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Introduction 

The use of Proportional-Integral-Derivation (PID) laws in 
control systems has played an important role after the idea of 
feedback became a great solution for control systems [1]. P, I, 
D actions in feedback can consider present, past and future 
control errors, respectively [1]. PID controller performs the 
minimization of the error signal in feedback control systems.  

The use of PID laws in various nonlinear optimization 
problems have revealed a different and interesting application 
field besides their conventional use for the minimization of 
error signals in control systems. For example, it has been 
presented that the problems related to reaching the global 
minimum can be solved by providing better convergence 
speed by using PID actions in the conventional gradient 
descent algorithm [2]. In another study, a three term 
backpropagation algorithm was developed by adding a 
proportional action to the standard backpropagation 
algorithm, and it was shown to be successful in terms of 
convergence rate and local minimums for artificial neural 
networks training [3]. As a PID control system-like approach, 
stability analyses have been performed for the proposed three 
term backpropagation algorithm and stability conditions have 
also been presented [4]. Later, a problem was defined in terms 
of discrete-time PID actions for the training of neural 
networks and used for estimation error [5]. Also, apart from 
feedback control systems, PID actions were used in adaptive 
parameter settings for the neural networks [6]. There are some 
studies in the literature in which the PID plays a role in various 
optimization methods such as stochastic optimization [7]–[9]. 

In addition to these studies, an effective algorithm has been 
presented for solving nonlinear, unconstrained and multi-
parameter optimization problems using a PID-based optimizer 
system [10]. The PID-based optimizer system is based on 
convergence of the error to zero using a slope-sensitive 
objective function in a closed-loop feedback system [10]. 
Thus, it has been shown that the consideration of the slope 
direction of the objective function increases the convergence 
speed and accuracy of the minimization process [10]. 

In the current study, second-order (quadratic) and third-order 
(cubic) polynomial regression models were obtained by using 
the PID-based optimizer system for the estimation of annual 
apricot production in Malatya. Average of the estimates of 
polynomial models was calculated to improve estimation 
consistency and reliability of these models. Annual apricot 
production estimates for the years 2021-2025 were calculated 
by using these polynomial regression models. The obtained 
results were compared with the 2nd and 3rd order regression 
models obtained using the Matlab curve fitting toolbox [11]. 
Previously, estimates of annual apricot production for Turkey 
were presented using various time series analyses in some 
previous studies [12], [13]. In this study, an application of the 
PID-based optimizer system [10] was demonstrated for the 
polynomial modelling of the annual apricot production data 
from Malatya region. 

The primary aim of this study is to show employment of the 
PID-based optimizer system in data modelling application.  It 
is observed that the results obtained for the 2nd order 
polynomial regression models are satisfactory when compared 
to the results obtained with the Matlab curve fitting toolbox. 
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In this study, a data analysis application for the PID-based optimizer loop, which was previously proposed 
in a former study, is carried out. In this application, quadratic and cubic polynomial regression models 

were obtained for the estimation of annual apricot production by using the yearly total apricot production 

data of Malatya between 1991 and 2020. In addition, an average of these regression model estimations 
was calculated to increase estimation reliability. Annual apricot production amount was estimated by using 

the regression models obtained with the PID-based optimizer system between 2021-2025. The results were 

compared with the results obtained with the Matlab curve fitting toolbox. 
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However, the modelling results indicated that the performance 
of the PID-based optimizer in this modelling application 
depends on initial parameters of the PID system. Another 
point to be reminded here is that more real data are needed for 
more consistent time-dependent of the apricot production. 

Brief Introduction of the PID-Based Optimizer 

System 

In this section, the use of PID (Proportional-Integral-
Derivative) controller as an optimizer in a closed-loop system 
is presented. 

The PID-based optimizer system [10] works to solve 
unconstrained, multi-parameters and nonlinear optimization 

problem for 1 2 3, , ,.., pu u u u R   and 
1 2 3( , , ,.., ) 0pF u u u u   

given as  

1 2 3min ( , , ,.., )pF u u u u   () 

Figure 1 shows a block diagram of PID-based optimizer 
system. The PID controller promises to reduce the error signal 
in the closed-loop control system where r is the reference 
signal and q is the output signal [10]. 

