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Performance Comparison of Guided Mortar Projectiles with Fixed
and Moving Fins

Sabit ve Hareketli Kanatlar ile Giidiimlii Havan Mermilerinin
Performans Karsilastirmasi

Highlights

7

«+ The design of a guidance kit which makes the mortar projectiles become guided when released from aerial
platforms and the relevant computer simulations performed upon a selected projectile model are
investigated.

«» Different configurations are considered based on the rotational degree of freedom of a pair of fins mounted
on a rotary ring.

«» Final miss distance and time of flight values obtained for all the designated cases are compared.

Graphical Abstracts

The guidance kit which is mounted upon the nose of the unguided mortar projectile is composed of a fuze, rotor outer
ring having a pair of control fins, i.e. fins, actuator rotating the rotor outer ring, sensors, electronic cards, and battery
as depicted in this figure.

Fuze Fin

Rotor Outer Ring Guidance Kit
Figure. Considered Guidance Kit Geometry

Aim

This study investigated the effects of the performance comparison of guided mortar projectiles with fixed and moving
fins.

Design & Methodology

Analytical calculations are made on the motion equations of the guided mortar projectile.

Originality

The design of a guidance kit which makes the mortar projectiles become guided when released from aerial

platforms and the relevant computer simulations performed upon a selected projectile model are investigated.

Findings

It is observed that the rotating find lead smaller miss distance for the shortest autopilot switching duration
considered for both windless and windy cases. Once the switching duration increases, the smaller miss distance is
attained with the fixed fins.

Conclusion

An interesting point shown from the acquired data is that the final miss distance quantities do not change for the
same switching duration when the fin angle becomes different. However, the guided projectile with the fixed fins
have a growing pattern as the fin angle gets larger.
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ABSTRACT

Guidance munition has become one of the popular subjects in both the theoretical and applicaﬂe%t
wide field of use in recent years because of their high performance and lower collateral damage
defence concept. The use of smaller and lighter guided munition makes the stated advantagesA
effectiveness. In this study, the design of a guidance kit which makes the mortar projectil
aerial platforms and the relevant computer simulations performed upon a selected projectile
different configurations are considered based on the rotational degree of freedom of a i i
simulations in which it is assumed that the guided projectile is released from @ ugghan

the fin deflection, autopilot switching duration, and side wind are consideré®forbo¥ of t

Keywords: Guided mortar projectile, guided projectile released from ae

rotating fins, guidance and control.

Sabit ve Hareketli K
Mermilerinin Pe

dolayisiyla son yillarda oldukga popiiler bir
yapilmustir. Bilhassa kiiciik ve hafif giidii

aracindan birakilmasi doy

nihai hedeften sap
karsilagtiriima

N

1. uc

Inac i e improvements in the technology,
the mas ion approach has been replaced by the
point destrd@fion. This way, it has become possible to

attain the cost effectiveness and minimum colateral
damage requirements apart from the high performance
demand. In this context, guided munitions have been
developed by regarding guidance and control algorithms
designed as per certain technical specifications [1].
Actually, the guidance and control problem constitutes a
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pabili
uided When released from
invgstigated. Here, two

a rotary ring. In the
icle, the different values of

¢ Gudimli Havan
arsilastirmasi

aline gelmis olup bu konuda birgok teorik ve uygulamali ¢aligma
fhimmat kullanimi, etkinlikten taviz vermeksizin bahsedilen iistiinliiklerin elde
atformlarindan atildig1 varsayilan havan mermilerini giidiimlii hale getirmek

alan bilgisayar benzetimlerinde, kanatcik agisi, otopilot anahtarlama siiresi ve yan
is konusu konfigiirasyonlarin her ikisi i¢in de uygulanmaktadir. Calismanin sonunda,

wide area for the control of aerial platforms as well as
munitions [2, 3, 4].

Depending on whether the design of the explosive part is
included in the entire system, the guided munitions can
be divided into two main groups. In this sense, missiles
constitute the first class since their explosive parts are
designed within the whole munition development
process. The second group involves the smart bombs
built by mounting specifically designed guidance kits
upon existing general purpose bombs. Actually, guided
projectiles are involved in the latter class because they
are the composition of the guidance kits with unguided
projectiles [1].



