Araştırma Makalesi

Research Article

İSTANBUL AVRUPA YAKASINDA MEYDANA GELEN SİSMİK OLAYLARIN KAYNAK TÜRLERİNİN BELİRLENMESİ

Evrim YAVUZ*

İstanbul Büyükşehir Belediyesi, Deprem Risk Yönetimi ve Kentsel İyileştirme Dairesi Başkanlığı, Deprem ve Zemin İnceleme Şube Müdürlüğü, Bakırköy, İstanbul

Anahtar Kelimeler	Öz
Ayrımlaştırma Fonksiyonu,	Nüfus, sanayi, yapılaşma ve turizm açısından ülkemizin en yoğun kenti olan
Deprem,	İstanbul, tektonik olarak, güneyinde uzanan Ana Marmara Fayı'nın kontrolü
İstanbul,	altındadır. Endüstriyel hammadde ihtiyacı ise Avrupa Yakasındaki taş ocağı
Patlatma,	işletmeleri tarafından sağlanmaktadır. Dolayısıyla, bölgede hem doğal hem de yapay
Taş Ocakları.	kaynaklı mikro-sismik aktivite gözlenmektedir. Olayların enerji içeriği, sismik
	istasyon sayısının/dağılımının yeterli olmaması ve dalga fazlarının doğru
	seçilememesi vb. nedenlerden dolayı da kaynak türleri tanımlanmasında hatalar
	gözükebilmektedir. Daha güvenilir kaynak türü belirlenmesi ise ikincil analizler ile
	yapılmaktadır. Çalışmada, İstanbul Avrupa Yakası'nda 2007-2021 yılları arasında
	meydana gelen, büyüklüğü M≤2.8 olan 195 adet sismik olayın Boğaziçi Üniversitesi
	Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem ve Tsunami
	İzleme Merkezi (KRDAE-BDTİM) tarafından işletilen altı adet deprem istasyonunda
	kayıt edilen 270 adet dalga formu için kaynak türü belirleme analizleri yapılmıştır.
	Olayların kaynak türleri katalog bilgilerinden bağımsız şekilde, görsel olarak
	belirlenerek yola çıkılmıştır. Düşey bileşen sismogramları kullanılarak, genlik oranı
	ve karmaşıklık yöntemleri uygulanmıştır. İstatistiksel sınıflandırma için Lineer ve
	Karesel Ayrımlaştırma Fonksiyonları kullanılarak, yöntem bazlı başarı oranları
	hesaplanmıştır. Sonuç olarak, 195 adet sismik olayın, 28 tanesinin deprem, 167
	adetinin patlatma kaynaklı olduğu tespit edilmiştir. Daha güvenilir kaynak türü
	tanımlaması ile homojen kataloglar oluşturulmakta ve depremsellik, deprem tehlike
	analizleri gibi çalışmalarda araştırmacıların ikincil analizler ile zaman kaybı
	yaşamasının önüne geçilebilmektedir.

IDENTIFICATION OF THE SOURCE TYPES OF THE SEISMIC EVENTS OCCURRED ON THE EUROPEAN SIDE OF ISTANBUL

Keywords	Abstract
Discriminant Function,	Istanbul, the densest city of our country in terms of population, industry,
Earthquake,	construction, and tourism, is tectonically under the control of the Main Marmara
Istanbul,	Fault lying to the south. The need for industrial raw materials is provided by the
Blast,	quarry operations on the European side. Therefore, both natural and artificial
Quarries.	micro-seismic activity is observed in the region. Errors may appear in the
	identification of source types due to the energy content, insufficient
	number/distribution of seismic stations, and inaccurate picking of wave phases etc.
	Secondary analyzes are needed to determine more reliable source types. In this
	study, source type determination analyzes were performed for 270 waveforms on
	195 seismic events with a magnitude of M \leq 2.8 that occurred in the European Side
	of Istanbul between 2007 and 2021 were analyzed at six earthquake stations
	operated by Boğaziçi University Kandilli Observatory and Earthquake Research
	Institute Regional Earthquake and Tsunami Monitoring Center (KOERI-RETMC).
	The source types of the events were determined visually, independently of the
	catalog information. Amplitude ratio and complexity methods were applied by using
	vertical component seismograms. Method-based success rate was calculated by

^{*} İlgili yazar / Corresponding author: evrim.yavuz@ibb.gov.tr, +90-212-455-3805

using Linear and Quadratic Discrimination Functions for statistical classification. As a result, for 195 seismic events, 28 earthquakes and 167 quarry blasts were determined. With a more reliable source type identification, homogeneous catalogs could be created and researchers could prevented time loss by performing secondary analysis in studies such as seismicity and earthquake hazard analysis.

Alıntı / Cite

Yavuz, E., (2023). İstanbul Avrupa Yakasında Meydana Gelen Sismik Olayların Kaynak Türlerinin Belirlenmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 11(1), 279-297.

Yazar Kimliği / Author ID (ORCID Number)	Makale Süreci / Article Process	
E. Yavuz, 0000-0002-9175-8952	Başvuru Tarihi / Submission Date	19.09.2022
	Revizyon Tarihi / Revision Date	02.11.2022
	Kabul Tarihi / Accepted Date	08.11.2022
	Yayım Tarihi / Published Date	27.03.2023

IDENTIFICATION OF THE SOURCE TYPES OF THE SEISMIC EVENTS OCCURRED ON THE EUROPEAN SIDE OF ISTANBUL

Evrim YAVUZ[†]

Istanbul Metropolitan Municipality, Department of Earthquake Risk Management and Urban Improvement, Directorate of Earthquake and Soil Investigation, Bakirkoy, Istanbul

Highlights

- Obtaining reliable earthquake catalogs for small seismic events (M<2.8)
- Performing amplitude ratio, complexity methods and Linear, Quadratic Discriminant Functions
- Focusing on artificial and natural seismic events

Graphical Abstract

Purpose and Scope

Refining the earthquake catalogs by reliably identifying the existing micro-seismic activity on the European Side of Istanbul.

