω1), (12)

Q̂ζ = (1 − n)ζ, (13)

R̂(Ω1,Ω2)ζ = w(Ω1)Ω2 − w(Ω2)Ω1, (14)

R̂(ζ,Ω1)Ω2 = w(Ω2)Ω1 − h(Ω1,Ω2)ζ, (15)

R̂(ζ,Ω1)ζ = Ω1 − w(Ω1)ζ, (16)

w(R̂(Ω1,Ω2)Ω3) = h(Ω1,Ω3)w(Ω2) − h(Ω2,Ω3)w(Ω1), (17)

R̂ic(ΨΩ1,ΨΩ2) = R̂ic(Ω1,Ω2) − (1 − n)w(Ω1)w(Ω2), (18)

where R̂, R̂ic and Q̂ denotes the Riemannian curvature tensor, Ricci tensor and Ricci operator of L-C
connection D̂, respectively (for detail, see [1], [17] and [18]).

3. R, R∗ AND RS CURVATURES OF STATISTICAL MANIFOLDS

In this section, firstly we recall symmetry properties of curvatures R, R∗ and give these properties for
RS. After, we give some results for relations between the Riemannian curvature R̂ and the curvatures R, R∗

and RS.

Lemma 3.1. Let (M,D, h) be a statistical manifold. Then, the curvatures R and R∗ satisfy the following symmetry
properties:

i) R(Ω1,Ω2)Ω3 + R(Ω2,Ω3)Ω1 + R(Ω3,Ω1)Ω2 = 0,
R∗(Ω1,Ω2)Ω3 + R∗(Ω2,Ω3)Ω1 + R∗(Ω3,Ω1)Ω2 = 0;

ii)R(Ω1,Ω2,Ω3,Ω4) + R(Ω1,Ω2,Ω4,Ω3) = 2h((D̂Ω1κ)(Ω2,Ω4) − (D̂Ω2κ)(Ω1,Ω4),Ω3),
R
∗(Ω1,Ω2,Ω3,Ω4) + R∗(Ω1,Ω2,Ω4,Ω3) = 2h((D̂Ω2κ)(Ω1,Ω4) − (D̂Ω1κ)(Ω2,Ω4),Ω3);

iii)
R(Ω1,Ω2,Ω3,Ω4) − R(Ω3,Ω4,Ω1,Ω2) = 0,
R
∗(Ω1,Ω2,Ω3,Ω4) − R∗(Ω3,Ω4,Ω1,Ω2) = 0 if (D̂Ω1κ)(Ω2,Ω4) = (D̂Ω2κ)(Ω1,Ω4),

where R and R∗ ∈Γ(TM(0,4)) are Riemannian-Christoffel curvature tensors of R and R∗, respectively and they
are defined by h(R(Ω1,Ω2)Ω3,Ω4) = R(Ω1,Ω2,Ω3,Ω4) and h(R∗(Ω1,Ω2)Ω3,Ω4) = R∗(Ω1,Ω2,Ω3,Ω4), for
∀Ω1,Ω2,Ω3,Ω4 ∈ Γ(TM(1,0)).



S. Kazan / TJOS 7 (2), 116–131 119

Proof. The proof can be found in [9].

In [7], the authors have defined a curvature tensor field S∈Γ(TM(1,3)) as

S(Ω1,Ω2)Ω3 =
1
2
{R(Ω1,Ω2)Ω3 + R∗(Ω1,Ω2)Ω3}, (19)

for ∀Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)) and they have called it statistical curvature tensor field of (D, h). Hereafter, in
our results we’ll denote the statistical curvature tensor field S by RS. So, let us give the following Theorem
which gives the symmetry properties of RS:

Theorem 3.2. Let (M,D, h) be a statistical manifold. Then, the statistical curvature tensor field RS satisfies the
following symmetry properties:

i) RS(Ω1,Ω2)Ω3 + RS(Ω2,Ω3)Ω1 + RS(Ω3,Ω1)Ω2 = 0,
ii) RS(Ω1,Ω2,Ω3,Ω4) + RS(Ω1,Ω2,Ω4,Ω3) = 0,
iii) RS(Ω1,Ω2,Ω3,Ω4) − RS(Ω3,Ω4,Ω1,Ω2) = 0,

where RS
∈Γ(TM(0,4)) is Riemannian-Christoffel curvature tensor of RS and it is defined by

h(RS(Ω1,Ω2)Ω3,Ω4) = RS(Ω1,Ω2,Ω3,Ω4), for ∀Ω1,Ω2,Ω3,Ω4 ∈ Γ(TM(1,0)).

Proof. Using Lemma 3.1-(i) in (19), we get (i). Using Lemma 3.1-(ii) in (19), we reach (ii). And finally, from
(i) and (ii), we have (iii).

Also, we can give the following relations, which have been stated in [9] too, between Riemannian
curvature R̂ and the curvatures R, R∗ when (M,D, h) is a statistical manifold and we give these relations for
RS.

