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Abstract. We investigate the approximate l-state solutions of the Schrödinger

equation for Hulthn plus a class of Yukawa potential. In this context, we con-
struct the bound-state energy equation and the wave function expressed by the

Gauss hypergeometric function by means of asymptotic iteration approach in

detail.

1. Introduction

Bound state solutions of the Schrödinger equation for a quantum system inter-
acting with spherical symmetric potential models are among the most important in
various fields of physics. The l-state solutions of the non-relativistic wave equation
for exponential potentials especially are of great interest in literature[1, 2, 3, 4].
Under consideration of this problem, it cannot be possible to obtain analytical
solutions without approximations. For this reason, approximations and their ap-
plications are essential in quantum mechanical models. In the present work, we
choose the proper approximate expression for investigating of analytical solutions.
Asymptotic iteration method proposed by Ciftci et al. [5, 6, 7] is a powerful tool for
solving second-order homogeneous linear differential equation. This method gives
a precise way to probe the bound state solutions of the Schrödinger wave equation
for any l-state. In this context, the purpose of this work is to apply the asymptotic
iteration approach to investigate the non-relativistic treatment of Hulthn plus a
class of Yukawa potential.
A combination of two potentials has aroused extensive research interest in liter-
ature. Many researchers have adopted this type of potential to carry out some
works[8, 9, 10, 11, 12, 13, 14, 15]. Motivated by these works, we consider the fol-
lowing form of potential model which is the superposition of Hulthn[16] and a class
of Yukawa[17] potentials
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V (r) = −2αZe2e−2αr

1− e−2αr
− Ae−αr

r
− Be−2αr

r2
(1.1)

where the parameter Z denotes the atomic number. α is the screening parameter
which determines the range of potential, A and B are the coupling strengths of
the potential. Hulthn plus a class of Yukawa potential has been newly proposed by
Ahmadov et al.[15]. Bound state solutions of the Dirac equation under the spin and
pseudospin symmetries for this potential including Coulomb-like tensor interaction
have been presented in [15]. As far as we know, no report has been made so far in lit-
erature employing this combined potential within the framework of non-relativistic
theory. For this reason, we focus on studying the model of a quantum system with
Hulthn plus a class of Yukawa potential by means of asymptotic iteration method.

2. Overview of the asymptotic iteration method

The purpose of this section is to briefly outline the asymptotic iteration approach
used to solve the second-order differential equations. The details of this approach
have been reported in [5, 6, 7]. We start with the approach by writing a general
form of the second-order differential equation

y
′′

(r) = λ0 (r) y
′
(r) + s0 (r) y(r) (2.1)

where λ0(r) and s0(r) functions in C∞(a, b) are sufficiently differentiable. The
general solution of Equation (2.1) can be obtained in the following form

y (r) = exp(−∫rα(r′)dr′)
[
C2 + C1∫r exp

(
∫r

′
[λ0(τ) + 2α(τ)] dτ

)
dr′
]

(2.2)

For sufficiently large k,
sk(r)

λk(r)
=
sk−1(r)

λk−1(r)
= α(r) (2.3)

in which
λk (r) = λ

′

k−1 (r) + sk−1 (r) + λ0(r)λk−1 (r)

sk (r) = s
′

k−1 (r) + s0 (r)λk−1 (r) (2.4)

If the eigenvalue problem has exact analytical solutions, the termination condition
Equation (2.3), or equivalently

δk (r) = λk (r) sk−1 (r)− λk−1 (r) sk (r) = 0 (2.5)

produces, at each iteration, an expression that is independent of r. It is noted
that k displays the iteration number. Physically meaningful solution of Equation
(2.1) is provided by the first term of Equation (2.2) not the second term, so we can
use the first term as the wave function generator

y (r) = C2exp

(
−
∫ r sk (r′)

λk (r′)
dr′
)

(2.6)

in which C2 denotes the integrant constant which can be determined by normaliza-
tion.