Design/methodology/approach

In the study, more detailed source type identification analyzes were performed for 270 waveforms on 195 seismic events by using amplitude ratio, complexity methods and Linear, Quadratic Discriminant Functions.

Findings

Seismic-station-based discrimination functions and graphs were obtained. More reliable source type identification was performed for 195 seismic events.

⁺ Corresponding author: evrim.yavuz@ibb.gov.tr, +90-212-455-3805

Practical implications

KOERI-RETMC needs to revise the earthquake catalogs reliably and should perform detailed analyzes to identify the source types of micro-seismic events.

Social implications

The settlement area of Istanbul is increasing day by day and accordingly, these areas are expanding towards the northern parts of the province. This study could contribute to both urban planning and environmental impact assessment in areas where quarries are common.

Originality

For six seismic stations operated by KOERI-RETMC, discrimination functions and graphs have been obtained to identify the source types for M \leq 2.8 seismic events on the European Side of Istanbul and its vicinity.

1. Giriş (Introduction)

Geçmişten günümüze birçok medeniyete ev sahipliği yapmış olan İstanbul, nüfus, sanayi, yapılaşma, alt ve üst yapı mimarisi vb. konularda ülkemizin en yoğun aktivasyonuna sahip olan kadim bir şehirdir. İki kıtaya ev sahipliği yapan bu şehir, son yıllarda havalimanı inşaatı, otoyol yapımları, yüksek katlı binaların sayısının artması ve genişleyen yapılaşmanın oldukça fazla olmasından dolayı da mega şehir olarak lanse edilmektedir. Ayrıca gece/gündüz ayırt etmeksizin hem mevcut yaşantısından hem de yerli ve yabancı turistik ziyaretlerden dolayı da kozmopolit unvanına sahiptir.

Kentin yersel hareketinin kontrolü, hemen güneyindeki Marmara Denizi içerisinde uzanan Kuzey Anadolu Fay Zonu'nun kuzey kolu olan ve Ana Marmara Fayı olarak adlandırılan tektonik elemandan kaynaklıdır. 24 mm/yıl olan sağ yanal hareketinden dolayı büyük depremler üretebilen, Anadolu ve Avrasya Levhaları arasında transform bir fay olan ve basamaklı yapısından kaynaklı ikincil kırıklara sahip olan, deniz icerisinde derin hayzaları barındıran bir tektonik yapıdadır (Barka, 1992; McClusky vd., 2003; Sengör vd., 2005; Reilinger vd., 2006). Bu tektonik karmaşada, sadece büyük depremler değil yerel anlamda da mikro sismik aktivite de sürekli olarak kayıtlara geçmektedir. Aynı zamanda yine küçük magnitüdlere sahip taş ocağı patlatmaları da sürekli olarak, özellikle Avrupa Yakasında Arnavutköy, Çatalca ve Eyüpsultan ilçelerinde işletilen taş ocağı işletmeleri tarafından kaya ortamlarda sert malzemeyi ayırt etmek amacıyla dinamit, ANFO, vb. patlayıcı veya yanıcı madde kullanılarak yapılmaktadır. Sadece taş ocaklarında değil, metro kazılarında, havalimanı inşaatlarında, otoyol yapımlarında ve üst vapılasmalarda sağlam malzemenin avıklanması amacıyla kontrollü dinamit patlatmalarına basyurulmaktadır. Böylece küçük magnitüdlü doğal veya yapay sarsıntılar sismoloji merkezlerinde detaylı analizlere tabi tutulmadan hatalı kaynak türü ile kataloglanabilmektedir. Maalesef, katalog taramasına başvurulan sismoloji çalışmalarında doğru katalog ile yola çıkmak için, araştırmacıların ikincil bir çalışma yapması gerekmektedir. Doğal ve yapay sarsıntıları birbirinden ayırabilmek icin literatürde bircok farklı yöntem kullanılmakta olup özellikle genlik oranı ve karmaşıklık yöntemlerinden elde edilen ayrımlaştırma fonksiyonları ile hızlı, kolay, pratik ve yüksek başarı oranına sahip şekilde kaynak türü tanımlaması yapılabilmektedir (Wüster, 1993; Gitterman ve Shapira, 1993; Horasan vd., 2009; Yavuz vd., 2019a).

