
Proceedings of International Mathematical Sciences

ISSN: 2717-6355, URL: https://dergipark.org.tr/tr/pub/pims

Volume 4 Issue 2 (2022), Pages 77-87.

DOI: https://doi.org/10.47086/pims.1170457

COMPARATIVE ANALYSIS OF FIRST AND SECOND ORDER

METHODS FOR OPTIMIZATION IN NEURAL NETWORKS

AURAS KHANAL*, MEHMET DIK**

*BELOIT COLLEGE, BELOIT, UNITED STATES. 0000-0001-8621-9879

**BELOIT COLLEGE, BELOIT, UNITED STATES. 0000-0003-0643-2771

Abstract. Artificial Neural Networks are fine tuned to yield the best perfor-
mance through an iterative process where the values of their parameters are

altered. Optimization is the preferred method to determine the parameters

that yield the minima of the loss function, an evaluation metric for ANN’s.
However, the process of finding an optimal model which has minimum loss faces

several obstacles, the most notable being the efficiency and rate of convergence

to the minima of the loss function. Such optimization efficiency is imperative
to reduce the use of computational resources and time when training Neural

Network models. This paper reviews and compares the intuition and effective-

ness of existing optimization algorithms such as Gradient Descent, Gradient
Descent with Momentum, RMSProp and Adam that implement first order

derivatives, and Newton’s Method that utilizes second order derivatives for
convergence. It also explores the possibility to combine and leverage first and

second order optimization techniques for improved performance when training

Artificial Neural Networks.

1. Introduction

In Mathematics, optimization is the process of maximizing or minimizing a
real function by finding the best set of input values under certain conditions or
constraints. It can be defined as:

arg min
θ
f(θ) or arg max

θ
f(θ) (1.1)

Here, θ represents the arguments for the function. The concept of optimization is
used in abundance in real life: in GPS Systems, financial companies and airline
reservations. Similarly, optimization methods are equally important in the field
of Artificial Intelligence and Machine Learning, especially for their application to
Artificial Neural Network Models.

2020 Mathematics Subject Classification. Primary: 68T07.

Key words and phrases. Optimization; Artificial Neural Networks; Gradient Descent.
©2020 Proceedings of International Mathematical Sciences.
Submitted on 03.09.2022, Accepted on 04.10.2022.
Communicated by Hacer ŞENGÜL KANDEMIR and Muhammed ÇINAR.

77

https://dergipark.org.tr/tr/pub/pims
https://doi.org/ 10.47086/pims.1170457

78 AURAS KHANAL, MEHMET DIK

1.1. Artificial Neural Networks. Artificial Neural Networks are Machine Learn-
ing Models that mimic the functionality of biological neurons. They implement
learning algorithms which are fine-tuned by training on data to improve their ac-
curacy. ANN’s comprise of an Input layer, a single or multiple hidden layers, and
an output layer. Each layer consists of a particular number of artificial neurons or
nodes and each node receives an input from all the nodes in the previous layer and
outputs values to all the nodes in the next layer. Each of the individual connec-
tions between the nodes are assigned parameter values called weights and biases.
These parameters are altered and tuned during the learning process using the input
training data for optimal performance and accuracy.

Figure 1. Artificial Neural Network with 3 hidden layers [1]

During the initial training or learning process of a Neural Network, the features
or attributes of each individual data record are passed into the first hidden layer
as an input. Each of these input features have some weight value attached to them
and all the inputs are connected to each neuron in the hidden layer. Using the
inputs, the output z of neuron j in the hidden layer is,

zj = f

(
b+

n∑
i=1

xiwi

)
, (1.2)

where n is the total number of input features, b denotes the bias value, w denotes
the weights for particular features and f is the activation or transfer function of
the layer. The activation function is a linear or non linear function that determines
the output of the neuron. Examples of activation functions are Linear function,
Sigmoid function, Hyperbolic Tangent function, Rectified Linear Unit function,
etc. The output of each neuron in a layer is passed as an input to all the neurons
in the next layer with their own weights and biases values. Similarly, each layer
receives its own input and calculates an output and passes it to the next layer. This
process is also known as forward propagation. The last layer, which is the output
layer receives the inputs from the neurons of the last hidden layer and provides the
output of the neural network.

