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Abstract. In this paper, a useful matrix approach for high-order linear
Fredholm integro-differential equations with initial boundary conditions
expressed as Lucas polynomials is proposed. Using a matrix equation
which is equivalent to a set of linear algebraic equations the method
transforms to integro-differential equation. When compared to other
methods that have been proposed in the literature, the numerical results
from the suggested technique reveal that it is effective and promising.
And also, error estimation of the scheme was derived. These results were
compared with the exact solutions and the other numerical methods to
the tested problems.
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1 Introduction

Integro-differential equations (IDEs), which are a combination of differential and
Fredholm-Volterra integral equations are of interest to researchers. This arises
frequently in many applied areas, which include biology, astronomy, engineering,
chemistry, physics, mechanics, economics, etc. [1–5]. Several numerical methods
are used to solve the mentioned integro-differential equations. Such as, Adomian
decomposition, Taylor and Euler collocation, Bessel, Legendre polynomial meth-
ods, etc. [6–13], were used. A matrix-collocation approach for fractional partial
IDEs has been presented by Aslan et al. [14]. The approximate solutions of func-
tional IDEs with variable delay relying on Lucas polynomials have been provided
by GÃĳmgÃĳm et al. [15]. Also, many authors have research for numerical so-
lutions of the partial IDEs [16–18]
The aforementioned techniques are updated and developed for solving the mth
order linear FIDE and FIDE with piecewise intervals in this article using the
matrix relationships between the Lucas polynomials and their derivatives. The
equation that we are going to investigate is

m∑
k=0

Pk(t)y
(k)(t) = g (t) +

bf∫
af

Kf (t, s) y (s) ds (1)

under the mixed conditions

m−1∑
k=0

(
asky

(k) (a) + bsky
(k) (b) + csky

(k) (c)
)
= λs, s = 0, 1, ...,m− 1 (2)

where Pk (t) and g (t) are functions defined on the interval a ≤ t ≤ b; ask, bsk,
csk and λs are appropriate constants; y(t) is an unknown solution function to
be determined.
For our purpose, we assume the approximate solution of the problem Eq.(1) âĂŞ
Eq.(2) in the truncated Lucas polynomials form

y(t) ∼= yN (t) =

N∑
n=0

an Ln(t), −1 6 t 6 1 (3)

where an, n = 0, 1, 2, ..., N are unknown coefficients to be determined and Ln(t)
indicates the Lucas polynomials which are originally studied in 1970 by Bicknell.
Lucas polynomials are defined recursivelly as follows [19–21].

Ln+1 (t) = tLn (t) + Ln−1 (t) , n > 1, L0 (t) = 2, L1 (t) = t. (4)

Their explicit form for n > 1 is

Ln(t) =

n
2∑

n=0

n

n− k

(
n− k
k

)
tn−2k (5)
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where x is the largest integer smaller than or equal to x.
By using Eq.(4) and Eq.(5) the first Lucas polynomials respectively are given by

L0(t) = 2, L1(t) = t, L2(t) = t2 + 2, L3(t) = t3 + 3t,

L4(t) = t4 + 4t2 + 2, L5(t) = t5 + 5t3 + 5t, L6(t) = t6 + 6t4 + 9t2 + 2,

2 Materials and Methods

2.1 Matrix Relations

The following process is used in this section to convert the expressions defined in
Eq.(1) and Eq.(2) into matrix forms: First, the derivatives of the function y(t)
defined by Eq.(3) can be expressed in matrix form.

y (t) ∼= yN (t) = L (t)A L (t) = T (t)DT (6)

where

L (t) = [L0 (t) L1 (t) · · · LN (t)] , A = [a0 a1 · · · aN ]
T

T (t) =
[
1 t t2 · · · tN

]
. If N is odd,

D =



2 0 0 0 0 0 · · · 0

0
1

1

(
1
0

)
0 0 0 0 · · · 0

2

1

(
1
1

)
0

2

2

(
2
0

)
0 0 0 · · · 0
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3

2
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2
1

)
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0 0 · · · 0
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.
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N−1

(N−1
2

)

 N−1
2

N−1
2

 0 N−1

(N+1
2

)

 N+1
2

N−3
2

 0 · · · · · · N−1

( 2N−2
2

)

(
2N−1

2
0

)
0

0 N

(N+1
2

)

 N+1
2

N−1
2

 0 N

(N+3
2

)

 N+3
2

N−3
2

 · · · · · · 0 N
N

(
N
0

)



and if N is even,

D =


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2

)

 N+2
2

N−4
2

 · · · · · · 0 N−1
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(
N − 1

0
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N

(N
2

)

(
N
2
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2

)
0 N

(N+2
2

)

 N+2
2

N−2
2

 0 · · · · · · N

( 2N
2

)

(
2N
2
0

)
0



From the matrix relations Eq. (6), it follows that

yN (t) = T (t)DTA, (7)
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Besides, the relation between the matrix T(t) and its derivatives are

T(k) (t) = T (t)Bk

where

B =


0 1 0 · · · 0
0 0 2 · · · 0
...
...
...
. . .