The guided projectiles are usually lighter in mass and
smaller in size than the missiles and smart bombs. This
provides the users with releasing more munitions towards
designated target points. Looking at the available guided
projectiles around the world, it is seen that they are
intended to be fired from launchers deployed on ground
against prescribed stationary surface targets. In those
munitions, one of the control strategies below is
considered in order to reach the desired guidance and
control effectiveness [1, 5]:

o Reaction jet control,

o Control with high frequency piezoelectric actuators,
o Use of internal components,

e Control with reverse rotation,

o Use of nose actuation Kits.

In the selection of the most convenient control approach,
the first attempt is upon the establishing a convenient
mathematical model for the projectile under
consideration [6-8]. In this extent, one of the most
significant considerations is the endurance of the relevant
munition against the high acceleration loads occurring in
firing through the launcher [1, 7-10]. Actually, this issue
is more critical for the surface-to-surface guided
projectiles than the air-to-surface configurations due to
the effect of the booster resulting high amount of Ii@’
acceleration [11, 12].

In the sense of control of the guided projectiles, sever.
schemes are developed regarding the effectiven
application [13-17]. In this extent, certai
approaches including robust algorithms are de
the elimination of the diverting effects ofithe dis
and noise [18, 19]. The roll control

comes into the the picture a specific i

ing sensor and actuator
ted [26]. The fuzzy logic-
ance and control schemes
ss of the projectile guidance [27].

as the need”of lighter but effective munitions. In this
extent, the guided projectiles seem to be viable
candidates for air-to-surface applications. It is obvious
that the success of such munitions is related to the
performance characteristics of the chosen control
approach [1, 10]. The present examples to the air-to-
surface guided projectiles can be given as in Figure 1,
Figure 2, and Figure 3.

In this study, the engagement capabilities of two guided
projectiles composed of a 120 mm mortar projectile and
guidance kit mounted on the nose part of the projectile
are investigated. Here, the control of the projectile is
performed by means of a rotary ring upon which a pair of
fixed fins is mounted at a certain configuration whereas
the fins have a degree of freedom around their hinge lines
in the second group. Selecting the maximum angular
deflection of the fins and autopilot switching duration as
the comparison criteria, the quantities consisting of the
final miss distance from the designated target point and

(LHG) law is chosen as th@
effect of the side wind is o taki

re 1. 81 mm Precision Air-Dropped Guided Mortar
(ADM) with Two Fins-General Dynamics [28]

—\.

Figure 3. Guided Projectile Released from an Air Platform in
a Vertical Manner [29]



2. GUIDANCE KIT GEOMETRY AND
CONTROL APPROACH

The guidance kit which is mounted upon the nose of the
unguided mortar projectile is composed of a fuze, rotor
outer ring having a pair of control fins, i.e. fins, actuator
rotating the rotor outer ring, sensors, electronic cards, and
battery as depicted in Figure 4. In this configuration, a
brushless alternating current (BLAC) type electrical
motor is considered.

Fuze Fin

Guidance Kit

Figure 4. Considered Guidance Kit Geometry

Rotor Outer Ring

Using the guidance kit introduced above, the motion
control of the mortar projectile is planned to be
conducted. In the designed scheme, the angular positions
of the fins are supplied by the rotation of the rotor outer
ring. Namely, once the fin pair is deployed in a horizont@
manner, the correponding control of the guided proje&
is carried out in its pitch plane. In a similar way, t
vertical orientation of the fins indicates the yawyplal

In the present study, two different
with in the sense of the movement of the

u +qw =X+ Xr)/m+ g, 1)
v+ru—pw= (Y +Y)/m+g, (2)
WwW—qu+pv=_CZ+Z;)/m+g, 3)
p=L/l, (4)
g—pr=M+ Myp)/I, )
7+pq=(N+ Np)/l; (6)