COMPARATIVE ANALYSIS OF OPTIMIZATION METHODS FOR NEURAL NETWORKS 79

Figure 2. An artificial neuron with n inputs [2]

1.2. Optimization in Neural Networks. The output of a neural network repre-
sents the prediction for a particular input. The initialized values of the weights and
biases do not usually produce an accurate prediction. Hence, ANN’s use an itera-
tive process where these parameters are adjusted in each iteration to increase the
prediction accuracy. This step is also known as Backpropagation. Backpropagation
is the process of updating and finding the optimal values of weights or coefficients
which helps the model to minimize the error i.e difference between the actual and
predicted values.[3] The difference between the predicted and the actual value for
an individual data sample is calculated using a loss function. The most common
loss function for regression problems is given by,

L (ŷ) =
1

2
(ŷ − y)

2
, (1.3)

where ŷ represents the neural network prediction and y denotes the actual value.
The difference between the predicted and the actual values for all the records in
the data set is given by a Cost Function J,

J =
1

2m

m∑
k=1

Lk (ŷ) , (1.4)

where m denotes the total number of records or data samples.
Neural Networks strive to adjust the parameters of the model to minimize the

loss function. Hence, optimization is implemented to find the values of the weights
and biases that will engender the minimum value of the loss function (closest to
zero).

arg min
(W,b)

m∑
k=1

1

2m

(
f
(
WTXk + b

)
− yk

)2
, (1.5)

where W denotes an n × j weight matrix of the output layer(n is the number of
input features coming from the previous layer, and j is the number of outputs of
the network), b denotes the bias of the output layer, and f denotes the activation

80 AURAS KHANAL, MEHMET DIK

function of the output layer. Equation 1.5 can be understood as a combination of
equations 1.2,1.3 and 1.4.

There are several different approaches of optimization to find the minimum of a
function. These methods usually utilize the first and second derivatives of the func-
tion with respect to the parameters. The efficiency of such methods are evaluated
through the computational cost (memory) and time cost for optimization.

Figure 3. Forward and Backpropagation in a single neuron network.[4]

2. First Order Optimization Methods

First Order Optimization refers to methods that utilize the first derivative of the
target function with respect to the parameters. It can only be applied to functions
that are differentiable and continuous. One of the most commonly used first order
methods is Gradient Descent where the gradient is used to descend down the curve
of the function.

2.1. Gradient Descent. Gradient Descent is a first order iterative method for
optimization where the idea is to take repeated steps to update the parameters
in the opposite direction of the gradient. For a vector θ = [θ1, θ2, . . . θn] where
θn represents the parameters for the cost function J , the updated values after a
particular iteration is given by,

θ = θ − η∇θJ (θ) , (2.1)

where η denotes the learning rate or the size of the steps that are taken to reach
the minimum and

∇θJ (θ) =

[
∂J

∂θ1
,
∂J

∂θ2
, . . .

∂J

∂θn

]
With respect to Neural Networks, there are three variants of gradient descent that
are used for convergence: Batch Gradient Descent, Mini Batch Gradient Descent
and Stochastic Gradient Descent. These variants differ in terms of the number of
samples used to calculate the loss function gradient for each parameter update step.

COMPARATIVE ANALYSIS OF OPTIMIZATION METHODS FOR NEURAL NETWORKS 81

2.1.1. Batch Gradient Descent. Batch or Vanilla Gradient Descent computes the
gradient of the cost function with respect to the parameters θ for the entire training
dataset.[5] Here, ∇θJ (θ) =

∑m
i=1∇θJ (θ), where m denotes the total number of

records in the dataset. Hence, the summation of the gradients of the entire dataset
needs to be calculated to perform just one parameter update. In other words,
the parameters are updated once in each epoch (one epoch refers to one iteration
through the entire training data).[6] Therefore, for a large dataset, Batch Gradient
Descent is really slow since a single update is performed after going through all the
records. However, because the information of the entire dataset is being evaluated
each time the parameters are updated, the convergence path taken using Batch
Gradient Descent is smooth and free of noise which accounts for a more direct path
towards the minimum.