Using D = D̂ + κ in R(Ω1,Ω2)Ω3 = DΩ1 DΩ2Ω3 −DΩ2 DΩ1Ω3 −D[Ω1,Ω2]Ω3, we have

R(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 + (DΩ1κ)(Ω2,Ω3) − (DΩ2κ)(Ω1,Ω3) − κ(Ω1, κ(Ω2,Ω3)) + κ(Ω2, κ(Ω1,Ω3)). (20)

Again using D = D̂ + κ in (20), we get

R(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 + (D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3) + κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3)). (21)

Thus, from (20) and (21) we can write

(DΩ1κ)(Ω2,Ω3) − (DΩ2κ)(Ω1,Ω3) − (D̂Ω1κ)(Ω2,Ω3) + (D̂Ω2κ)(Ω1,Ω3) = 2{κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3))}.
(22)

Similarly, using D∗ = D̂ − κ in R∗(Ω1,Ω2)Ω3 = D∗
Ω1

D∗
Ω2
Ω3 −D∗

Ω2
D∗
Ω1
Ω3 −D∗[Ω1,Ω2]Ω3, we have

R∗(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 − (D∗Ω1
κ)(Ω2,Ω3) + (D∗Ω2

κ)(Ω1,Ω3) − κ(Ω1, κ(Ω2,Ω3)) + κ(Ω2, κ(Ω1,Ω3)) (23)

and again using D∗ = D̂ − κ in (23), we get

R∗(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 − (D̂Ω1κ)(Ω2,Ω3) + (D̂Ω2κ)(Ω1,Ω3) + κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3)). (24)

So, from (23) and (24) we can write

(D∗Ω1
κ)(Ω2,Ω3)− (D∗Ω2

κ)(Ω1,Ω3)− (D̂Ω1κ)(Ω2,Ω3)+ (D̂Ω2κ)(Ω1,Ω3) = −2{κ(Ω1, κ(Ω2,Ω3))−κ(Ω2, κ(Ω1,Ω3))}.
(25)

And finally, using (21) and (24) in (19), we reach that

RS(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 + κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3)). (26)
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4. PARA-SASAKIAN (PS) STATISTICAL MANIFOLDS

In this section, firstly we define the notion of para-Sasakian (PS) statistical manifold and give the
necessary and sufficient coditions for a structure (D, h,Ψ,w, ζ) to be a PS-structure when (D, h) is a statistical
structure and (Ψ,w, ζ, h) is an almost paracontact Riemannian manifold. After that, we give some results
about the curvatures R, R∗ and RS and Ricci tensor of these curvatures on a PS-statistical manifold.

Let Ω be the fundamental 2-form of a PS-manifold (M,Ψ,w, ζ, h) defined by

Ω(Ω1,Ω2) = h(Ω1,ΨΩ2), (27)

for ∀Ω1,Ω2 ∈ Γ(TM(1,0)). Then, we have

Lemma 4.1. Let (D, h) be a statistical structure and (Ψ,w, ζ, h) be an almost paracontact Riemannian structure on
M. Then, we have

i) (DΩ1Ω)(Ω2,Ω3) = h(Ω2,D∗Ω1
ΨΩ3 −ΨDΩ1Ω3),

ii) (DΩ1Ω)(Ω2,Ω3) − (D∗
Ω1
Ω)(Ω2,Ω3) = −21(Ω2, κ(Ω1,ΨΩ3) +Ψκ(Ω1,Ω3)),

iii) DΩ1ΨΩ2 −ΨD∗
Ω1
Ω2 = (D̂Ω1Ψ)Ω2 + κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2),

for ∀Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)).

Proof. i) From (4) and (27), we get

(DΩ1Ω)(Ω2,Ω3) = DΩ1Ω(Ω2,Ω3) −Ω(DΩ1Ω2,Ω3) −Ω(Ω2,DΩ1Ω3)
= Ω1h(Ω2,ΨΩ3) − h(DΩ1Ω2,ΨΩ3) − h(Ω2,ΨDΩ1Ω3)
= h(DΩ1Ω2,ΨΩ3) + h(Ω2,D∗Ω1

ΨΩ3) − h(DΩ1Ω2,ΨΩ3) − h(Ω2,ΨDΩ1Ω3)

= h(Ω2,D∗Ω1
ΨΩ3 −ΨDΩ1Ω3). (28)

ii) Substracting the dual of equation (28) from (28) and using (8), the proof completes.
iii) From (5) and (8), we have (iii).

Definition 4.2. (D, h,Ψ,w, ζ) is a PS-statistical structure on M, if
i) (D, h) is a statistical structure,
ii) (Ψ,w, ζ, h) is a PS-structure,
iii) for ∀Ω1,Ω2 ∈ Γ(TM(1,0)), the equation

κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2) = 0 (29)

is satisfied.

Thus, we can prove the following Theorem:

Theorem 4.3. Let (D, h) be a statistical structure and (Ψ,w, ζ, h) be an almost paracontact Riemannian structure
on M. Then, (D, h,Ψ,w, ζ) is a PS-statistical structure on M iff the equations

DΩ1ΨΩ2 −ΨD∗Ω1
Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ (30)

and
DΩ1ζ = ΨΩ1 + w(DΩ1ζ)ζ (31)

hold for ∀Ω1,Ω2 ∈ Γ(TM(1,0)).

Proof. Let (D, h) be a statistical structure and (Ψ,w, ζ, h) be a PS-Riemannian structure on M. Then, from (11)
and Lemma 4.1-(iii), we get

DΩ1ΨΩ2 −ΨD∗Ω1
Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ + κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2).
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So, if (D, h,Ψ,w, ζ) is a PS-structure on M, then from (29) we have (30). Also, puttingΩ2 = ζ in the expression
of the dual of (30), from (9) we obtain (31).