...
0 0 0 0 N
0 0 0 0 0

 B0 =


1 0 0 · · · 0
0 1 0 · · · 0
...
...
...
. . .

...
0 0 0 · · · 0
0 0 0 · · · 1


By using Eq.(6)-(7), we have the matrix relation

y
(k)
N (t) = T (t)BkDTA, k = 0, 1, 2, . . . (8)

Additionally, the kernel function Kf (t, s) in Eq.(1) is constructed in matrix form
as follows

Kf (t, s) = T(t)KfT(s)
T (9)

where Kf = K = [kmn] , m, n = 0, 1, ..., N

kmn =
1

m!n!
.
∂m+nK (0, 0)

∂tm∂sn

b∫
a

Kf (t, s) y (s) ds = T(t)KfQfD
TA (10)

where

Qf =
[
qfmn

]
=

b∫
a

TT (s)T(s)ds,

qfmn =
bm+n+1 − am+n+1

m+ n+ 1

}
m,n = 0, 1, . . . , N

To obtain the Lucas polynomial solution of Eq.(1) in the form Eq.(3) we firstly
compute the Lucas coefficients by means of the collocation points defined by

ti = a+
b− a
N

i, i = 0, 1, . . . , N.

The following steps are taken to obtain the matrix equation system:

m∑
k=0

Pk (ti) y
(k) (ti) = g (ti) +

b∫
a

Kf (ti, si) y (si) ds (11)
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It is constructed the fundamental matrix equation corresponding to the FIDEs,
by substituting the matrix relations Eq.(8)-(10) into Eq.(1):

m∑
k=0

Pk (ti)T (ti)B
kDTA = g (ti) + T(ti)KfQfD

TA (12)

or briefly,
m∑

k=0

PkTBkDTA−TKfQfD
TA = G (13)

where

Pk =


Pk (t0) 0 · · · 0

0 Pk (t1) 0
...

... · · ·
. . . 0

0 · · · 0 Pk (tN )

 , T =


T (t0)
T (t1)

...
T (tN )

 G =


g (t0)
g (t1)
...

g (tN )

 , A =


a0
a1
...
aN

 ,
Besides, the fundamental matrix equation Eq.(13) can be expressed in the form

WA = G ⇔ [W : G] (14)

where

W =

m∑
k=0

PkTBkDT −TKfQfD
T = [wmn] ; m,n = 0, 1, . . . N.

Now we can obtain the corresponding matrix form for the initial conditions
Eq.(2), by means of the relation Eq.(8),

UsA = λs ⇔ [Us : λs] ; s = 0, 1, . . .m− 1. (15)

such that

Us =

m−1∑
k=0

(askT (a) + bskT (b) + cskT (c))BkDTA =
[
us0 us1 · · · usN

]
(16)

After substituting any m rows of the augmented matrix (14) with the m row
matrices (16), we finally get the new matrix as the answer to the problems
(1)-(2).

W̃ A = G̃ ⇒
[
W̃ : G̃

]
(17)

In Eq.(17), if rankW̃ = rank
[
W̃ : G̃

]
= N +1 , then the coefficient matrix A

is uniquelly determined and the solution of the problem Eq.(1)-(2) is obtained
as

yN (t) = L(t)A = T(t)DTA
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3 Residual Error Analysis

By employing the residual correction method, we build an error estimation strat-
egy for the Lucas polynomial approximations of the problem Eq.(1)-(2), and we
then use this technique to improve the approximation.
To begin with, the residual function of the method is

RN (t) = L [yN (t)]− g (t) (18)

where L [yN (t)] ∼= g(t) and yN (t) is the Lucas polynomial solution Eq.(3) of the
problems Eq.(1)-(2). For t = tl ∈ [−1, 1], l = 0, 1, 2, . . . ; RN (tl) ≤ 10−kl