The closed loop control system makes an effort to bring the 

error signal closer to zero by considering the error signal 

e r q= − . The PID controller is given by 

0

( )
( ) ( ) ( )

t

p i d

de t
u t k e t k e t dt k

dt
= + +  () 

where ( )u t  is controller signal, and
pk , ik  and dk  are 

proportional, integral and derivative gains, respectively [14]. 

In feedback control systems, the error signal ( )e t  goes to zero 

when the controller gains are adjusted to optimal values with 
various tuning methods. The PID-based optimizer 
configuration is slightly different from the closed-loop control 
system and is designed as shown in Figure 1 [10]. 

 

Figure 1. A block diagram of the proposed PID optimizer 

system [10]. 

In this configuration, the plant, which is controlled by the PID 
controller in a closed loop control system, is replaced by the 

function ( )E u  which was called a slope sentient function 

model [10]. The function ( )E u  is expressed as  

( )
( ) ( ) ( )

F u
E u F u sign

u


=


  () 

where ( )F u  is an objective function and it is used for 

optimization process [10]. The value of the sign function is 1 
when the slope of the function is positive, and the value of the 
sign function is -1 when the slope of the function is negative. 
The value of the sign function is 0 when the objective function 
arrives at the global minimum points. In this way, the PID-
based optimizer loop in Figure1 can achieve the convergence 
of the objective function’s value to zero such that 

lim ( ( )) 0
t

F u t
→

→ . 

To prove the limitation and convergence of the PID based 
optimizer system, the boundedness of PID optimizer 
dynamics and the strong convergence boundaries were 
explained in detail in [10]. To briefly mention here, the 
objective function is primarily considered as the Lyapunov 
energy function. Thus, it has been shown that if the value of 
the objective function decreases, the value of the derivative of 
the energy function is also negative. As a result, it has been 
proven in [10] that the PID optimizer-based system limits the 
value of the objective function. 

In [10], it was proved by using the discrete final value theorem 

that the error function goes to zero ( lim ( ) 0
n

e n
→

→ ) for the 

discrete time PID based optimizer loop. 

The PID controller to be used in a discrete-time optimizer loop 
can be restated as follows: 

0

( ) ( 1)
( ) ( ) ( )

n

p i s d

i s

e n e n
u n k e n k e n T k

T=

− −
= + +  () 

In Equation (4), sT  is unit time increment, and the discrete 

time parameter n is equal to / st T . The PID optimizer given 

in Figure 1 is generalized as in Figure 2 for multi-parameter 
optimization problems [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Multiparameter discrete PID optimizer system 

[10]. 

A flowchart in Figure 3 is demonstrated for the calculation 
steps which were explained in [10]. 
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The flowchart can be summarized as follows: Firstly, initial 
values, PID parameters and maximum iteration numbers are 
determined. PID parameters are determined by trial-and-error 
method. Then, the slope sentient function models are 
calculated, and the outputs of all loops are obtained. The error 
functions are calculated by multiplying -1 with the outputs 
over the feedback. Then, the outputs of the discrete time PID 
optimizer are calculated by using (4) for all loops. If the 
stopping conditions are satisfied, the algorithm ends, 
otherwise it returns to the calculation of slope sensitive 
function models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart of the PID-based optimizer system. 

Estimation of the Annual Production Regression 

Models of Malatya’s Apricot 

In this section, polynomial models for estimation of Malatya 
region apricot production are obtained by using PID-based 
optimizer as nonlinear multi-parameter optimization. 

To that end, annual apricot production data given in Table 1 
are used. These data are taken from [15]  for the years 1991-
2004, from [16] for the years 2005-2009 and from [17] for the 
years 2010-2020. Using these real data given in Table 1, 
second order and third order polynomial regression models are 
obtained. Also, the robustness and reliability of the estimated 
data is improved by average of these polynomial models’ data. 
In addition, the results, which are obtained with the PID-
optimizer system, are compared with the results obtained by 
using the Matlab curve fitting toolbox [11]. 

 

 

Table 1. Apricot production between 1991-2020. 

Year Production 

(x103 tons) 

Year Production 

(x103 tons) 

1991 154 2006 243 

1992 161 2007 268 

1993 94 2008 363 

1994 263 2009 340 

1995 132 2010 221 

1996 84 2011 410 

1997 144 2012 510 

1998 297 2013 412 

1999 166 2014 39 

2000 331 2015 336 

2001 268 2016 381 

2002 122 2017 673 

2003 217 2018 401 

2004 350 2019 392 

2005 500 2020 352 

 

Second-order Polynomial Regression Model 

Second-order (quadratic) polynomial regression model is 

given by 

2y ax bx c= + +   () 

To calculate the coefficients of the second-order regression 
model, one can solve the following minimization problem 
[10] by using the years and production data in Table 1. 