Conversely, let us assume that the equations (30) and (31) hold for ∀Ω1,Ω2 ∈ Γ(TM). TakingΨΩ2 instead
of Ω2 in the equation (30) and applyingΨ to the resulting equation, from (9) and (31) we have

D∗Ω1
ΨΩ2 −ΨDΩ1Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ

and this is the dual of (30). Finally we have to see that, (Ψ,w, ζ, h) is a PS-structure and the equation (29)
holds. Using (5) and (8) in the equation which is in the Lemma 4.1-(iii), we have

DΩ1ΨΩ2 −ΨD∗Ω1
Ω2 =

1
2
{(DΩ1Ψ)Ω2 + (D∗Ω1

Ψ)Ω2} +
1
2
{DΩ1ΨΩ2 −D∗Ω1

ΨΩ2} +
1
2
Ψ{DΩ1Ω2 −D∗Ω1

Ω2}.

Taking the dual of the last equation, we get

D∗Ω1
ΨΩ2 −ΨDΩ1Ω2 = (D̂Ω1Ψ)Ω2 − κ(Ω1,ΨΩ2) −Ψκ(Ω1,Ω2). (32)

The dual of the equation (30), i.e. (30)∗, is

D∗Ω1
ΨΩ2 −ΨDΩ1Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ.

Thus, from (32) and (30)∗ we obtain that

−(D̂Ω1Ψ)Ω2 − h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ = −κ(Ω1,ΨΩ2) −Ψκ(Ω1,Ω2). (33)

Also, from Lemma 4.1-(iii) and (30), we get

−(D̂Ω1Ψ)Ω2 − h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ = κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2). (34)

So, from (33) and (34) we can reach that, κ(Ω1,ΨΩ2)+Ψκ(Ω1,Ω2) = 0 holds and also we have (D̂Ω1Ψ)Ω2 =
−h(Ω1,Ω2)ζ−w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ. Thus, (Ψ,w, ζ, h) is a PS-structure and this completes the proof.

Example 4.4. Let (Ψ,w, ζ, h) be a PS-Riemannian structure on M. Set the connection D̆ as

D̆Ω1Ω2 = D̂Ω1Ω2 + w(Ω1)Ω2 + w(Ω2)Ω1 + h(Ω1,Ω2)ζ, (35)

for any Ω1,Ω2 ∈ Γ(TM(1,0)). Then, D̆ is torsion-free and satisfies the Codazzi equation (3). So, (D̆, h) is a statistical
structure on the PS-Riemannian manifold (M,Ψ,w, ζ, h).

Also, from (5) and (35) we have κ(Ω1,Ω2) = w(Ω1)Ω2 + w(Ω2)Ω1 + h(Ω1,Ω2)ζ. So, for this structure we have

κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2) = 2η(Ω1)ΨΩ2 + w(Ω2)ΨΩ1 + h(Ω1,ΨΩ2)ζ.

Now, let us suppose that κ(Ω1,ΨΩ2) + Φκ(Ω1,Ω2) = 0 is satisfied for this structure. Then, we have

2η(Ω1)ΨΩ2 + w(Ω2)ΨΩ1 + h(Ω1,ΨΩ2)ζ = 0.

Applying w to the last equation, we get h(Ω1,ΨΩ2) = 0 ⇒ Ψ = 0 and this is a contradiction. So, κ(Ω1,ΨΩ2) +
Ψκ(Ω1,Ω2) cannot be zero. Hence, (D̆, h) is a statistical structure on the PS-Riemannian manifold (M,Ψ,w, ζ, h)
but it isn’t a p-S statistical structure.

Example 4.5. Let (Ψ,w, ζ, h) be a PS-Riemannian structure on M. Set the connection D̃ as

D̃Ω1Ω2 = D̂Ω1Ω2 + w(Ω1)w(Ω2)ζ, (36)

for any Ω1,Ω2 ∈ Γ(TM(1,0)). Then, D̃ is torsion-free and satisfies the Codazzi equation (3). So, (D̃, h) is a statistical
structure on the PS-Riemannian manifold (M,Ψ,w, ζ, h).

Also, from (5) and (36) we have κ(Ω1,Ω2) = w(Ω1)w(Ω2)ζ. So, κ(Ω1,ΨΩ2) + Ψκ(Ω1,Ω2) = 0 is satisfied for
the connection D̃. Hence (D̃, h,Ψ,w, ζ) is a PS-statistical structure on M.
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Here, we obtain some results about the curvatures R, R∗ and RS. For this, we’ll give some results for a
PS-statistical manifold (M,Ψ,w, ζ, h).

Taking Ω2 = ζ in (30) and (30)∗ and using (9), we have

D∗Ω1
ζ = ΨΩ1 + w(D∗Ω1

ζ)ζ (37)

and
DΩ1ζ = ΨΩ1 + w(DΩ1ζ)ζ, (38)

respectively. Also, from (5), (8), (37) and (38) we have

κ(Ω1, ζ) = DΩ1ζ − D̂Ω1ζ = w(DΩ1ζ)ζ (39)

and
κ(Ω1, ζ) = D̂Ω1ζ −D∗Ω1

ζ = −w(D∗Ω1
ζ)ζ, (40)

respectively. Thus, from (37)-(40) we get

D∗Ω1
ζ = ΨΩ1 − κ(Ω1, ζ) (41)

DΩ1ζ = ΨΩ1 + κ(Ω1, ζ) (42)

and
Ψκ(Ω1, ζ) = 0. (43)

Furthermore, from (5), (10), (39) and (42) we have

κ(Ω1, κ(Ω2, ζ)) = w(DΩ1ζ)w(DΩ2ζ)ζ (44)

and so, we get
κ(Ω1, κ(Ω2, ζ)) = κ(Ω2, κ(Ω1, ζ)). (45)

Now, we can give some results about the curvatures R, R∗ and RS.
Using (14), (15) and (45) in (21), we have