(kl is any positive integer). When the difference RN (tl) at each point is lower
than the recommended 10−kl , the truncation limit N is increased.
Further, the error function eN (t) can be determined as

eN (t) = y(t)− yN (t) (19)

where y(t) is the exact solution of the problem Eq.(1)-(2). From Eqs.(1), (2),
(18) and (19), we obtain the system of the error differential equations

L[eN (t)] = L[y(t)]− L[yN (t)] = −RN (t) (20)

and the error problem

m∑
k=0

Pk(t)e
(k)
N (t)−

bf∫
af

Kf (t, s) eN (s) ds = −RN (t)

e
(k)
jN (a) = 0, j = 1, 2, . . . J, k = 0, 1, . . .m− 1 (21)

The error problem Eq.(21) can be settled by using the presented method in
Section 2. So, we obtain the approximation eN,M (t) to eN (t) as follows:

eN,M (t) =

M∑
n=0

a∗NLN (t), M > N, j = 1, 2, . . . J. (22)

As a result, using the polynomials yN (t) and eN,M (t), the corrected Lucas poly-
nomial solution yN,M (t) = yN (t) + eN,M (t) is achieved. Additionally, the error
function eN (t) = y(t)−yN (t), the estimated error function eN,M (t) and the cor-
rected error function EN,M (t) = eN (t) − eN,M (t) = y(t) − yN,M (t) constructed
[21–24].

4 Numerical Illustrations

In order to demonstrate the correctness and efficiency of the procedure, some
numerical examples of the problem Eq. (1) are provided in this section.
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Example 4.1. [25] Let us first consider the third-order linear FIDE

y′′′ (t)− y (t) = −3t2 − 5t+ 2 + 5

1∫
−1

(ts+ t2s2)y (s) ds+ 12

0∫
−1

(t+ s)y (s) ds

+4

1∫
0

(ts)y (s) ds+ 12

1
2∫

−1
2

y (s) ds

−1 ≤ t, s ≤ 1 with the initial conditions y(0) = y′(0) = 0, y′′(0) = 2.

We approximate the solution y(t) by the polinomial

y(t) = yN (t) =

3∑
n=0

anLn(t), −1 ≤ t ≤ 1

P3 (t) = 1, P2 (t) = P1 (t) = 0, P0 (t) = −1, g (t) = −3t2 − 5t+ 2
K1 (t, s) = 5(ts+ t2s2), K2 (t, s) = 12(t+ s), K3 (t, s) = 4ts, K4 (t, s) = 12

and the collocation points for a = −1, b = 1 and N = 3 are computed as{
t0 = −1, t1 = −1

3
, t2 =

1

3
t3 = 1

}
.

Following the procedure in Section2, the fundamental matrix equation of the
given equation becomes

3∑
k=0

PkTBkDTA−TKfQfD
TA = G 1 ≤ f ≤ 4.

where

P0 =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , P3 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , T =


1 −1 1 −1

1 − 1
3

1
9 −

1
27

1 1
3

1
9

1
27

1 1 1 1

 ,

B0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , B =


0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

 , B3 =


0 0 0 6

0 0 0 0

0 0 0 0

0 0 0 0

 , DT =


2 0 2 0

0 1 0 3

0 0 1 0

0 0 0 1

 ,
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K1 =


0 0 0 0

0 5 0 0

0 0 5 0

0 0 0 0

 , Q1 =


2 0 2

3 0

0 2
3 0 2

5

2
3 0 2

5 0

0 2
5 0 2

7

 , K2 =


0 12 0 0

12 0 0 0

0 0 0 0

0 0 0 0

 , Q2 =


1 −1

2
1
3
−1
4

−1
2

1
3
−1
4

1
5

1
3
−1
4

1
5
−1
6

−1
4

1
5
−1
6

1
7

 ,

K3 =


0 0 0 0

0 4 0 0

0 0 0 0

0 0 0 0

 , Q3 =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 , K4 =


0 0 0 0

0 4 0 0

0 0 0 0

0 0 0 0

 , Q4 =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 ,

W =



22

3
−13

3

34

3
−43

5

−146

27
−37

9
−56

27
−1183

135

−650

27
−35

9
−650

27
−217

27

−146

3
−11

3
−164

3
−41

5


,G =



4

10

3

2.22e− 16

−6


The augmented matrix for this fundamental matrix equation is

[
W̃ ; G̃

]
=



22

3
−13

3

34

3
−43

5
; 4

2 0 2 0 ; 0

0 1 0 3 ; 0

0 0 2 0 ; 2


Solving this system, A is obtained as A = [−1 0 1 0]

Thus, the solution of the problem becomes

y3(t) = t2

which is the exact solution. Thus, it can be seen that the current approach is
precise, effective, and useful.
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Example 4.2. [25] Let us consider the another third-order linear FIDE

y′′′ (t) = et − t

2
− 4

1
4∫

0

e(t+s)y (s) ds+

1
2∫

0

tesy (s) ds−
1∫

0

e(s−t)y (s) ds

0 ≤ t, s ≤ 1 with the initial conditions y(0) = 1, y′(0) = −1, y′′(0) = 1.