In the expresssions above, the forthcoming definitions
are introduced as the variables stand for the longitudinal,
lateral, and vertical components of the relevant vectorial

quantity in the fixed body reference frame of the
projectile (Fy):

m: Mass of the projectile

lrand la: Lateral and axial moment of inertia components

p, g, and r: Components of the angular velocity vector in
roll, pitch and yaw directions

u, v, and w: Components of the linear velocity vector

X, Y, and Z: Components of the aerodynamic force vector
at the centre of mass of the projectile

L, M, and N: Components of the aerodygémic moment
vector at the projectile body

Xt, Y1, and Zy: Components of the
the centre of mass of the prqgecti

t of the angular velocity
.8. p, the expressions (2),
cribe the dynamic behavior of

the gui n Be simplified to the following
equ. itch @and yaw planes [30]:

—qu=(Z/m)+g, (7

qg=M/I 8

v+ru=(Y/m)+g, 9)

7 =N/I, (10)

The aerodynamic moment and force components Y, Z, M,
and N given in equations (7) through (10) can be
expressed as follows [30]:

Y =C,qsSu (11)
Z = (,q,Sy (12)
M = C,q..Sydy (13)
N = C,q.Sudy (14)

Respectively g, Sm, du represent the dynamic pressure
acting on the projectile, cross-sectional area of the
projectile, and projectile diameter. In the above
equations, the aerodynamic parameters represented by
C., Cy, Cy, and Cy can be formulated depending on the
side-slip angle (p), angle of attack («), elevator angle
(), rudder angle (&), g, and r in the next manner [30]:

Cy =y + Cyyby + Cy, [du/Quilr  (15)
C, = G+ C,y8, + o ldu/2uidlg  (16)
Cm = Cino@ + C8e + G, [du/uadlq  (17)
Cn = Cugh + Cogdy + Cry [dy/@up)lr  (18)

Here, as vm demonstrates the absolute value of vector
corresponding to the linear velocity of the projectile, the

stability derivatives expressed by C, ., C,;, C,,., C; ., C,

By ys! 5!



Czgr Cingr Cimgr Cings Crgy Cng and C,, depending on the
mach number (M) are instantaneously updated during

the computer simulations [30].

4. MORTAR PROJECTILE GUIDANCE LAW

The guided mortar projectile is oriented to the intended
target point using the LHG law which aims at keeping the
projectile on a triangle, namely the collision triangle,
designated by the predicted intercept point of the missile
and intended target. Denoting the duration from the
initial time (to) to the end of the intercept (t) as 4, the
guidance command for the flight path angle component
of the missile in the yaw plane (n5,) is determined in the
following manner so that cos(y,,) # 0 [30]:

& = arctan[(vr, At — Ay)/(vr At — Ax)] (19)

Likewise, the pitch plane form of the guidance command
(v;,) can be derived as given below [30]:

[ Az—-vTzAt
(vrxAt—4x) cos(Mm)+(vryAt—4y) sin(nm)

Vs, = arctan (20)

In the expressions above A4, 4y, and 4, demonstrate
components of the relative position vector between t
missile and target. Moreover, and vy, Vry, and vy S

for the components of the target velocity vector [30].

5. PROJECTILE CONTROL SYSTEM

The projectile control system, i.e. autopilot, d
convert the guidance commands of the LHG
physical motion is designed such thaf§ operat

separate manner in the pitch and ya lanes in a
sequential manner. Hence, th transfer
angles

igne
into

in both the pitch plane (
following manner [30}1
3

N3, d}’l, d;/z, dﬁ, and dy4
, projectile diameter,

ts of the velocity vector, g, and
From equation (21), the
happens to be in the
forthcoming fashion:

D(s) = dy4s* + dy3s® + dyps* +dyys +1 (22)

Thus, the autopilot gains can be obtained by means of the

well-known pole placement approach in which the next

fourth-order Butterworth polynomial is utilized by
regarding the damping ratio (&) to be 0.707:

B,(s) = (1/wH)s* + (2.613/w?2)s® + (3.414/

w?)s? + (2.613/w.)s + 1 (23)

where @ stands for the desired bandwidth of the
autopilot. In a similar case, the transfer function can be
adapted from the transfer function attained for the pitch
plane by introducing ny;a, Ny, Nys, din, diz, dys, and dya in
the yaw plane [30] :
Nm(s) _ nn3s3+nnzsz+nnls+1
Nma(s) dpast+dyzsS+dys?+dyis+1

(24)

6. ENGAGEMENT MODEL
The following relationships can be wrjtten for the
distance corresponding to the line-of-si
projectile and the intended target (ri/M
orientation angles to the pitch and

(25)
(26)
(27)

the target at the termination of
can be determined by the use of

(28)

tr stands for the time value at the end on the
gafement.

7. COMPUTER SIMULATIONS

In the present study, a mortar projectile released towards
a stationary surface target at a specified altitude (zpo)
from an unmanned aerial platform crusing at a constant
low speed (veo) is taken into considerations. As LM and
x7r denote the total length of the guided projectile and the
longitudinal distance to the target when the projectile is
dropped from the platform, respectively, the related
simulations are carried out in the computer environment
by regarding the data presented in Table 1 [31].

The miss distance from the target and time of flight
values of the guided projectile are given in Table 2 and
Table 3 according to the angular deflection of the fin and
autopilot switching quantities as well as the side wind
value for all the 18 specified cases. In Table 2 and Table
3, the fixed and rotating conditions of the fins are also
considered. The sample plots belonging to the
engagement geometries, projectile speed, nose kit
commands, and motor angle are shown in Figure 5
through Figure 13.



Table 1. Parameter values in the computer simulations

Parameter Numerical Value Parameter Numerical Value
dwm 50 mm vP0 0.8-Mach (=272 m/s)
L 500 mm zp0 1000 m
m 15 kg xXTF 1000 m
la 0.018 kg-m2 ®C 10 Hz
I 5.005 kg-m2 ¢ 0.707

Table 2. Results of the the computer simulations without side wind

G ober_nge_ Ao ) _ e T
1 0.2 95.700 1.355 5.115 5.200
2 1° 0.5 79.039 95.495 5.067 4.674
3 1.0 68.876 207.707 5.088 4.250
4 0.2 459.227 1.355 6.997 5.200
5 5° 0.5 333.240 95.495 7.190 4.674
6 1.0 356.974 207.707 7.229 4.250
7 0.2 368.985 1.355 5.296 5.200
8 10° 0.5 73.998 95.495 9.725 4.674
9 1.0 147.076 207.707 8.568 4.250

- e N - —

Table 3. Data acquired from the computer simulations with the side wind speed of 5 m/s

. . . Miss Distance (m) Time of Flight (s)
Case Number  Fin Angle  Autopilot Switching (s) Fixed Fin Rotating Fin  Fixed Fin Rotating Fin
10 0.2 107.738 34.957 5.200 5.381
11 1° 05 104.029 147.921 5.068 5.057
12 1.0 92.714 299.335 5.088 4.047
13 0.2 476.736 34.957 7.352 5.381
14 5° 05 364.585 147.921 7.032 5.057
15 1.0 376.091 299.335 7.785 4.047
16 0.2 524.728 34.957 4.661 5.381
17 10° 05 313.032 147.921 4.950 5.057
18 1.0 164.509 299.335 7.962 4.047
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5. DISCUSSION AND CONCLUSION

The simulation data submitted in Table 2 and Table 3
indicate that the rotating find leads smaller miss distance
for the shortest autopilot switching duration considered
for both windless and windy cases. Once the switching
duration increases, the smaller miss distance is attained
with the fixed fins. An interesting point shown from the
acquired data belonging to the cases with the rotating figs
is that the final miss distance quantities do not changa
the same switching duration when the fin angle becomgs
different. However, the guided projectile with theyfi
fins has a growing pattern as the fin angle g
Also, although the results are obtained for
speed of 0.8 Mach in the present stud

the time of flight, it
configuration with th

t both the miss
e larger when the
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