Kazakistan'da sismik olayların kaynak türlerini belirlemek amacıyla zaman-frekans ortamı çalışmaları yapılmıştır (Hedlin vd., 1989). Hedlin vd. (1990)'da ise koda dalgası azalımı ile doğal ve yapay sarsıntılar ayrımlaştırılmıştır. Ardından Su vd. (1991)'de ise yine koda dalgaları ve güç spektrumları kullanılarak taş ocağı/maden patlatmaları depremlerden ayırt edilmeye çalışılmıştır. Genlik oran yöntemi ise ilk olarak kimyasal patlatma ile doğal kaynaklı olayları birbirinden ayırt edebilmek amacıyla Wüster (1993) tarafından kullanılmıştır. Gitterman ve Shapira (1993) ise karmaşıklık ve spektral analiz yöntemleri kullanılarak su altında meydana gelen patlatma kayıtlarını ayırt etmislerdir. Beck ve Wallace (1997), genlik oranı ve karmasıklık yöntemlerini Güney Amerika'daki deprem ve patlatma kayıtlarının üzerinde kullanımışlardır. İsrail'in sismik ağı üzerinden Orta Doğu için doğal ve yapay sarsıntılar genlik oranı ile sınıflandırılırken; Koch ve Fäh (2002)'de aynı yöntemi Pg ve Sg dalgalarını kullanarak Almanya ve Çek Cumhuriyeti sınırındaki Vogtland bölgesinde uygulamışlardır. Genlik oranı ve karmaşıklık yöntemleri bir arada kullanılarak kısa-periyodlu cihazlarda kaydedilmiş sismogramlar Arai ve Yoshida (2004) tarafından analiz edilmiştir. Türkiye'de ise İstanbul (Horasan vd., 2009), Muğla (Sertçelik ve Başer, 2010), Trabzon (Kartal ve Horasan, 2011), Konya (Öğütçü vd., 2011), Kütahya (Kekovalı vd., 2012), Sakarya (Budakoğlu ve Horasan, 2018), Manisa (Ceydilek ve Horasan, 2019), Yalova-Bursa (Yavuz vd., 2019a), Doğu Marmara (Sertçelik vd., 2020), Edirne (Tan vd., 2021) ve Seydişehir-Konya (Yavuz, 2022) bölgelerinde genlik oranı ve karmaşıklık yöntemleri kullanılarak doğal ve yapay sarsıntıların ayrımlaştırması analizleri yapılmıştır. Süreç içerisinde birçok yöntem üzerinden de kaynak türü belirleme çalışmaları yapılmıştır. Pn/Sn, Pn,/Lg ve bu dalga fazlarının spektral oranları kullanılarak Norveç'te bir kaynak türü ayrımlaştırma çalışması yapılmıştır (Baumgard ve Young, 1990).

Güç yoğunluğu spektrumu ve koda azalım oranları kullanılarak Aki (1995) tarafından doğal ve yapay sarsıntılar analiz edilmiştir. ABD'nin Wyoming bölgesinde ise yüksek frekanslı dalgaların spektrogramları üzerinden yapay sarsıntılar belirlenmeye çalışılmıştır (Carr ve Garbin, 1998). Yapay sinir ağları, makine öğrenmesi ve derin öğrenme gibi bilgisayar tabanlı algoritmalar kullanılarak da kaynak türü belirleme çalışınlmıştır (Ursino vd., 2001; Kuyuk vd., 2011; Li vd., 2018). *P* ve *S* dalgalarının köşe frekansları hesaplanarak kaynak türü belirleme analizleri de yapılmıştır (Allmann vd., 2008; Ataeva vd., 2017). Dalgaların frekans içerikleri üzerinden spektral analizler ile de doğal ve yapay sarsıntıların ayrımlaştırılmaya çalışılmıştır (Kolaj, 2018; Yavuz vd., 2019b; Korrat vd., 2022).

Çalışmada, İstanbul Avrupa Yakasında meydana gelen magnitüdü M≤2.8 olan Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem ve Tsunami İzleme Merkezi (KRDAE-BDTİM) tarafından işletilen altı sismik istasyonda kaydedilen 195 olaya ait 270 adet dalga şekline genlik oranı ve karmaşıklık analizleri yapılmıştır. İki yöntemin değerlendirilebilmesi için de Lineer ve Karesel Ayrımlaştırma Fonksiyonları (LAF, KAF) kullanılmış olup söz konusu olayların kaynak türleri belirlenmeye çalışılmıştır. Böylece kataloglarda tanımlanan olayların kaynak türlerinin sağlıklı bir şekilde tanımlanabilmesi için ön çalışma başlatılmıştır. Ayrıca güvenilir kataloglar elde edilmesi ile de sismoloji, sismotektonik, depremsellik, afet araştırmaları vs. çalışmalarda ikincil analizlerin yapılmasına ihtiyaç olmayacak olup, araştırmacılar için zaman tasarrufunun ortaya çıkarılması hedeflenmektedir.

2. Bölgenin Tektonik ve Jeolojik Özellikleri (The Tectonic and Geological Features of the Region)

Bölge tektonik olarak İstanbul Zonu adı verilen, Avrasya Levhası üzerinde konumlanmaktadır. Güneyinde, Marmara Denizi'nin içerisinde, doğu-batı doğrultulu şekilde uzanan sağ yanal doğrultu atımlı Kuzey Anadolu Fay Zonu'nun kuzey kolu olan Ana Marmara Fayı'nın kontrolü altındadır (Emre vd., 2013) (Şekil 1). İstanbul Avrupa Yakasının söz konusu faya olan uzaklığı 10-70 km arasında değişmekte olup, olası bir depremde gözlenecek en büyük ivme değerleri de 0.189-0.566 g arasında değişmektedir (AFAD, 2018). Özellikle Avcılar, Büyükçekmece, Beylikdüzü ve Küçükçekmece gibi güney sahilleri olmak üzere, Arnavutköy ve Eyüpsultan gibi kuzey sahillerinde de heyelan aktivitesi yoğunlukla gözlenmektedir (İBB, 2020). Ayrıca, deprem-zemin-yapı ilişkisinin detaylı olarak irdelenmesi gereken bölgede deprem dalgalarının zemin üzerindeki büyütme etkisinin de gözlendiği (Örn: 1999 İzmit Depremi-Avcılar hasarı) böylece sismik dalgaların zemin kaynaklı olarak yapılar üzerindeki etkileri gözler önündedir (Tezcan vd., 2002; Dalgıç, 2004; Şen, 2007). Tektonik olarak İstanbul Zonu'nun sınırını oluşturan bölgede Ana Marmara Fayı'na bağlı olarak İstanbul il alanın karasalında ise kısmen lokal bazda bazı faylanma çizgisellikleri önerilmektedir (Okay ve Tüysüz, 1999; Ergintav vd., 2011; Tur vd., 2015). Ayrıca Karadeniz'de, tanımlanmayan fakat sahil şeridine paralel şekilde gözüken basen üzerinde küçük-orta büyüklükte depremler kayıtlara geçmiştir. Böylece gerek Marmara Denizi ve Karadeniz'de gerekse de karasal alanda mikro ölçekte tektonik aktivitenin varlığından da söz edilmektedir.