R(Ω1,Ω2)ζ = w(Ω1)Ω2 − w(Ω2)Ω1 + (D̂Ω1κ)(Ω2, ζ) − (D̂Ω2κ)(Ω1, ζ) (46)

and

R(ζ,Ω1)Ω2 = w(Ω2)Ω1 − h(Ω1,Ω2)ζ+ (D̂ζκ)(Ω1,Ω2)− (D̂Ω1κ)(ζ,Ω2)+ κ(ζ, κ(Ω1,Ω2))− κ(Ω1, κ(ζ,Ω2)). (47)

From Lemma 3.1-(iv) and (46), we get

w(R(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3) + h((D̂Ω1κ)(Ω2, ζ) − (D̂Ω2κ)(Ω1, ζ),Ω3). (48)

Also, from (21), we have

w(R(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3)

+ w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3) + κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3))). (49)

Thus from (48) and (49), we obtain that

h((D̂Ω1κ)(Ω2, ζ)−(D̂Ω2κ)(Ω1, ζ),Ω3) = w((D̂Ω1κ)(Ω2,Ω3)−(D̂Ω2κ)(Ω1,Ω3)+κ(Ω1, κ(Ω2,Ω3))−κ(Ω2, κ(Ω1,Ω3))).
(50)

Similarly, using (14), (15) and (45) in (24), we have

R∗(Ω1,Ω2)ζ = w(Ω1)Ω2 − w(Ω2)Ω1 − (D̂Ω1κ)(Ω2, ζ) + (D̂Ω2κ)(Ω1, ζ) (51)
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and

R∗(ζ,Ω1)Ω2 = w(Ω2)Ω1 − h(Ω1,Ω2)ζ− (D̂ζκ)(Ω1,Ω2)+ (D̂Ω1κ)(ζ,Ω2)+κ(ζ, κ(Ω1,Ω2))−κ(Ω1, κ(ζ,Ω2)). (52)

From Lemma 3.1-(iv) and (51), we get

w(R∗(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3) − h((D̂Ω1κ)(Ω2, ζ) − (D̂Ω2κ)(Ω1, ζ),Ω3). (53)

Also, from (24), we have

w(R∗(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3)

− w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3) − κ(Ω1, κ(Ω2,Ω3)) + κ(Ω2, κ(Ω1,Ω3))). (54)

Thus from (53) and (54), we obtain that

h((D̂Ω1κ)(Ω2, ζ)−(D̂Ω2κ)(Ω1, ζ),Ω3) = w((D̂Ω1κ)(Ω2,Ω3)−(D̂Ω2κ)(Ω1,Ω3)−κ(Ω1, κ(Ω2,Ω3))+κ(Ω2, κ(Ω1,Ω3))).
(55)

Furthermore, from (50) and (55) we have

w(κ(Ω1, κ(Ω2,Ω3))) = w(κ(Ω2, κ(Ω1,Ω3))). (56)

Hence, the equations (49) and (54) reduces to

w(R(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3) + w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3)) (57)

and

w(R∗(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3) − w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3)), (58)

respectively. Also, the equations (50) and (55) reduces to

h((D̂Ω1κ)(Ω2, ζ) − (D̂Ω2κ)(Ω1, ζ),Ω3) = w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3)). (59)

Likewise, let us obtain some equations about the statistical curvature of a PS-statistical manifold
(M,Ψ,w, ζ, h).

From (14), (26) and (45) (or from (19), (46) and (51)), we get

RS(Ω1,Ω2)ζ = w(Ω1)Ω2 − w(Ω2)Ω1 (60)

and from (15) and (26) (or from (19), (47) and (52)), we have

RS(ζ,Ω1)Ω2 = w(Ω2)Ω1 − h(Ω1,Ω2)ζ + κ(ζ, κ(Ω1,Ω2)) − κ(Ω1, κ(ζ,Ω2)). (61)

From (60) (or from (61) and (45)), we get

RS(ζ,Ω1)ζ = Ω1 − w(Ω1)ζ. (62)

From Theorem 3.2-(iv) and (60) (or from (26) and (56)), we obtain that

w(RS(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3). (63)

At the end of this section, let us deal with the Ricci tensor of these curvatures on a PS-statistical manifold.
Let {Λi}, i = 1, 2, ...,n, be an orthonormal basis of the tangent space at any point p of the PS-statistical

manifold. From (21), we have

Ric(Ω1,Ω2) =
n∑

i=1

h(R(Ω1,Λi)Λi,Ω2) (64)

= R̂ic(Ω1,Ω2) +
n∑

i=1

h((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi) + κ(Ω1, κ(Λi,Λi)) − κ(Λi, κ(Ω1,Λi)),Ω2).
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From (12), (56) and (64), we get

Ric(Ω1, ζ) = (1 − n)w(Ω1) +
n∑

i=1

w((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi)). (65)

Also, using the definition of Ricci tensor, from Lemma 3.1-(iv) and (46) we have

Ric(Ω1, ζ) =
n∑

i=1

h(R(Ω1,Λi)Λi, ζ)

= (1 − n)w(Ω1) +
n∑

i=1

h((D̂Ω1κ)(Λi, ζ) − (D̂Λiκ)(Ω1, ζ),Λi). (66)

From (65) and (66), we get

n∑
i=1

w((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi)) =
n∑

i=1

h((D̂Ω1κ)(Λi, ζ) − (D̂Λiκ)(Ω1, ζ),Λi)

and this equation is equivalent with the equation (59).
From (12) and (64) (or from the definition of Ricci tensor and (47)), we have

Ric(ζ,Ω1) = (1 − n)w(Ω1) +
n∑

i=1

h((D̂ζκ)(Λi,Λi) − (D̂Λiκ)(ζ,Λi) + κ(ζ, κ(Λi,Λi)) − κ(Λi, κ(ζ,Λi)),Ω1). (67)

Similarly, from (24)

Ric∗(Ω1,Ω2) =
n∑

i=1

h(R∗(Ω1,Λi)Λi,Ω2) (68)

= R̂ic(Ω1,Ω2) −
n∑

i=1

h((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi) − κ(Ω1, κ(Λi,Λi)) + κ(Λi, κ(Ω1,Λi)),Ω2).