2 2

{ , , }
1

1
min ( , , ) ( )

2

n

i i i
a b c

i

F a b c ax bx c y
=

= + + −  () 

where ix  is the year vector [ 1991,1992, …., 2020] and iy is 

the production vector [154, 161, …, 352] listed in Table 1. In 
addition, the initial values of polynomial coefficients [a0, b0, 
c0] are set to be [0,0,0]. According to initial configuration of 
PID optimizer, algorithm can converge to minimum in 100000 
iterations and the value of objective function does not change 
significantly. Therefore, maximum iteration number is set to 
100000. Since the values of the year vectors are large values 
to solve this numerical optimization, the years data are set to 
appropriate values by applying in the form of ( )mini ix x x= −

. The PID parameters [ , , ]p i dk k k  are set to be [9e-17, 6e-9,9e-

17].  

Calculating the slope sentient function ( )E u  and the error 

signal for each iteration, the PID-based optimizer system 
works to reach the optimal coefficients of the quadratic 
regression model.  

The following 2nd order polynomial model is obtained with 
the PID optimizer system considering ( )mini ix x x= − . 

20.1807 15.5039 114.2005y x x= − + +  () 

Then, the 2nd order polynomial model in Equation (8) is found 
with the Matlab curve fitting toolbox. 

        Set initial values             

u= {u1, u2, u3,…}, iteration 

number and kp, ki, kd 

Calculate output qi (u1, u2, 

u3,…)=E(u1, u2, u3,…) in Eq. (3) 

Calculate error signal       

ei(n)=-qi (u1, u2, u3,…)  

Stop condition 

(Max iteration) 

Stop 

Calculate ui(n) in Eq. (4) 

No 

Yes 
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 20.1376 14.16 121.4y x x= − + +  () 

In Figure 4, 2nd order polynomial model curves, which are 
obtained by the PID optimizer system and the Matlab curve 
fitting toolbox, and the real data are presented comparatively. 
Also, this figure shows the estimated data for the years 2021-
2025. The estimated data for 2nd order polynomial models are 
given in Table 2. To evaluate data modelling performance, the 
performance criteria RMSE and MAE are calculated and 
listed in Table 3. One can say that the PID optimizer-based 
system performs as well as Matlab curve fitting toolbox when 
Tables 2 and 3 are analysed. 

Figure 5 indicates the residuals of 2nd order polynomial 
models obtained by the PID optimizer system and Matlab 
curve fitting toolbox. It can be concluded that the deviations 
of the PID optimizer system and the Matlab curve fitting 
toolbox are almost the same. Here, it can be stated that the PID 
optimizer system will be more successful by choosing more 
optimal values for the PID parameters [ , , ]p i dk k k . 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparisons of real data with 2nd order 

polynomial models obtained with PID Optimizer system and 

Matlab curve fitting toolbox. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Plots of residuals for 2nd order polynomial models 

obtained with PID optimizer system and Matlab curve 

fitting toolbox. 

Third-order Polynomial Regression Model 

Third-order (cubic) polynomial regression model is given by 

3 2y ax bx cx d= + + +   () 

To estimate the coefficients of the third-order regression 
model, the minimization problem can be expressed as:  

3 2 2

{ , , , }
1

1
min ( , , , ) ( )

2

n

i i i i
a b c d

i

F a b c d ax bx cx d y
=

= + + + −  () 

To solve this optimization problem by using the real data 
given in Table 1, the initial values [a0, b0, c0, d0] are set to be 
[0,0,0,0] and the maximum number of iterations is taken as 
100000. The PID parameters [ , , ]p i dk k k  are set to be [1e-9, 9e-

9,20e-10]. 