İstanbul Avrupa Yakasının jeolojik yapısına bakıldığında; batısında Permiyen yaşlı Kızılağaç Metagraniti (Pkk) ile birlikte Üst Oligosen-Orta Miyosen yaşlı çakıl ve kumların (Tik), güneybatısında Orta Oligosen-Alt Miyosen yaşlı kiltaşı ve kumtaşlarının (Tdg), güneydoğusunda Üst Miyosen-Pliyosen yaşlı kiltaşı ve kireçtaşlarının (Tçb), doğusunda Üst Kretase yaşlı volkanik andezit ve bazaltların (Ksg), orta kısmında Orta/Üst Eosen yaşlı kireçtaşlarının (Tsğ), orta ve kuzey kısımda ise Üst Eosen-Oligosen yaşlı kireçtaşlarının (Tc), Alt Karbonifer yaşlı kumtaşı, çakıltaşı ve kireçtaşlarının (Ct) ve Orta Oligosen-Alt Miyosen yaşlı kömür arakatlı kum, çakıl ve killerin (Tda) hakim olduğu görülmektedir (İBB, 2011) (Şekil 1).

İl genelindeki malzeme ihtiyacından kaynaklı olarak özellikle bölgenin orta ve kuzey kısmında yoğun olarak gözlenen kireçtaşlarının egemenliğinden kaynaklı taş ocakları işletmelerinin de yaygınlaştığı göze çarpmaktadır. Söz konusu ocak işletmelerinde ise malzeme elde etmek amacıyla patlatmaların yapıldığı, bunların ise küçükmagnitüdlü sismik olaylara neden olduğu gözler önündedir. Ayrıca bu olaylar, sismoloji merkezleri tarafından deprem kataloglarına da işlenmektedir.

Şekil 1. İstanbul ili Avrupa Yakasının jeolojisi ve civarının tektonik elemanları. Jeolojik birimler, İBB (2011)'den alınarak basitleştirilmiştir. (Geology of the European Side of Istanbul and tectonic elements of its surroundings. Geological formations have been simplified from İBB, 2011)

3. Veri Özellikleri (Data Set)

Çalışmada, KRDAE-BDTİM tarafından işletilen altı adet zayıf yer hareketi istasyonlarının kaydettiği sismik sinvaller icin avrımlastırma analizleri uygulanmıştır (Tablo 1, Sekil 2). Tüm istasyonlar üc bilesenli hız-ölcer sensöre sahip olup; söz konusu sismoloji merkezi tarafından, örnekleme aralığı saniyede 100 örnek olacak şekilde ayarlanmıştır. İstasyonların kuruluş zamanları dikkate alındığında aynı olayın tüm istasyonlarda gözlenmesi amacıyla 2007 yılından sonraki olaylar kullanılmıştır. Böylece, 2007-2021 yılları arasındaki 14 yıllık süreçte İstanbul ilinin Avrupa Yakasında kataloglanmış düşük gürültü seviyesine sahip, sinyal kalitesi yüksek, sayısallastırma hatası olmayan ve faz okumalarının sağlıklı sekilde yapılabildiği 195 sismik olaya ait 270 adet düsey bilesen sismogramları KRDAE-BDTİM veri tabanından indirilmistir (Sekil 2). Zaman sürecinin uzun tutulması ile farklı periyodlarda çalışan muhtemel taş ocağı sahalarına konsantre olunurken yasal yolların dışında meydana gelebilecek patlatmaların olabilme ihtimalinden dolayı da tüm saat dilimleri incelenmiştir. Uzun dönem içerisinde kayıtlara geçen çok sayıda patlatma kaydı mevcuttur. Ayrımlaştırma fonksiyonlarının sağlıklı bir şekilde elde edilebilmesi için az sayıda olan mikro deprem aktivitesi göz önünde bulundurularak, farklı konumlardaki patlatma kayıtları da önemsenerek, benzer konumlardaki yapay sarsıntıların sayısı azaltılmıştır. Olayları kayıt eden istasyon sayısının ve azimutal dağılımının yetersiz kalması, kullanılan kabuk modelinin uyumsuz olabileceği, çözüm algoritmasının değişkenlik gösterebileceği ve özellikle faz okumalarındaki hatalardan kaynaklı, mikrosismik olaylar için konum ve derinlik hataları ortaya çıkmaktadır. Bu çalışmada, olayların konumları ve derinlikleri üzerinden kaynak türü tanımlaması yapılmamıştır. Fakat konum hatası potansiyelinin yüksek olduğu kıyı sınırına yakın deniz için sismik olaylar, sonuçların tüm çalışma sahasını kapsayabilmesi açısından seçilmiştir.