From (12), (56) and (68), we get

Ric∗(Ω1, ζ) = (1 − n)w(Ω1) −
n∑

i=1

w((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi)). (69)

Also, using the definition of Ricci tensor, from Lemma 3.1-(iv) and (51) we have

Ric∗(Ω1, ζ) =
n∑

i=1

h(R∗(Ω1,Λi)Λi, ζ)

= (1 − n)w(Ω1) −
n∑

i=1

h((D̂Ω1κ)(Λi, ζ) − (D̂Λiκ)(Ω1, ζ),Λi). (70)

From (69) and (70), we get

n∑
i=1

w((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi)) =
n∑

i=1

h((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi),Λi)

and this equation is equivalent with the equation (59).
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From (12) and (68) (or from the definition of Ricci tensor and (52)), we have

Ric∗(ζ,Ω1) = (1 − n)w(Ω1) −
n∑

i=1

h((D̂ζκ)(Λi,Λi) − (D̂Λiκ)(ζ,Λi) − κ(ζ, κ(Λi,Λi)) + κ(Λi, κ(ζ,Λi)),Ω1). (71)

Finally, let us give similar results for Ricci tensor of the curvature RS on a PS-statistical manifold.
From (26), we have

RicS(Ω1,Ω2) = R̂ic(Ω1,Ω2) +
n∑

i=1

h(κ(Ω1, κ(Λi,Λi)) − κ(Λi, κ(Ω1,Λi)),Ω2). (72)

From Theorem 3.2-(iv) and (60), we get

RicS(Ω1, ζ) =
n∑

i=1

h(RS(Ω1,Λi)Λi, ζ) = −
n∑

i=1

h(RS(Ω1,Λi)ζ,Λi) = (1 − n)w(Ω1). (73)

From (12) and (72), we have

RicS(ζ,Ω1) = (1 − n)w(Ω1) +
n∑

i=1

h(κ(ζ, κ(Λi,Λi)) − κ(Λi, κ(ζ,Λi)),Ω1). (74)

Since the Ricci tensor of RS is symmetric, from (73) and (74) we obtain

n∑
i=1

h(κ(ζ, κ(Λi,Λi)) − κ(Λi, κ(ζ,Λi)),Ω1) = 0. (75)

Example 4.6. Let we deal with the manifold M = {(x, y, z) ∈ R3, z , 0} of dimension 3, where (x, y, z) are the
standart coordinates in R3.

We choose the vector fields {Λ1,Λ2,Λ3} as

Λ1 = ex ∂
∂y
, Λ2 = ex

(
∂
∂y
−
∂
∂z

)
, Λ3 = −

∂
∂x
, (76)

which are linearly independent at each point of M.
Let h be the Riemannian metric defined by h(Λi,Λ j) = 0, i , j, i, j = 1, 2, 3 and h(Λκ,Λκ) = 1, κ = 1, 2, 3.
Let w be the 1-form defined by w(Ω3) = h(Ω3,Λ3), for any Ω3 ∈ Γ(TM(1,0)).
LetΨ be the (1, 1)-tensor field defined by

ΨΛ1 = Λ1, ΨΛ2 = Λ2, ΨΛ3 = 0. (77)

Using the linearity of Ψ and h, we have w(Λ3) = 1, Ψ2Ω3 = Ω3 − w(Ω3)Λ3 and h(ΨΩ3,ΨΩ5) = h(Ω3,Ω5) −
w(Ω3)w(Ω5), for any Ω3,Ω5 ∈ Γ(TM(1,0)). Thus, for Λ3 = ζ, (Ψ, ζ,w, h) defines an almost paracontact metric
structure on M.

Now, we have
[Λ1,Λ2] = 0, [Λ1,Λ3] = Λ1, [Λ2,Λ3] = Λ2. (78)

The L-C connection D̂ of h is given by Koszul’s formula which is defined as

21(D̂Ω1Ω2,Ω3) = Ω1h(Ω2,Ω3) +Ω2h(Ω1,Ω3) −Ω3h(Ω1,Ω2) (79)
− h(Ω1, [Ω2,Ω3]) − h(Ω2, [Ω1,Ω3]) + h(Ω3, [Ω1,Ω2]).
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Taking Λ3 = ζ and using (79), we have

D̂Λ1Λ1 = −Λ3, D̂Λ1Λ2 = 0, D̂Λ1Λ3 = Λ1,

D̂Λ2Λ1 = 0, D̂Λ2Λ2 = −Λ3, D̂Λ2Λ3 = Λ2, (80)

D̂Λ3Λ1 = 0, D̂Λ3Λ2 = 0, D̂Λ3Λ3 = 0.

From above, one can be easily see that (ϕ, ζ,w, h) is a PS-structure on M. Consequently, (M, ϕ, ζ,w, h) is a
3-dimensional PS-manifold (for detail, see [18]).