Following the procedure, for different values of N the polynomial solution is
obtained as follows:

y4(t) = 0.03686t4 − 0.16666t3 + 0.5t2 − t+ 1

y8(t) = 1.82∗10−5t8−0.00019t7+0.00138t6−0.00833t5+0.04167t4−0.16667t3+0.5t2−t+1

y10(t) = 1.99 ∗ 10−7t10 − 2.64 ∗ 10−6t9 + 0.00002t8 − 0.00020t7 + 0.00139t6

−0.00833t5 + 0.04167t4 + 0.16667t3 + 0.5t2 + t+ 1

which are the approximate solution expanded for N = 4, 8, 10 as y(t) = e−t

From Eq. (18)

R7(t) =

m∑
k=0

Pk(t)y
(k)
7 (t)−

bf∫
af

Kf (t, s) y7 (s) ds− g(t)

we construct the error problem

m∑
k=0

Pk(t)e
(k)
7 (t)−

bf∫
af

Kf (t, s) e7 (s) ds = −R7 (t)

e
(k)
j7 (a) = 0, j = 1, 2, . . . J, k = 0, 1, . . .m− 1

The error problem is solved for the truncated limited M = 8 and we obtain the
approximation

e7,8(t) = 1.82∗10−5t8−4.19∗10−5t7+3.69∗10−5t6−1.51∗10−5t5+2.66∗10−6t4−2.13∗10−7t3

and the corrected solution

y7,8(t) = 1.82∗10−5t8−0.00019t7+0.00138t6−0.00833t5+0.04167t4−0.16667t3+0.5t2−t+1

Some results from the solutions and the CPU running time results of the example
are tabulated for N = 5, 8, 10 in Table 1. Furthermore, the maximum absolute
errors for some values of N, M are tabulated in Table 2. The tables show that,
the result obtained by the current approach is almost the same as the results
of the exact solution. The current approach is practical and efficient as well.
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Table 1. Comparisons of numerical results for N= 5, 8, 10 in Example 4.2.

t
Exact

solution

Present method

(N=5)

Present method

(N=8)

Present method

(N=10)

0 1 1 1 1

0.25 0.7788007830714 0.7788003812038 0.7788007832448 0.7788007830732

0.5 0.6065306597126 0.6065295650246 0.6065306613067 0.6065306597265

0.75 0.4723665527410 0.4723534494236 0.4723665582548 0.4723665527955

1.0 0.3678794411714 0.3676949212457 0.3678794827292 0.36787944165404

CPU time 0.920 s 0.952 s 0.961 s

Table 2. Absolute errors for some values of N, M in Example 4.2.

Absolute errors (Actual, Estimated, Improved)

t e7 e10 e7,8 e10,11 E7,8 E10,11

-1.0 1.11e-16 0 0 0 0 0

-0.5 8.97e-10 1.77e-12 1.00e-09 1.77e-12 1.05e-10 4.33e-15

0.0 1.31e-08 1.38e-11 1.36e-08 1.39e-11 5.02e-10 1.75e-14

0.5 4.77e-08 5.45e-11 4.89e-08 5.46e-11 1.18e-09 3.77e-14

1.0 4.57e-07 4.83e-10 4.83e-07 4.84e-10 2.64e-08 1.60e-12
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Fig. 1. The absolute errors of Example 4.2 for 3 ≤ N ≤ 10.

Fig.1 depicts the numerical solution of the absolute errors in Example 4.2. As
the integer N is increased, the error goes down.
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Fig. 2. Comparison of Absolute, Estimated and Improved Absolute Errors of Example
4.2.

Additionally, the residual error analysis provides the improved numerical results
as seen in Fig 2.

Example 4.3. [25, 26] Consider the problem

y′′′ (t)− y′(t) = 2t(cos(1)− sin(1))− 2 cos(t) +

1∫
−1

tsy(s)ds

with the initial conditions y(0) = 0, y′(0) = 1, y′′(0)− 2y′(0) = −2.