2.1.2. Stochastic Gradient Descent. In contrast, Stochastic Gradient Descent per-
forms a parameter update after each record in the dataset. In terms of SGD,

∇θJ (θ) = ∇(i)
θ J (θ), where (i) denotes a random record. Hence, the parameters

are updated m times in one epoch. As the gradient of the cost function with respect
to the parameters for each record will vary largely, the convergence path using SGD
is full of noise and oscillations in different directions compared to Batch Gradient
Descent. Hence, SGD requires higher number of iterations to reach the minima.
Furthermore, SGD performs frequent updates with a high variance that causes the
objective function to fluctuate heavily. The random and drastic changes in param-
eter values due to the nature of SGD enables it to jump out of local minimas into
new and potentially better minima. Due to the high variance of the gradients for
each record, SGD never actually converges completely to the minima but rather
oscillates around the region. However, SGD provides advantages of updating the
parameters almost instantly and the escaping local minimas. Furthermore, it is
less computationally expensive and converges faster than Batch Gradient Descent
when the dataset is very large.

2.1.3. Mini-Batch Gradient Descent. Batch Gradient Descent updates parameters
after going through the entire dataset while Stochastic Gradient Descent performs
updates after each record. Mini-Batch Gradient Descent leverages the efficiency of
both these methods. It divides the total dataset into small batches and updates

the parameters after going through each batch. Hence, ∇θJ (θ) =
∑k
i=1∇θJ (θ),

where k << m. By taking a small sample of the total data, Mini-Batch Gradient
Descent eliminates the heavy computational cost for large datasets

using Batch Gradient Descent while reducing the noise and variance of Stochastic
Gradient Descent leading to a more stable convergence.

2.2. Limitations of Gradient Descent. Although it addresses the limitations
of the previous two Gradient Descent methods, Mini-Batch Gradient Descent has
several limitations.

(1) Choice of Learning Rate
Learning Rates denotes the size of the steps taken during convergence.

If a learning rate is too small, the parameter updates will be insignificant
and the number of iterations required to converge will be huge. If a learning
rate is too big, the update might overshoot and jump over the minima to

82 AURAS KHANAL, MEHMET DIK

Figure 4. Loss Function fluctuations after parameter updates.[7]

the opposite side causing the loss function to fluctuate around the minima
or in worst cases, even diverge.

(2) Saddle Points and Local Minima
Saddle points are flat regions of a function where the partial derivatives

of the cost function with respect to its parameters are opposite in nature i.e
areas where one dimension has a positive partial and another has a negative
partial. Such points are usually surrounded by a plateau which makes it
very difficult for Gradient Descent to escape as the gradient is close to zero
in all dimensions.[5]

(3) Noisy Convergence The performance of Artificial Neural Networks in-
creases with the size of the data. Hence, Batch Gradient Descent is rarely
used due to its high computational cost. However, as SGD and Mini-Batch
Gradient Descent update parameters using only a small portion of the total
data, the convergence path using these methods have high variance. This
increases the number of oscillations to reach the minimum as the path taken
is not direct. The extent of noise depends on the size of the batch used (the
larger the batch the smoother the convergence path).

Hence, due to the impracticality in application of Mini-Batch Gradient Descent,
other first order methods were developed to address and eliminate such limitations.

Figure 5. Convergence path using a contour map.[8]

2.3. Gradient Descent with Momentum. One of the major challenges with
Gradient Descent is that the updated value of a parameter depends only on the
gradient of the cost function at the previous parameter value. Therefore, it gets

COMPARATIVE ANALYSIS OF OPTIMIZATION METHODS FOR NEURAL NETWORKS 83

stuck in areas where the gradient is very close to zero in all dimensions. Further-
more, the number of iterations to converge is higher due to the large variance in
the gradient using SGD and Mini-Batch Gradient Descent. Gradient Descent with
Momentum addresses both these challenges by using Exponentially Weighted Aver-
ages of the gradients to update the parameters. Exponentially Weighted Averages
is used in sequential noisy data to reduce the noise and smoothen the data.[7] Refer-
ring to Figure 5 above, the vertical oscillations slows gradient descent and prevents
the use of a high learning rate. By using the exponentially weighted averages, the
partial derivative with respect to the vertical direction has an average closer to zero
as it is in both (positive and negative) directions.[9] In contrast, the partial deriva-
tive with respect to the horizontal direction is always positive, hence the average in
that direction will be large. This allows for a more direct convergence path to the
minima. The exponentially weighted average of the gradient for a given iteration t
is,