Now, let us suppose the PS-statistical structure (36) which is defined as D̃Ω1Ω2 = D̂Ω1Ω2 + w(Ω1)w(Ω2)ζ
(D̃∗
Ω1
Ω2 = D̂Ω1Ω2 − w(Ω1)w(Ω2)ζ and κ(Ω1,Ω2) = w(Ω1)w(Ω2)ζ) for this para-Sasakian manifold. Thus, from

(80) we have

D̃Λ1Λ1 = D̃∗Λ1
Λ1 = −Λ3, D̃Λ1Λ2 = D̃∗Λ1

Λ2 = 0, D̃Λ1Λ3 = D̃∗Λ1
Λ3 = Λ1,

D̃Λ2Λ1 = D̃∗Λ2
Λ1 = 0, D̃Λ2Λ2 = D̃∗Λ2

Λ2 = −Λ3, D̃Λ2Λ3 = D̃∗Λ2
Λ3 = Λ2, (81)

D̃Λ3Λ1 = D̃∗Λ3
Λ1 = 0, D̃Λ3Λ2 = D̃∗Λ3

Λ2 = 0, D̃Λ3Λ3 = −D̃∗Λ3
Λ3 = Λ3.

Actually, one can easily see from (81) that, T̃(Λi,Λ j) = 0 and (D̃Λi h)(Λ j, eκ) = 0 hold for all i, j, κ = 1, 2, 3. So,
(D, h) is a statistical structure and since κ(Λi,Ψe j) + Ψκ(Λi,Λ j) = 0 holds for all i, j = 1, 2, 3, (D̃, h,Ψ,w, ζ) is a
PS-statistical structure on M.

From the above results, we can obtain the components of the curvature tensors with respect to the connections D
and D∗, respectively, as follows:

R̃(Λ1,Λ2)Λ1 = Λ2, R̃(Λ1,Λ2)Λ2 = −Λ1, R̃(Λ1,Λ2)Λ3 = 0,

R̃(Λ1,Λ3)Λ1 = 2Λ3, R̃(Λ1,Λ3)Λ2 = 0, R̃(Λ1,Λ3)Λ3 = 0, (82)

R̃(Λ2,Λ3)Λ1 = 0, R̃(Λ2,Λ3)Λ2 = 2Λ3, R̃(Λ2,Λ3)Λ3 = 0.

and

R̃∗(Λ1,Λ2)Λ1 = Λ2, R̃∗(Λ1,Λ2)Λ2 = −Λ1, R̃∗(Λ1,Λ2)Λ3 = 0,

R̃∗(Λ1,Λ3)Λ1 = 0, R̃∗(Λ1,Λ3)Λ2 = 0, R̃∗(Λ1,Λ3)Λ3 = −2Λ1, (83)

R̃∗(Λ2,Λ3)Λ1 = 0, R̃∗(Λ2,Λ3)Λ2 = 0, R̃∗(Λ2,Λ3)Λ3 = −2Λ2.

With the help of the equations (82) and (83), we get the Ricci tensors of the curvature tensors R̃ and R̃∗, respectively,
as follows:

R̃ic(Λ1,Λ1) = −1, R̃ic(Λ1,Λ2) = 0, R̃ic(Λ1,Λ3) = 0,

R̃ic(Λ2,Λ1) = 0, R̃ic(Λ2,Λ2) = −1, R̃ic(Λ2,Λ3) = 0, (84)

R̃ic(Λ3,Λ1) = 0, R̃ic(Λ3,Λ2) = 0, R̃ic(Λ3,Λ3) = −4

and

R̃ic
∗

(Λ1,Λ1) = −3, R̃ic
∗

(Λ1,Λ2) = 0, R̃ic
∗

(Λ1,Λ3) = 0,

R̃ic
∗

(Λ2,Λ1) = 0, R̃ic
∗

(Λ2,Λ2) = −3, R̃ic
∗

(Λ2,Λ3) = 0, (85)

R̃ic
∗

(Λ3,Λ1) = 0, R̃ic
∗

(Λ3,Λ2) = 0, R̃ic
∗

(Λ3,Λ3) = 0.

Furthermore, from the definition of the statistical curvature tensor, (82) and (83), we can obtain the components
of the statistical curvature tensor as

R̃S(Λ1,Λ2)Λ1 = Λ2, R̃S(Λ1,Λ2)Λ2 = −Λ1, R̃S(Λ1,Λ2)Λ3 = 0,

R̃S(Λ1,Λ3)Λ1 = Λ3 , R̃S(Λ1,Λ3)Λ2 = 0, R̃S(Λ1,Λ3)Λ3 = −Λ1, (86)

R̃S(Λ2,Λ3)Λ1 = 0, R̃S(Λ2,Λ3)Λ2 = Λ3, R̃S(Λ2,Λ3)Λ3 = −Λ2
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and from (86), we get the Ricci tensors of the statistical curvature tensor as

R̃ic
S
(Λ1,Λ1) = −2, R̃ic

S
(Λ1,Λ2) = 0, R̃ic

S
(Λ1,Λ3) = 0,

R̃ic
S
(Λ2,Λ1) = 0, R̃ic

S
(Λ2,Λ2) = −2, R̃ic

S
(Λ2,Λ3) = 0, (87)

R̃ic
S
(Λ3,Λ1) = 0, R̃ic

S
(Λ3,Λ2) = 0, R̃ic

S
(Λ3,Λ3) = −2.