The solution of the problem for different values of N becomes as follows:

y3(t) = −0.04263t3 + 6.89 ∗ 10−18t2 + t

y10(t) = 8.05 ∗ 10−8t10 + 2.83 ∗ 10−6t9 − 6.98 ∗ 10−10t8 − 0.00020t7 − 1.58 ∗ 10−8t6

+0.00833t5 + 3.47 ∗ 10−9t4 − 0.16667t3 + 1.58 ∗ 10−16t2 + t+ 4.24 ∗ 10−22

which are the approximate solution expanded for N = 3, 10 as y(t) = sin(t) In
Table 3, we compare our obtained results with other methods (Taylor collocation
method given in [25] and the Legendre polynomial method given in [26]). From
these comparison, it is seen that the proposed method gives better results than
other methods.
The numerical solution of the absolute errors in Example 4.3 are depicted in Fig.
3. As the integer N is increased, the error goes down.
Absolute errors of the approximate solutions, the estimated solutions and the
improved approximate solutions will be given in Fig.4
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Table 3. Comparison of the results of the present method with Taylor[25] and Legendre
polynomials [26] in Example 4.3.

t
Exact

solution

Present method

(N=9)

Taylor method

(N=9)

Legendre method

(N=9)

-1 -0.8414709848 -0.8414709858 -0.8414709878 -0.8414709892

-0.8 -0.7173560909 -0.7173560912 -0.7173560891 -0.7173560862

-0.6 -0.5646424734 -0.5646424734 -0.5646424729 -0.5646424722

-0.4 -0.3894183423 -0.3894183423 -0.3894183414 -0.3894183400

-0.2 -0.1986693308 -0.1986693308 -0.1986693308 -0.1986693307

0.0 0.0 -9.5291207e-22 -1.9919833e-18 -1.9921875e-17

0.2 0.1986693308 0.1986693308 0.1986693308 0.1986693309

0.4 0.3894183423 0.3894183423 0.3894183438 0.3894183530

0.6 0.5646424734 0.5646424714 0.5646424473 0.5646424233

0.8 0.7173560909 0.7173560449 0.7173560214 0.7173547372

1.0 0.8414709848 0.8414706249 0.8414709801 0.8414709848

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (t) 

10
-20

10
-15

10
-10

10
-5

10
0

A
b

s
o

lu
te

 e
rr

o
r

|e
3
(t)|

|e
4
(t)|

|e
5
(t)|

|e
6
(t)|

|e
7
(t)|

|e
8
(t)|

|e
9
(t)|

|e
10

(t)|

Fig. 3. The absolute errors of Example 4.3 for 3 ≤ N ≤ 10.

The CPU running time results of the example for N = 5, 8, 10 are 0.875 s, 0.900
s, 0.938 s respectively.
Example 4.4. [27] To compare the results of the proposed method, the example
is taken from ÃĞimen et al. Consider the first-order linear FIDE

y′ (t) + 2y (t) =
1

4
(e−(1+t) − e−t) + 1

4

1∫
0

es−ty(s)ds 0 < t ≤ 1
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Fig. 4. Comparison of Absolute, Estimated and Improved Absolute Errors of Example
4.3.

with the initial condition y(0) = 1.
The solution of the problem for different values of N becomes as follows:

y6(t) = 0.03991t6 − 0.21948t5 + 0.64288t4 − 1.32730t3 + 1.99938t2 − 2t+ 1

y10(t) = 0.00012t10 − 0.00111t9 + 0.00601t8 − 0.02515t7 + 0.08877t6

−0.26663t5 + 0.66666t4 − 1.33333t3 + 2t2 − 2t+ 1

which are the approximate solution expanded for N = 6, 10 as y(t) = e−2t

Fig. 5 depicts the absolute errors to solution of Example 4.4. As the number N
is increased, the error decreases.
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Fig. 5. The absolute errors of Example 4.4 for 3 ≤ N ≤ 13.
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Fig. 6. Comparison of Absolute, Estimated and Improved Absolute Errors of Example
4.4.

In Table 4, we compare our obtained results with other methods (ÃĞimen et.al.’s
proposed method and Euler method [27]). From these comparison, it is seen that
the proposed method gives better results than other methods.

The CPU running time results of the example for N = 6, 10 are 0.878 s and
0.981 s respectively.