There is also an alternative way to determine the wave function within the frame-
work of AIM. The following second-order homogeneous linear differential equation
allows us to find the wave function

y
′′

= 2

(
axN+1

1− bxN+2
− (m+ 1)

x

)
y′ − wxN

1− bxN+2
y (2.7)
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in which N=-1,0,1. . . and a , w , m are the real numbers which are to be
determined. The general solution of Eq.(2.7) is found in the following form

yn (x) = (−1)
n
C2(N + 2)

n
(µ)n2F1

(
−n, t+ n; µ; bxN+2

)
(2.8)

where (µ)n = Γ(µ+n)
Γ(µ) , µ= 2m+N+3

N+2 , t = (2m+1)b+2a
(N+2)b and 2F1 denotes to the Gauss

hypergeometric function being defined as

2F1 (−n, b, c, x) =

n∑
k=0

(−n)k(b)kx
k

(c)kk!

the Pochhammer symbol (α)k is defined by (α)0 = 1 and (α)k = α (α+ 1) (α+ 2) . . .

L (α+ k − 1) = Γ(α+k)
Γ(α) for k = 1, 2, 3 . . . It should be mentioned that the details

concerning AIM can be found in [5, 6, 7].

3. Bound state solutions of Hulthn plus a class of Yukawa potential
in approximate analytic form

Firstly, we focus on the separation of variables for the Schrödinger equation. The
motion of a particle in central potential field is described in non-relativistic theory
as follows [

− }2

2µ
∇2 + V (r)

]
ψ (−→r ) = Eψ (−→r ) (3.1)

where E and µ define non-relativistic energy and reduced mass, V (r) is the central
potential, } is the Planck constant.
The following expression is the Laplace operator in three dimensions

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2(sinθ )
2

∂2

∂ϕ2
(3.2)

We employ a form of the total spherical wave function as

ψ (r, θ, ϕ) =
R (r)

r
Y ml (θ, ϕ) (3.3)

where R(r) and Y ml (θ, φ) are the radial wave function and the spherical harmonics.
The way of separating variables has been applied to Schrödinger equation. Based
on this way, we obtain the non-relativistic wave equation with respect to R(r)

d2R(r)

dr2
+

[
2µ

}2
(E − V (r))− l (l + 1)

r2

]
R (r) = 0 (3.4)

When inserted Equation (1.1) into Equation (3.4), the radial Schrödinger wave
equation becomes

d2R(r)

dr2
+

[
2µ

}2

(
E −

(
−2Ze2αe−2αr

(1− e−2αr)
− Ae−αr

r
− Be−2αr

r2

))
− l (l + 1)

r2

]
R (r) = 0

(3.5)
Equation (3.5) cannot be solved analytically for any l-state because of the centrifu-
gal term. Therefore, to solve this equation, we need to use an approximation of the
following form

1

r
≈ 2αe−αr

(1− e−2αr)
,

1

r2
≈ 4α2e−2αr

(1− e−2αr)
2 (3.6)

This scheme is called as the Greene-Aldrich approximation[18] which is only suit-
able for a short range (small α) potential. If we apply this approximation and
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transformation x = e−2αr to Equation (3.5), then we can rewrite the radial wave
equation in non-relativistic theory

d2R(x)

dx2
+

1

x

dR(x)

dx
+

[
−γ

2

x2
+

β2

x (1− x)
− σ2

(1− x)
2 −

l(l + 1)

x(1− x)
2

]
R (x) = 0 (3.7)

In Equation (3.7), we take the abbreviations as

β2 =
µ (V0 + V ′0)

2α2}2
, γ2 = − µE

2α2}2
, σ2 = − µB′

2α2}2
(3.8)

For simplicity, we take as V0 = 2αZe2, V ′0 = 2Aα and B′ = 4Bα2 in above
expressions. By analyzing the asymptotic behaviour of Equation (3.7) at the origin
and infinity, we can propose the wave function in terms of R(x)

R (x) = xγ(1− x)
δ+1

f(x) (3.9)

with

δ = −1

2
+

√
1 + 4σ2 + 4l(l + 1)

2
(3.10)

After taking the proposed wave function given in Equation (3.9) and inserting this
into Equation (3.7), we obtain the second-order homogeneous linear differential
equation as

d2f(x)

dx2
=

[
(2γ + 2δ + 3)x− (2γ + 1)

x(1− x)

]
df(x)

dx
+

[
(2γ + 1) (δ + 1)− β2 + l(l + 1)

x(1− x)

]
f(x)

(3.11)

This equation is convenient to apply the asymptotic iteration approach. Compar-
ison of Equation (3.11) and Equation (2.1) gives the values of λ0 and s0. With
Equation (2.4), it is then easy to obtain the values of λn(x) and sn(x) in the fol-
lowing forms