5. SOME CHARACTERIZATIONS FOR THESE MANIFOLDS

In this section, we investigate some special curvature conditions for a PS-statistical manifold. For this,
firstly we study on Ricci semi-symmetric and Ricci pseudo-symmetric PS-statistical manifolds and after we
give some results for ζ-projectively flat, projectively flat and Ψ-projectively semi-symmetric PS-statistical
manifolds.

5.1. Ricci Semi-Symmetric and Ricci Pseudo-Symmetric PS-Statistical Manifolds

We know that, if (M, h) is a connected n-dimensional, n ≥ 3, semi-Riemannian manifold of class C∞, then
for a (0, k)-tensor field T on M, k ≥ 1, the (0, k + 2)-tensors R · T and Q(h,T) are defined by

(R · T)(X1, ...,Xk;Ω1,Ω2) = (R(Ω1,Ω2) · T)(X1, ...,Xk)
= −T(R(Ω1,Ω2)X1,X2, ...,Xk)
− ... − T(X1, ...,Xk−1,R(Ω1,Ω2)Xk) (88)

and

Q(h,T)(X1, ...,Xk;Ω1,Ω2) = ((Ω1 ∧h Ω2) · T)(X1, ...,Xk)
= −T((Ω1 ∧h Ω2)X1,X2, ...,Xk)
− ... − T(X1, ...,Xk−1, (Ω1 ∧h Ω2)Xk) (89)

respectively, for all X1, ...,Xk,Ω1,Ω2 ∈ Γ(TM(1,0)). Here R is the Riemannian curvature tensor field of M
and R is the Riemannian Christoffel tensor field given by R(Ω1,Ω2,Ω3,Ω4) = h(R(Ω1,Ω2)Ω3,Ω4). Also, the
endomorphisms are defined by

R(Ω1,Ω2)Ω3 = [DΩ1 ,DΩ2 ]Ω3 −D[Ω1,Ω2]Ω3 (90)

and
(Ω1 ∧h Ω2)Ω3 = h(Ω2,Ω3)Ω1 − h(Ω1,Ω3)Ω2. (91)

So, we can give the following definition for PS-statistical manifolds:

Definition 5.1. Let M be an n-dimensional PS-statistical manifold. Then, M is called Ricci pseudo-symmetric with
respect to RS if at every point of M the tensor RS

· RicS and Q(h,RicS) are linearly dependent. This is equivalent to
the fact that the equality

R
S
· RicS = LRicS Q(h,RicS), (92)

hold the set URicS = {x ∈ M : Q(h,RicS) , 0}, for some function LRicS on URicS , where RicS is the Ricci tensor of RS.
Also, if LRicS = 0 holds in (92), i.e.,

R
S
· RicS = 0 (93)

holds, then M is called Ricci semi-symmetric with respect to RS.
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Firstly let us assume that M is Ricci semi-symmetric with respect to RS. Then, we can write

(RS
· RicS)(U,V;Ω1,Ω2) = (RS(Ω1,Ω2) · RicS)(U,V)

= −RicS(RS(Ω1,Ω2)U,V) − RicS(U,RS(Ω1,Ω2)V). (94)

Using (93) in (94), we have

RicS(RS(Ω1,Ω2)U,V) + RicS(U,RS(Ω1,Ω2)V) = 0. (95)

Putting Ω2 = V = ζ in (95) and using (61), we get

− w(U)RicS(Ω1, ζ) + h(Ω1,U)RicS(ζ, ζ) − RicS(κ(ζ, κ(Ω1,U)), ζ) + RicS(κ(Ω1, κ(ζ,U)), ζ)

+ w(Ω1)RicS(U, ζ) − RicS(U,Ω1) = 0. (96)

Using (56) and (73) in (96), we have

RicS(U,Ω1) = (1 − n)h(U,Ω1).

Hence, we can state the following Theorem:

Theorem 5.2. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). If M is Ricci semi-
symmetric with respect to statistical curvature RS, then M is Einstein with respect to Ricci tensor of RS.

Now, let us assume that M is Ricci pseudo-symmetric with respect to RS. Then, from (92) we can write

(RS(Ω1,Ω2) · RicS)(U,V) = −LRicS

{
RicS((Ω1 ∧h Ω2)U,V) + RicS(U, (Ω1 ∧h Ω2)V)

}
, (97)

for all Ω1,Ω2,U,V ∈ Γ(TM(1,0)). Using (91) in (97), we get

−RicS(RS(Ω1,Ω2)U,V) − RicS(U,RS(Ω1,Ω2)V) = −LRic.S

{
RicS(Ω1,V)h(Ω2,U) − RicS(Ω2,V)h(Ω1,U)
+RicS(U,Ω1)h(Ω2,V) − RicS(U,Ω2)h(Ω1,V)

}
.

(98)
Putting Ω2 = V = ζ in (98) and using (56), (61) and (73), we get

RicS(U,Ω1) = (1 − n)h(U,Ω1).

So, we can give the following Theorem:

Theorem 5.3. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). If M is Ricci pseudo-
symmetric with respect to statistical curvature RS, then M is Einstein with respect to Ricci tensor of RS.

5.2. Projectively Flat andΨ-Projectively Semi-Symmetric PS-Statistical Manifolds

Let M be an n-dimensional PS-statistical manifold. Then, the projective curvature tensor PS of M with
respect to the statistical curvature RS is defined by

PS(Ω1,Ω2)Ω3 = RS(Ω1,Ω2)Ω3 −
1

n − 1

{
RicS(Ω2,Ω3)Ω1 − RicS(Ω1,Ω3)Ω2

}
(99)

for all Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)).