Mdθt = βMdθt−1
+ (1− β)∇θtJ (θ) ,

where 0 < β ≤ 1. Similarly,

Mdθt−1
= βMdθt−2

+ (1− β)∇θt−1
J (θ)

Mdθt−2
= βMdθt−3

+ (1− β)∇θt−2
J (θ) ,

and Mdθ1 = 0. Mdθ1 is also called the momentum term. Expanding Mdθt ,

Mdθt = β
(
β(βMdθt−3

+ (1− β)∇θt−2
J (θ)

)
+(1− β)∇θt−1

J (θ))+(1− β)∇θtJ (θ)
(2.2)

Hence, using Gradient Descent with Momentum, for an iteration t, the new
parameter value is dependent on the gradients of all previous iterations. Here, β is
the hyper-parameter that determines the degree of smoothness of the convergence
path and is usually 0.9. Consequently, the weight assigned to the averages of the
previous iterations is larger compared to the weight assigned to the gradient at the
current point. The parameters are then updated using the formula,

θ = θ − ηMdθt (2.3)

For partial derivatives with respect to dimensions whose values oscillate between
positive and negative, as the averages are closer to zero, the oscillations in those
dimensions are reduced. Inversely, the momentum term increases for dimensions
whose gradients point in the same directions, resulting in a larger update step after
each iteration and gaining faster convergence.

2.4. Root Mean Square Propagation. Although Gradient Descent with Mo-
mentum reduces oscillations in dimensions where the partials point in opposite
directions in each iteration, it is more effective in accelerating the convergence in
dimensions whose derivatives point in the same direction. However, this poses some
challenges. For a large t (located closer to minima), the momentum term for these
dimensions and consequently, the parameter updates will be very large. Hence,
for parameter updates near the minima, the risk of overshooting and missing the
minima due to the large momentum term is very high. Similar to a ball rolling
down a large cliff and going back and forth across the bottom several times, GD
with Momentum increases the number of iterations to settle down into the minima.
Root Mean Square Propagation or RMSProp eliminates this risk. While momen-
tum accelerates our search in the direction of the minima, RMSProp impedes our
search in the direction of the oscillations.[10] RMSProp implements this by using

84 AURAS KHANAL, MEHMET DIK

an adaptive learning rate, or a learning rate that changes in each iteration. In
RMSProp, after each iteration the learning rate decreases independently for each
dimension based on the partial derivative of that dimension at that particular iter-
ation . If a dimension/ parameter has a higher partial derivative, than its learning
rate is lower compared to a parameter with a lower partial derivative value. Using
RMSProp, the new parameter values θ,

θ = θ − η√
Vdθt + ε

· ∇θtJ (θ) (2.4)

where

Vdθt = αVdθt−1
+ (1− α)∇θtJ (θ)

2
,

Here, ε is a very small value, usually 10−8 and 0 < α ≤ 1.
Similar to GD with Momentum, RMSProp also uses an exponential weighted

average. However, instead of taking the average of the gradient, it uses the ex-
ponentially weighted average of the squared gradient. This is to ensure the sole
dependency of the adaptive learning rate on the magnitude of the partials of the
different parameters and not the signs. Hence, in contrast to the Momentum term
Mdθt , if the partials of a parameter at different iterations has opposite signs, their
exponentially weighted average won’t cancel out but instead be added, increasing
Vdθt . The square root is added in the denominator of 2.4 to ensure that the learning
rate isn’t too small. Therefore for situations like the one shown in Figure 5, the
step taken in both directions will decrease for increasing iterations. However, the
direction that is steeper will have a significantly smaller step compared to shallower
directions.