Tablo 1. Deprem istasyonlarına ait bilgiler (The informations of the seismic stations)

Şekil 2. Olayların dış merkez dağılımları ve deprem istasyonlarının konumları (The epicenter distribution and the locations of the seismic stations)

4. Yöntem (Method)

Altı adet istasyon tarafından kayıtlara geçen 195 adet olaya ait 270 adet düşey bileşen sismogramları genlik oranı ve karmaşıklık yöntemleri ile analiz edilmiştir. Sınıflandırma aşamasında ise Lineer ve Karesel Ayrımlaştırma Denklemleri (LAF, KAF) kullanılmıştır.

Ayrımlaştırma analizlerinin yapılması için öncelikle sismik olayların kaynak türlerine ait bir bilgi girişi yapılması gerekmektedir. Dalga şekillerindeki *P* ve *S* dalga genlikleri, *P* dalgası ilk hareket yönü, koda dalgası azalımı ve *Rg* dalga fazlarının gözlenmesi gibi görsel olarak olayların kaynak türleri tanımlanmıştır. Yasal olmayan patlatmaların olabileceği ihtimalinden dolayı oluş zamanları, mikro büyüklükteki olaylar olduğu için de konum ve derinlik gibi parametrelerde ortaya çıkabilecek muhtemel hatalar ihmal edilmiştir. Böylece herhangi bir olaya ait dalga şeklinden doğal veya yapay kaynaklı sarsıntı olduğu görsel olarak belirlenmiştir (Şekil 3). Bu görsel tayin işlemine "ilk tahmin" adı verilmektedir. KRDAE-BDTİM kataloglarında kaynak türü belirlenmesi işleminin herhangi bir sayısal analiz yapılmadan gözleme bağlı ve alansal olarak yapıldığı bilinmektedir. Böylece, bu çalışmada kaynak türürlerinin ilk tanımlamalarının yapılması ile daha güvenilir bir yol izlenileceği ön görülmüştür.

Genlik oranı yöntemi ile düşey bileşen sismogramında gözlenen en yüksek *P* ve *S* dalga genliklerinin birbirlerine oranı ile en yüksek *S* dalga genlik değerinin logaritması alınmaktadır. Bu durum deprem kayıtlarında *S* dalga genliklerinin *P* dalga genliklerine nazaran daha yüksek genlikli olması ile yapay sarsıntılarda da durumun tam tersinin gözükmesi prensibi üzerine geliştirilmiştir (Baumgard ve Young, 1990; Wüster, 1993).

Karmaşıklık yönteminde ise yine düşey bileşen sismogramı, *P* dalgası ile *S* dalgası varış zamanı arası birinci pencere (t_0 t_1), belirtilen sürenin *S* dalgası varış zamanından sonrasına eklenmesi de ikinci pencere (t_1 t_2) olarak iki ayrı pencereye ayrılır. Her iki pencerede bulunan sinyallerin güçleri s²(t) hesaplanarak birbirine oranlanır ve bu değere karmaşıklık-C değeri adı verilir (Eşitlik 1) (Gitterman ve Shapira, 1993; Arai ve Yoshida, 2004). Sonrasında ise pencerelerin bütününe yüksek ve alçak olmak üzere iki ayrı band geçişli filtre (h_1 - h_2 , l_1 - l_2) uygulanarak sinyalin spektral genliği a(f) hesaplanır. Bu çalışmada kullanılan sismik olayların enerjileri ve kayıt edildikleri istasyona olan uzaklıklarından dolayı l_1 , l_2 , h_1 ve h_2 sırasıyla 1, 5, 5, 10 Hz olarak optimum şekilde belirlenmiştir. İki ayrı filtre ile hesaplanan spektral genlikleri birbirine oranlanır ve spektral oran-Sr adı verilen değer elde edilir (Eşitlik 2) (Gitterman ve Shapira, 1993; Arai ve Yoshida, 2004). Doğal kaynaklı olaylarda sismik dalgaların daha uzun bir zaman penceresinde değişken frekans içeriğine ve genliklere sahip olduğu bilinirken, yapay kaynaklı olaylarda bu zaman aralığının daha dar olduğu, frekansların ve genliklerin daha spesifik kaldığı gözlenmiştir (Beck ve Wallace, 1997; Yılmaz vd., 2013; Yavuz vd., 2019a; Sertçelik vd., 2020).

$$C = \int_{t_1}^{t_2} s^2(t) dt / \int_{t_0}^{t_1} s^2(t) dt$$
(1)
Sr = $\int_{h_1}^{h_2} a(f) df / \int_{l_1}^{l_2} a(f) df$ (2)

Genlik oranı ve karmaşıklık yöntemlerinden elde edilen parametrelerin "ilk tahmin" bilgisi ile değerlendirilmesi yapıldığında ayrımlaştırmanın gerçekleştirilebilmesi için bazı istatistiksel yaklaşımlara ihtiyaç vardır. Bu çalışmada ise Lineer ve Karesel Ayrımlaştırma Fonksiyonları (LAF, KAF) kullanılarak sismik olayların sınıflandırılması yapılmıştır. Ayrımlaştırma analizleri, normal dağılımlar ile oluşturulmuş farklı gruplardaki verilerin sınıflandırılması amacıyla kullanılmaktadır (Fisher, 1936; Seber, 1984; Krzanowski, 1988). Örnek gruplarını en iyi şekilde ayıran ve lineer veya karesel olarak elde edilen denklemler aracılığıyla değişken bölgeleri belirlemek amacıyla kullanılan fonksiyonlar regresyon analizi kullanarak iki veri grubunu sınıflamaktadır. LAF, tüm veri gruplarına ait tek bir kovaryans matrisi sağlarken, KAF aynı kovaryans matrisini her bir grup için sağlamaktadır. Kovaryans matrisi için daha fazla esneklik sağlayan KAF, LAF'a göre daha iyi uyum sağlayıcı niteliğindedir. Böylece KAF'ın LAF'a göre daha karmaşık veri setlerini temsil ederek sınır denklemini ürettiği belirtilmektedir (Frank ve Hlavac, 2004; Kuyuk vd., 2014; Tüysüz ve Yaylalı, 2014). LAF ve KAF'a ait matris fonksiyonlarının gösterimi Eşitlik 3 ve 4'te sırasıyla verilmektedir.