Definition 5.4. A PS-statistical manifold is called projectively flat with respect to the statistical curvature RS, if
the projective curvature tensor PS vanishes at each point of the manifold. Also, a PS-statistical manifold is called
ζ-projectively flat with respect to the statistical curvature RS, if PS(Ω1,Ω2)ζ = 0 holds for all Ω1,Ω2 ∈ Γ(TM(1,0)).
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Theorem 5.5. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). Then, M is ζ-
projectively flat with respect to the statistical curvature RS.

Proof. It is obvious from (60), (73) and (99).

Now, let us suppose that M is projectively flat with respect to the statistical curvature RS. Then, since
PS = 0, from (99) we can write

RS(Ω1,Ω2)Ω3 =
1

n − 1

{
RicS(Ω2,Ω3)Ω1 − RicS(Ω1,Ω3)Ω2

}
. (100)

Taking Ω1 = ζ in (100) and using (61), we have

w(Ω3)Ω2 − h(Ω2,Ω3)ζ + κ(ζ, κ(Ω2,Ω3)) − κ(Ω2, κ(ζ,Ω3)) =
1

n − 1

{
RicS(Ω2,Ω3)ζ − (1 − n)w(Ω3)Ω2

}
. (101)

Applying w to (101), from (56) we get

RicS(Ω2,Ω3) = (1 − n)h(Ω2,Ω3).

Thus, we have

Theorem 5.6. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). If M is projectively
flat with respect to statistical curvature RS, then M is Einstein with respect to Ricci tensor of RS.

Definition 5.7. A PS-statistical manifold is called Ψ-projectively semi-symmetric with respect to the statistical
curvature RS, if it satisfies (PS(Ω1,Ω2)Ψ)Ω3 = 0 holds for all Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)).

Finally, let us assume that M is Ψ-projectively semi-symmetric with respect to the statistical curvature
RS. So, from (PS(Ω1,Ω2)Ψ)Ω3 = 0 we can write

PS(Ω1,Ω2)ΨΩ3 −ΨPS(Ω1,Ω2)Ω3 = 0. (102)

Using (99) in (102) and taking Ω1 = ζ, from (61) and (74) we have

−h(Ω2,ΨΩ3)ζ+κ(ζ, κ(Ω2,ΨΩ3))−κ(Ω2, κ(ζ,ΨΩ3))−
1

n − 1
RicS(Ω2,ΨΩ3)ζ−Ψκ(ζ, κ(Ω2,Ω3))+Ψκ(Ω2, κ(ζ,Ω3)) = 0.

(103)
Applying w to (103), from (56) we get

RicS(Ω2,ΨΩ3) = (1 − n)h(Ω2,ΨΩ3). (104)

TakingΨΩ2 instead of Ω2 and using (9), (29), (56) and (72), we obtain

RicS(Ω2,Ω3) + 2
n∑

i=1

{−h(κ(Ω2, κ(Λi,Λi)),Ω3) + w(κ(Ω2, κ(Λi,Λi)))w(Ω3)} = (1 − n)h(Ω2,Ω3). (105)

Hence, we can give the following Theorem:

Theorem 5.8. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). If M isΨ-projectively
semi-symmetric with respect to statistical curvature RS and

n∑
i=1

{h(κ(Ω2, κ(Λi,Λi)),Ω3) − w(κ(Ω2, κ(Λi,Λi)))w(Ω3)} = 0

holds for all Ω2,Ω3 ∈ Γ(TM(1,0)), then M is Einstein with respect to Ricci tensor of RS.
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6. CONCLUSION

One of the fundamental concept in information theory is that of the Fisher-Rao Information Matrix,
which provides us with another measure of the distance between two different probability distributions.
Such a measure endows the statistical manifold with a Riemannian structure. In fact, while the relative
entropy does not define a real distance between distributions (for example, it is not symmetric), it can be
shown that the Fisher-Rao Information Matrix arises as the Hessian of the relative entropy over a stationary
point. The entries of such a matrix are in correspondence with the components of the metric tensor over
the manifold of probability distributions [4].

On the other hand, the role played by differential geometry in statistics was not fully acknowledged
until 1975 when Efron first introduced the concept of statistical curvature for one-parameter models and
emphasized its importance in the theory of statistical estimation. Efron pointed out how any regular
parametric family could be approximated locally by a curved exponential family and that the curvature of
these models measures their departure from exponentiality. It turned out that this concept was intimately
related to Fisher’s theory of information loss. Efron’s formal theory did not use all the bells and whistles of
differential geometry. The first step to an elegant geometric theory was done by Dawid, who introduced a
connection on the space of all positive probability distributions and showed that Efron’s statistical curvature
is induced by this connection. The use of differential geometry in its elegant splendor for the elaboration of
previous ideas was systematically achieved by Amari, who studied the informational geometric properties
of a manifold with a Fisher metric on it. This is the reason why sometimes this is also called the Fisher–
Efron–Amari theory [5]. In the light of these studies, we focused on the curvature tensors of para-Sasakian
(PS) statistical manifolds in terms of differential geometry. We started building this with Theorem 1, which
we have used connections while doing it. In the context of PS geometry there is another connection of
geometric significance which is parallel with respect to the metric and the other tensors defining the contact-
metric strucuture. We have given our results using the connections ∇ and ∇∗ on statistical manifolds. We
have also studied the Ricci tensor of the statistical curvature and studied the cases of the manifold being
Einstein under certain conditions in Theorem 3, Theorem 4 and Theorem 6. We have proved the projective
flatness of the PS-statistical manifold. We believe that the concepts investigated in this work can be also
studied in some new settings. The submanifolds of this subject can be examined as well as the inequality
situation.
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