2.5. Adaptive Moment Estimation. In Gradient Descent with Momentum, the
step size for parameters which have the same signed partial derivatives increases
after each iteration. In contrast, in RMSProp the step size for parameters decreases
after each iteration but to a greater extent for ones which have a higher magnitude
partial derivative. Adaptive Moment Estimation or Adam is an optimization algo-
rithm that is the combination of the features of both of these first order methods.
Adam utilizes the acceleration that is provided by GD with Momentum, but to en-
sure that the step size doesn’t infinitely increase towards latter iterations, it uses the
RMSProp term to decrease the learning rate to limit the updates as the iterations
increase. Hence, it leverages the increase in the Momentum term by decreasing the
learning rate. The Momentum and RMSProp terms are given by,

Mdθt = βMdθt−1
+ (1− β)∇θtJ (θ) ,

and

Vdθt = αVdθt−1
+ (1− α)∇θtJ (θ)

2
,

For a parameter θ, the updated value using Adam is given by,

θ = θ − η√
Vdθt + ε

·Mdθt (2.5)

Adam is the most widely used optimization method because it performs really well
in optimization test functions compared to other algorithms.

COMPARATIVE ANALYSIS OF OPTIMIZATION METHODS FOR NEURAL NETWORKS 85

Figure 6. Contour Plot of the Test Objective Function With
Adam [11]

3. Second Order Optimization Methods

Second Order Optimization methods are a separate set of methods for optimiza-
tion that differ from the traditional gradient descent ideology. Instead of using the
gradient of the objective function at a particular point to update the parameters,
second order methods utilize the Hessian of the function. The gradient of a function
is a vector where each element represents the partial derivative of the function with
respect to the individual parameters. For a function with a total of p parameters,
the Hessian is a p × p matrix where each element represents the second partial
derivative of the functions with respect to the parameters. The Hessian of function
f (x1, x2, . . . , xn) is given by,

Hf (x1, x2, . . . , xn) =

∂2f

∂x21

∂2f

∂x1∂x2
. . .

∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x22
. . .

∂2f

∂x2xn
...

...
. . .

...

∂2f

∂xn∂x1

∂2f

∂xn∂x2
. . .

∂2f

∂x2n

3.1. Newton’s Method. Newton’s method is an optimization technique that uti-
lizes the approximation of a function using Taylor’s Expansion to the second order.
For a function f(x), the Taylor expansion to the second order about a certain point
x0 in the domain is given by,

f2 (x) = f (x0) + f ′ (x0) (x− x0) +
1

2
f ′′ (x0) (x− x0)

2

The approximation function f2 is a quadratic function about point x0. Newton’s
method finds the value of x, where f2 is a minimum, and assigns that value to x0,

86 AURAS KHANAL, MEHMET DIK

i.e x0 = arg minx f2(x). Taylor’s expansion is used to approximate a new f2 about
the updated x0. The minima of the new approximation is found and x0 is updated
again. Hence, Newton’s method iteratively updates the parameter x0 to values
where newly approximated Taylor Functions are a minimum until the minimum of
the actual function f is reached.

For an approximation f2, a point x is a maximum or minimum only if the gradient
at that point is 0.

df2
d (x− x0)

= 0

d

[
f (x0) + f ′ (x0) (x− x0) +

1

2
f ′′ (x0) (x− x0)

2

]
d (x− x0)

= 0

f ′ (x0) + f ′′ (x0) (x− x0) = 0

x = x0 −
f ′ (x0)

f ′′ (x0)
(3.1)

For an approximation of a multi-variable function, f2(θ) where θ is a vector of
the parameters,

θt+1 = θt − [H (θt)]
−1∇θf (θt) (3.2)

Compared to gradient descent, Newton’s method is extremely fast. For a suitably
chosen learning , gradient descent takes 229 steps to converge to the minimum
whereas Newton’s method converges to the minimum in only 6 steps.[12]

Although it is very efficient, Newton’s method has numerous limitations in ap-
plication to Neural Networks. ANN’s usually have thousands of parameters and are
non-convex by nature. However, Newton’s method isn’t applicable to non-convex
functions. The initialization of the parameters to areas closer to the maximum of
the function or at points where the Hessian is negative-definite can lead to a qua-
dratic approximation that is concave. For such an approximation, the parameter
update will lead towards the maximum point of the approximated concave function
instead of the minimum that is required. Hence, Newton’s method can lead to an
increase in the value of the loss which is undesired. Furthermore, Newtonian meth-
ods are very computationally expensive. The calculation of the Hessian is itself
an 0(N2) and inverting the Hessian is 0(N3) compared to Gradient Descent meth-
ods which scale at O(N).[12] Additionally, saddle points where the Gradient and
Hessian are almost zero might lead to computationally inaccurate values and slow
updates of the parameters. Such extreme limitations render the use of Newtonian
methods in Neural Networks useless.