$$\begin{array}{ll} F_{LAF}=K+L(1)^{*}x+L(2)^{*}y & (3) \\ F_{KAF}=K1+[x \ y]^{*}L1+\sum\{([x \ y]^{*}Q1)^{*}[x \ y]\} & (4) \end{array}$$

Denklemlerde K, sınır denkleminin sabit terimi; L ve Q ise sınır denkleminin sırasıyla lineer ve karesel katsayılarıdır.

5. Bulgular (Results)

Bu çalışmada, İstanbul Avrupa Yakası'nda 2007-2021 yılları arasında meydana gelen 195 adet M≤2.8 büyüklüğünde olaya ait KRDAE-BDTİM tarafından işletilen altı adet deprem istasyonunda kayıtlara geçen 270 adet dalga şekli için genlik oranı ve karmaşıklık yöntemleri ile Lineer ve Karesel Ayrımlaştırma Fonksiyonları kullanılarak ayrımlaştırma analizleri gerçekleştirilmiştir. Ayrımlaştırma fonksiyonlarının güvenli bir şekilde elde edilebilmesi için, istasyon bazlı olarak iki farklı sınıfa (deprem, patlatma) ait olayların dalga şekillerinin temiz ve operasyonel bir hataya sahip olmayan ve sayı olarak optimum düzeyde dağılımı ön planda tutularak görsel olarak ilk tahmin ile başlangıç kaynak türleri tanımlaması yapılmıştır. Ardından istasyon bazlı olarak iki farklı yöntem ve istatistiksel analiz kullanılarak ayrımlaştırma analizleri yapılmaya çalışılmıştır.

KAF'ın LAF'a göre kovaryans matrisi için daha fazla esneklik sağlamasından dolayı SLVT istasyonu hariç diğer beş istasyon için KAF'ın daha başarılı sonuçlar ortaya koyduğu görülmüştür. BGKT istasyondan kaydedilen verilere uygulanan genlik oranı yönteminin LAF analizi sonuçlarında %75.41 ile en düşük başarı oranı elde edilmiştir. Buna karşılık CTYL istasyonundaki dalga şekillerine uygulanan karmaşıklık analizi yönteminin KAF analizi sonuçları ise %100 ile en başarılı olarak hesaplanmıştır (Tablo 2).

Yöntem bazlı bakıldığında ise karmaşıklık yönteminin genlik oranı yöntemine göre daha başarılı sonuçlar sunduğu yine SLVT istasyonu hariç diğer beş istasyon için görülmüştür. Genlik oranı yönteminin başarı oranlarının %75.41 ile %88.89 arasında, karmaşıklık yönteminin ise %90.91 ile %100 arasında değiştiği hesaplanmıştır. Genlik oranı yönteminde dalga şekli üzerinde sadece zaman ortamında hesaplama yapılırken, karmaşıklık yönteminde sinyalin frekans ortamındaki enerjisi de hesaplanmaktadır. Böylece frekans ortamı analizleri ile başarı oranının da arttığı gözlenmiştir (Tablo 2).

Patlatma sinyallerinin depremlere göre daha başarılı sonuçlarla ayrımlaştırıldığı görülmektedir. Bu durum veri sayısı ihmal edildiğinde özellikle kısa dış merkez uzaklıklarında deprem dalgalarının patlatmalara göre daha karmaşık bir karakteristiğe sahip olmasından kaynaklıdır (Tablo 2).

SLVT istasyonunun kaydetmiş olduğu dalga şekilleri üzerinden yapılan analizlerde ise hem genlik oranı yönteminin karmaşıklık yöntemine göre hem de LAF'ın KAF'a göre daha başarılı sonuçlar ortaya koyduğu görülmüştür. Bu durum diğer beş istasyondan elde edilen sonuçlara göre tam ters bir durum ortaya koymaktadır. Öncelikle toplam veri sayısı diğer istasyonlardakinden daha azdır ve ilk tahmine göre deprem sayısının patlatma sayısına göre daha fazla olduğu görülmektedir. Patlatma sinyalleri, kısa dış merkez mesafelerinde daha sade karakteristiğe sahipken uzaklığın artması ile yer içi heterojenitesi, dalgaların girişimi, atenüasyon vb. nedenlerden dolayı da karmaşık bir içerik ortaya çıkarmaktadır. Depremler ise kaynak yapısı itibariyle çoğu zaman karmaşık bir mekanizmaya sahiptir. Böylece gerek veri sayısının azlığından gerekse de dalga şekillerindeki muhtemel karmaşıklıktan dolayı da söz konusu istasyondaki sonuçların diğer istasyonlardan farklı çıktığı önerilmektedir.

Elde edilen ayrımlaştırma fonksiyonları istasyon bazlı olarak Şekil 4-9 arasında, analiz sonuçlarının sayısal bilgileri ise yine istasyon bağımlı olarak Tablo 2'de gösterilmektedir.