As in the 2nd order polynomial model estimation, a bias value 
normalization in the form of ( )mini ix x x= −  is considered, 

since the year values are large for the optimization process. 
Using PID-based optimizer system, third order polynomial 
model is obtained as  

3 20.0052 0.0061 13.8659 93.5877y x x x= − + + +  () 

Also, using Matlab curve fitting toolbox, the third order 
polynomial model is found as  

3 20.0103  0.3117 9.036  132.7y x x x= − + + +  () 

Comparisons of the third order polynomial models given in 
Equations (11) and (12) and the estimated data for the years 
2021-2025 are demonstrated in Figure 6. In addition, 
estimated apricot productions are given in Table 2. 
Considering evaluation of the regression models according to 
performance criteria in Table 3, the third order polynomial 
model obtained with the PID optimizer system is slightly 
different from Matlab curve fitting results.  

 

 

 

 

 

 

 

 

 

Figure 6. Comparisons of real data with 3rd order 

polynomial models obtained with PID Optimizer system and 

Matlab curve fitting toolbox. 

The third order polynomial model obtained with Matlab curve 
fitting has lower RMSE and MAE values. Here, it is clear that 
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the PID parameters [ , , ]p i dk k k  used for the PID optimizer 

system need better settings. Therefore, the hyper-parameter 
optimization of the PID-based optimizer was suggested as a 
future study [10]. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Plots of residuals for 3rd order polynomial models 

obtained with PID optimizer system and Matlab curve 

fitting toolbox. 

Figure 7 shows the graphs of the residuals of 3rd order 
polynomial models obtained with the PID optimizer system 
and Matlab curve fitting toolbox. One can state that the 
deviations of the PID optimizer system for negative residual 
values are smaller than the deviations of the Matlab curve 
fitting toolbox. 

Average of the Second-order and the Third-
order polynomial models 

In this subsection, we used ensemble averaging of the second 
and the third order polynomial models to improve consistency 
in the apricot production estimations. Taking average of 
several estimations from different models can decrease 
estimation errors when they are randomly distributed. The 
averaging  estimates of models was also discussed for data 
modelling in [18]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparisons of real data with 3rd order 

polynomial models obtained with PID optimizer system and 

Matlab curve fitting toolbox and average of polynomial 

models. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Plots of residuals for 3rd order polynomial models 

obtained with PID optimizer system and Matlab curve 

fitting and average of polynomial models. 

Figure 8 shows results of the 3rd order models obtained with 
PID optimizer and Matlab curve fitting and the average of the 
second and the third order polynomial models. The average 
estimated data for the years 2021-2025 are demonstrated with 
dashed lines in the figure and listed in Table 2. RMSE and 
MAE values are given in Table 3. Considering the RMSE and 
the MAE values, it is observed that the average of the 
polynomial models is closer to the 3rd order polynomial 
model obtained with Matlab curve fitting and this indicates 
performance improvements of ensemble average models. 
Figure 8 clearly shows that averaging models from PID 
optimizers can be used to improve 3rd order estimation 
performance. The residuals of the 2nd and 3rd order 
polynomial models and average of these models are illustrated 
in Figure 9.  

 

Table 2. Estimated Data of the Polynomial Models 

Year 

Production (x103 tons) 

2nd 

order 

curve 

fitting 

2nd 

order 

PIDO 

3rd 

order 

curve 

fitting 

3rd 

order 

PIDO 

Average 

of 

estimate 

PIDO 

2021 422 417 405 374 395 

2022 428 421 405 373 397 

2023 434 425 403 372 399 

2024 439 429 399 370 399 

2025 444 432 394 366 399 

 
 

Table 3. Evaluation of the Polynomial Models 

 

2nd 

order 

curve 

fitting 

2nd 

order 

PIDO 

3rd 

order 

curve 

fitting 

3rd 

order 

PIDO 

Average 

of 

estimate 

PIDO 

RMSE 110.5 110.54 110.37 113.15 111.18 

MAE 80.84 80.59 79.27 82.19 80.64 
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Conclusions 

In this study, the PID-based optimizer system was used to 
estimate the annual production of Malatya’s apricot. Second 
order and third order polynomial regression models were 
obtained with the PID-based optimizer system and compared 
with the polynomial models which are obtained with the 
Matlab curve fitting toolbox. Also, the average of the 
polynomial models obtained with PID-based optimizer are 
calculated. As a result, the second order polynomial regression 
model is as successful as the Matlab curve fitting toolbox’s 
model. However, the third-order polynomial regression model 
needs to be improved. To improve the performance of the third 
order polynomial regression model, the PID parameters 
should be optimally chosen by considering each loop of the 
PID-based optimizer system. This issue can be addressed in a 
future study.  
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