However, there are methods not covered in this paper called Quasi-Newton meth-
ods that eliminate the large computational cost of traditional Newton’s method
while preserving optimization efficiency. Quasi-Newton methods utilize an approx-
imation of the Hessian using a generalized secant method, eliminating the need to
invert the Hessian. Hence, they have a computational complexity of O(N2) com-
pared to O(N3) for Newton’s method, while retaining most of the efficiency when
converging using Newton’s method.

COMPARATIVE ANALYSIS OF OPTIMIZATION METHODS FOR NEURAL NETWORKS 87

4. Conclusion and Future Work

Although Quasi-Newton methods such as the Broyden—Fletcher—Goldfarb—Shanno
algorithm represent significant progress in the field of second order optimization,
the lack of precision in the calculation of the Hessian can sometimes lead to slower
convergence.[13] Hence, instead of approximating the Hessian, leveraging Gradient
Descent and Newton’s Method can possibly lead to better performance. An opti-
mization algorithm can be introduced which consists of two stages, beginning with
Gradient Descent and ending with Newton’s method. The transition into Newton’s
method can be implemented at a point where the Hessian is a positive-definite ma-
trix. However, since the calculation of the Hessian is computationally expensive,
this prompts further research on finding a general method to determine the point
of transition into Newton’s Method.

References

[1] F. Bre, J.M. Gimenez, and V.D. Fachinotti, Prediction of wind pressure coefficients on

building surfaces using artificial neural networks. Energy and Buildings, 158 (2017).
[2] Hvidberrrg, Activation functions in artificial neural networks.

[3] Deepanshi, Artificial neural network: Beginners guide to ann. Analytics Vidhya, (2021).

[4] M. Z. Mulla, Cost, activation, loss function ‖ neural network ‖ deep learning. what are
these? Medium, (2020).

[5] S.Ruder, An overview of gradient descent optimization algorithms. Ruder.io, (2020).
[6] K. Pykes, Gradient descent. Towards Data Science, (2020).

[7] G. Mayanglambam, Deep learning optimizers. Towards Data Science, (2020).

[8] i2tutorials, Explain brief about mini batch gradient descent. i2tutorials, (2019).
[9] B. S. Shankar, Gradient descent with momentum. Medium, (2020)

[10] A. Kathuria, Intro to optimization in deep learning: Momentum, rmsprop and adam. Pa-

perspace Blog, (2018).
[11] J.Brownlee, Code adam optimization algorithm from scratch. Machine Learning Mastery,

(2021).

[12] A.Lam, Bfgs in a nutshell: An introduction to quasi newton methods. Towards Data Science,
(2020).

[13] V.Cericola, Quasi-Newton methods. Northwestern University Open Text Book on Process

Optimization, (2015)

Auras Khanal,

700 College St, Beloit, WI 53511, United States, Phone: +1 4159108043 0000-0001-8621-

9879
Email address: khanalauras@outlook.com

Mehmet Dik,
700 College St, Beloit, WI 53511, United States, Phone: +1 8152264135 0000-0003-0643-

2771
Email address: dikm@beloit.edu

	1. Introduction
	1.1. Artificial Neural Networks
	1.2. Optimization in Neural Networks

	2. First Order Optimization Methods
	2.1. Gradient Descent
	2.2. Limitations of Gradient Descent
	2.3. Gradient Descent with Momentum
	2.4. Root Mean Square Propagation
	2.5. Adaptive Moment Estimation

	3. Second Order Optimization Methods
	3.1. Newton's Method

	4. Conclusion and Future Work
	References