Şekil 4. BGKT istasyonuna ait a) genlik oranı yöntemi Lineer Ayrımlaştırma Fonksiyonu b) genlik oranı yöntemi Karesel Ayrımlaştırma Fonksiyonu c) karmaşıklık yöntemi Lineer Ayrımlaştırma Fonksiyonu d) karmaşıklık yöntemi Karesel Ayrımlaştırma Fonksiyonu grafikleri. (The graphs for the station BGKT a) amplitude ratio method Linear Discriminant Function b) amplitude ratio method Quadratic Discriminant Function c) complexity method Linear Discriminant Function d) complexity method Quadratic Discriminant Function)

Şekil 6. CTYL istasyonuna ait a) genlik oranı yöntemi Lineer Ayrımlaştırma Fonksiyonu b) genlik oranı yöntemi Karesel Ayrımlaştırma Fonksiyonu c) karmaşıklık yöntemi Lineer Ayrımlaştırma Fonksiyonu d) karmaşıklık yöntemi Karesel Ayrımlaştırma Fonksiyonu grafikleri. (The graphs for the station CTYL a) amplitude ratio method Linear Discriminant Function b) amplitude ratio method Quadratic Discriminant Function c) complexity method Linear Discriminant Function d) complexity method Quadratic Discriminant Function)

Şekil 7. ISK istasyonuna ait a) genlik oranı yöntemi Lineer Ayrımlaştırma Fonksiyonu b) genlik oranı yöntemi Karesel Ayrımlaştırma Fonksiyonu c) karmaşıklık yöntemi Lineer Ayrımlaştırma Fonksiyonu d) karmaşıklık yöntemi Karesel Ayrımlaştırma Fonksiyonu grafikleri. (The graphs for the station ISK a) amplitude ratio method Linear Discriminant Function b) amplitude ratio method Quadratic Discriminant Function c) complexity method Linear Discriminant Function d) complexity method Quadratic Discriminant Function)

Şekil 8. KLYT istasyonuna ait a) genlik oranı yöntemi Lineer Ayrımlaştırma Fonksiyonu b) genlik oranı yöntemi Karesel Ayrımlaştırma Fonksiyonu c) karmaşıklık yöntemi Lineer Ayrımlaştırma Fonksiyonu d) karmaşıklık yöntemi Karesel Ayrımlaştırma Fonksiyonu grafikleri. (The graphs for the station KLYT a) amplitude ratio method Linear Discriminant Function b) amplitude ratio method Quadratic Discriminant Function c) complexity method Linear Discriminant Function d) complexity method Quadratic Discriminant Function)

Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr
Sr<

Tablo 2. Tüm istasyonlara ait yöntem ve istatistiksel yaklaşım bazlı analiz sonuçları. LAF: Lineer Ayrımlaştırma Fonksiyonu,
KAF: Karesel Ayrımlaştırma Fonksiyonu, D: Deprem, P: Patlatma, H-D: Hatalı Deprem, H-P: Hatalı Patlatma. (Method and
statistical approach based analyses results for all stations. LAF: Linear Discriminant Function, KAF: Quadratic Discriminant
Functions, D: Earthquake, P: Blast, H-D: Incorrect Earthquake, H-P: Incorrect Blast)

İstasyon	Vöntem	İstatistiksel Vaklasım		S	ауі		Başa	(%)	
istusyon	Tontom	istatistiniser runnayini	D	Р	H-D	H-P	D	Р	Genel
		İlk Tahmin	14	108	-	-	-	-	-
	Contile Orene	LAF	9	83	5	25	64.29	76.85	75.41
DCVT	Geniik Orani	KAF	7	86	7	22	50.00	79.63	76.23
DGNI	Kanmaaililit	LAF	11	101	3	7	78.57	93.52	90.98
	Karmaşıklık	KAF	11	101	3	7	78.57	93.52	90.98
		Sonuç	14	108	-	-	-	-	-
		İlk Tahmin	13	23	-	-	-	-	-
	Cenlik Oranı	LAF	10	22	3	1	76.92	95.65	88.89
CTKS	dennik orani	KAF	10	22	3	1	76.92	95.65	88.89
CIRS	Karmasıklık	LAF	10	23	3	-	76.92	100.00	91.67
	Karmaşıklık	KAF	13	22	-	1	100.00	95.64	97.22
		Sonuç	11	25	-	-	-	-	-
		İlk Tahmin	14	10	-	-	-	-	-
	Genlik Oranı	LAF	11	8	3	2	78.57	80.00	79.17
СТУІ	Gennik Orani	KAF	11	10	3	-	78.57	100.00	87.50
CITE	Karmasıklık	LAF	12	10	2	-	85.71	100.00	91.67
	Rai maşıklık	KAF	14	10	-	-	100.00	100.00	100.00
		Sonuç	14	10	-	-	-	-	-
		İlk Tahmin	8	36	-	-	-	-	-
	Genlik Oranı	LAF	4	30	4	6	50.00	83.33	77.27
ISK		KAF	4	32	4	4	50.00	88.89	81.82
1011	Karmasıklık	LAF	8	32	-	4	100.00	88.89	90.91
		KAF	8	33	-	3	D - 64.29 50.00 78.57 78.57 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92 70.00 - 50.00 100.00 - 50.00 100.00 - 77.78 77.78 77.78 77.78 77.78 77.78 77.78 72.73 63.64 -	91.67	93.18
		Sonuç	9	35	-	-	-	-	-
		Ilk Tahmin	9	19	-	-	-	-	-
	Genlik Oranı	LAF	7	17	2	2	77.78	89.47	85.71
KLYT		KAF	7	17	2	2	77.78	89.47	85.71
	Karmasıklık	LAF	7	19	2	-	77.78	100.00	92.86
		KAF	8	18	1	1	88.89	97.74	92.86
-		Sonuç	8	20	-	-	-	-	-
			11	5	-	-	-	-	-
	Genlik Oranı	LAF	10	5		-	5 64.29 76.85 2 50.00 79.63 78.57 93.52 78.57 93.52 78.57 93.52 78.57 93.52 76.92 95.65 76.92 95.65 76.92 100.00 100.00 95.64 - - 78.57 80.00 78.57 100.00 78.57 80.00 78.57 100.00 85.71 100.00 100.00 100.00 50.00 83.33 50.00 83.33 50.00 83.89 100.00 91.67 - - - - 77.78 89.47 77.78 89.47 77.78 89.47 77.78 100.00 88.89 97.74 - - - - 90.91 100.00	93.75	
SLVT		KAF	8	5	3	-		81.25	
	Karmaşıklık	LAF	8	4	3	1		80.00	/5.00
	,	KAF	/	5	4	-	63.64	100.00	75.00
		Sonuç	11	5	-	-	-	-	-