Table 4. Comparison of the results of the present method with ÃĞimen et.al.’s pro-
posed method and Euler method [27] in Example 4.4.

t
Exact

solution

Present method

(N=10)

Method in [27]

(N=64)

Euler method [27]

(N=64)

0.125 0.778800783071405 0.778800783002729 0.7785212 0.7785212

0.250 0.606530659712633 0.606530659644057 0.6060662 0.6060662

0.375 0.472366552741015 0.472366552671275 0.4717871 0.4717871

0.500 0.367879441171442 0.367879441102222 0.3672360 0.3672360

0.625 0.286504796860190 0.286504796796931 0.2858341 0.2858341

0.750 0.223130160148430 0.223130160099518 0.2224582 0.2224582

0.875 0.173773943450445 0.173773943419333 0.1731185 0.1731185

1.000 0.135335283236613 0.135335285687288 0.1347083 0.1347083
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Example 4.5. [28] To compare the results of the proposed method, the example
is taken from ÂăFarshadmoghadam et al. Consider the eight-order linear FIDE

y(8) (t)− y (t) = −8et + t2 +

1∫
0

y(s)ds 0 ≤ t ≤ 1

with the initial conditions y(0) = 1, y′(0) = 0, y′′(0) = −1, y′′′(0) = −2,
y(4)(0) = −3, y(5)(0) = −4, y(6)(0) = −5, y(7)(0) = −6.
The solution of the problem for different values of N becomes as follows:

y8(t) = −0.00017t8−0.00119t7−0.00694t6−0.03333t5−0.125t4−0.33333t3−0.5t2+1

y12(t) = −2.76 ∗ 10−8t12 − 2.46 ∗ 10−7t11 − 2.34 ∗ 10−6t10 − 0.00002t9 − 0.00017t8

−0.00119t7 − 0.00694t6 − 0.03333t5 − 0.125t4 − 0.33333t3 − 0.5t2 + 1

which are the approximate solution expanded for N = 5, 10 as y(t) = sin(t).

Table 5. Comparison maximum absolute errors of the present method with radial
basis functions method [28] in Example 4.5.

Method N=10 N=12 N=13

Proposed Method 2.2693e-7 1.4580e-7 1.4564e-7

Radial Basis Functions Method 1.6777e-04 8.4842e-06 1.1661e-06
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Fig. 7. The absolute errors of Example 4.5 for 8 ≤ N ≤ 13.
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Table 6. Comparisons of absolute errors for N= 8, 10, 13 in Example 4.5.

t Exact solution |e8| |e10| |e13|

0.1 0.994653826268 2.22E-14 9.99E-16 0

0.2 0.977122206528 1.15E-11 4.01E-14 1.49E-14

0.3 0.944901165303 4.49E-10 1.54E-12 8.60E-13

0.4 0.895094818585 6.05E-09 2.15E-11 1.53E-11

0.5 0.824360635350 4.56E-08 1.78E-10 1.42E-10

0.6 0.728847520156 2.38E-07 1.07E-09 8.81E-10

0.7 0.604125812241 9.65E-07 5.13E-09 4.11E-09

0.8 0.445108185698 3.25E-06 2.07E-08 1.56E-08

0.9 0.245960311116 9.49E-06 7.25E-08 5.08E-08

1 0 2.48E-05 2.27E-07 1.46E-07

In Table 5, we compare our obtained results with other methods (radial basis
functions method [28]). From these comparison, it is seen that the proposed
method gives better results than other methods.
Fig. 6 depicts the absolute errors to solution of Example 4.5. As the number N
is increased, the error decreases. The CPU running time results of the example
for N = 8, 11, 13 are 0.850 s, 0.934 s and 0.943 s respectively.

5 Conclusion

A collocation method based on the Lucas polynomial is proposed in this study
to solve the linear FIDE and FIDE with piecewise intervals. The residual error
function also provides an estimation of the error. We presented five numerical
examples to demonstrate the method. In Example 4.1, we find the analytical
solution for N = 3. In the second example, we computed the approximate solu-
tions for N = 4, 8, 10. The problem in Example 4.1 has an exact solution but it
has not an exact solution in Example 4.2. Therefore, we measured the reliability
of the solutions by means of the estimated absolute error functions. We com-
pared the actual and estimated absolute error functions and their values in Fig.
1-2 and Table 1-2. The values of the estimated errors closely match those of the
actual errors. Additionally, comparisons between our method, the exact solution
and other method in Example 4.3, Example 4.4 and Example 4.5. When results
from the tables and figures are compared, it is clear that the proposed method
is very efficient and practical. Besides all these, it is seen from the CPU times
that the problems solved efficiently and rapidly without the need for detailed
procedures.
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