λ0 =
(2γ + 2δ + 3)x− (2γ + 1)

x(1− x)

s0 =
(2γ + 1) (δ + 1)− β2 + l(l + 1)

x(1− x)

λ1 =
(2γ + 2δ + 3)x

x(1− x)
− (2γ + 2δ + 3)x− (2γ + 1)

x2 (1− x)
+

(2γ + 2δ + 3)x− (2γ + 1)

x(1− x)
2

+
(1 + δ) (2γ + 1) + l (l + 1)− β2

x (1− x)
+

((2γ + 2δ + 3)x− (2γ + 1))
2

x2(1− x)
2

s1 = − (1 + δ) (2γ + 1) + l (l + 1)− β2

x2 (1− x)
+

(1 + δ) (2γ + 1) + l (l + 1)− β2

x(1− x)
2

+

(
(1 + δ) (2γ + 1) + l (l + 1)− β2

)
((2γ + 2δ + 3)x− (2γ + 1))

x2(1− x)
2

... (3.12)

To calculate the radial energy eigenvalues, we employ the termination condition
given by Equation (2.3). Thus, these energy eigenvalues are obtained as

s0

λ0
=
s1

λ1
⇒ γ0 = − l(l + 1)−β2 + δ + 1

2 (δ + 1)
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s1

λ1
=
s2

λ2
⇒ γ1 = − l(l + 1)−β2 + 3δ + 4

2 (δ + 2)

s2

λ2
=
s3

λ3
⇒ γ2 = − l(l + 1)−β2 + 5δ + 9

2 (δ + 3)

... (3.13)

Based on the preceding expressions, we can generalize in the following form

γn = − l(l + 1)−β2 + (2n+ 1)δ + (n+ 1)
2

2 (δ + n+ 1)
, n = 0, 1, 2, . . . (3.14)

Substituting the values of γ, β and σ given in Equation (3.8) and the value of δ
given in Equation (3.10) into Equation (3.14), it can be built as

E = −2α2}2

µ

 µ
}2α

(
Ze2 +A

)
− l (l + 1)−

(
n2 + n+ 1

2

)
− (2n+ 1)

√
1
4
− 2µB

}2 + l (l + 1)

2n+ 1 + 2
√

1
4
− 2µB

}2 + l (l + 1)

2

(3.15)

Thus, we find the energy spectrum for Hulthn plus a class of Yukawa potential in
spherical coordinates. By comparing with Equation (3.11) and Equation (2.7) and
following expressions below Equation (2.8), we can easily find as

b = 1, N = −1, a = δ + 1,m = 2γ − 1

µ = 2γ + 1, t =2γ + 2δ + 2 (3.16)

Directly the function of f(x) can be obtained from Equation (2.8) with the substi-
tution of Equation (3.16) in the following form

f (x) = (−1)
n
C2(2γ + 1)n2F1 (−n, 2γ + 2δ + 2 + n; 2γ + 1 ;x ) (3.17)

If we put Equation (3.17) into Equation (3.9), we can obtain the unnormalized
radial wave function for Hulthn plus a class of Yukawa potential

R (x) = (−1)
n
C2(2γ + 1)n(1− x)

δ+1
xγ

× 2F1 (−n, 2γ + 2δ + 2 + n; 2γ + 1 ;x ) (3.18)

Then, substituting x = e−2αr into Equation (3.18), we write the unnormalized
radial wave function for considered potential with respect to r

R (r) = (−1)
n
C2(2γ + 1)n

(
1− e−2αr

)δ+1
e−2αγr

× 2F1

(
−n, 2γ + 2δ + 2 + n; 2γ + 1 ; e−2αr

)
(3.19)

in which C2 is the integration constant.

4. Conclusion

We consider Hulthn plus a class of Yukawa potential because of the impor-
tance of the combined potentials. In this connection, bound state solutions of the
Schrödinger equation have been established for any l-state within the framework
of asymptotic iteration method. To achieve this, we apply a proper approximation
scheme which is called as Greene-Aldrich approximation. Therefore, we construct
the energy eigenvalues and unnormalized wave function in approximate analytic
form. We note that the theoretical results obtained for the considered potential
may shed light on the applications in different fields.
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