İstasyon bazlı analizleri yapılan verilerin her bir yöntem ve istatistiksel yaklaşım için elde edilen sonuçları "ilk tahmin" ile kıyaslanarak başarı oranları hesaplanmıştır. Bir olaya ait kaynak türü belirlenirken daha başarılı olan analizden elde edilen parametrenin de genel sonuca etkisi daha büyük olacaktır. Bu şekilde her bir olayın kaynak türünün tanımlaması yapılmıştır. Elde edilen sonuçlara göre 195 adet sismik olayın 28 tanesinin deprem, 167 tanesinin ise patlatma kaynaklı olduğu sonucuna varılmıştır (Şekil 10, Ek 1).

Şekil 10. Büyüklüğe göre çizilen, analizlere dayalı kaynak türü dağılımları (Source type distribution based on analyses, plotted by magnitude)

6. Sonuçlar ve Tartışma (Conclusions and Discussion)

Bu çalışmada, İstanbul ili Avrupa Yakasında kayıtlara geçen 195 adet sismik olayın KRDAE-BDTİM tarafından işletilen altı adet istasyonundaki 270 adet dalga şekli kullanılmıştır. Sinyaller görsel olarak incelenerek, "ilk tahmin" adı verilen bir kaynak türü tanımlaması yapılmıştır. Ardından, genlik oranı ve karmaşıklık yöntemleri ile Lineer ve Karesel Ayrımlaştırma Fonksiyonları kullanılarak kaynak türü belirleme analizi yapılmıştır.

İstasyon bazlı uygulama yapılan bu çalışmada, karmaşıklık yönteminin genlik oranı yöntemine nazaran daha başarılı sonuçlar sunduğu; keza, Karesel Ayrımlaştırma Fonksiyonlarının Lineer Ayrımlaştırma Fonksiyonlarına göre daha başarılı ayrımlaştırma gerçekleştirdiği tespit edilmiştir. Veri dağılımı göz önünde bulundurulduğunda ise bazı durumlarda önerilen yöntem ve istatistiksel analizin başarı oranının daha geride kaldığı görülmüştür. Yöntemler ve istatistiksel analizlerin başarı oranları göz önünde bulundurulduğunda ise her bir sismik sinyal için kaynak türü ayrımı başarı oranları üzerinden yapılmıştır. Birden fazla istasyonun kaydettiği aynı olay için de benzer ağırlıklandırma üzerinden kaynak türü belirlenmeye çalışılmıştır. Sonuç olarak, 195 adet sismik olayın 28 tanesinin doğal, 167 tanesinin ise yapay kaynaklı olduğu elde edilmiştir.

Deprem ve patlatma sinyallerinin karakteristikleri birbirinden farklı olarak önerilse de dış merkez uzaklığının artması ile sinyalin karakteristiğindeki değişimden dolayı dalga şeklinin içeriği değişmeye başlamaktadır. Böylece gerek zaman gerekse de frekans ortamı yöntemleri ile sinyalin yapısı incelenerek kaynak türü analizi yapılabilmektedir. Kimi zaman görsel inceleme sonucu kaynak türü taraması yapılabilse de özellikle uzaklık, yer yapısı, atenüasyon vb. gibi durumlar ile değişen dalga şekline çoklu yöntemler ile analizler uygulanarak daha net ve güvenilir sonuçların elde edilmesi önerilmektedir. Ayrıca, elde edilen ayrımlaştırma fonksiyonları ile başarı oranları göz önünde bulundurulduğunda, bölgede meydana gelecek mikro sismik aktivitenin kaynak türünü belirlemek amacıyla bu çalışmadan elde edilen istasyon bazlı ayrımlaştırma fonksiyonlarının kullanılması tavsiye edilmektedir. Mikro sismik aktivitenin kullanıldığı bilimsel çalışmalarda, bu çalışmada olduğu gibi küçük büyüklükteki olayların kaynak türlerinin güvenilir bir şekilde tanımlanması büyük önem arz etmektedir. Sağlıklı sonuçlara erişmek için, optimum düzeyde veri sayısı değerlendirilerek çok sayıda yöntemin bir arada kullanılması önerilmektedir. Gerek geçmiş katalogların yenilenmesi gerekse de gelecekte meydana gelecek sismik olayların detaylı bir şekilde irdelenmesi ile hata payları en aza indirilerek en güvenilir sonuçların sunulması elzemdir. Böylece sismoloji, sismotektonik, depremsellik, deprem tehlike analizleri gibi çalışmalar için daha güvenilir kaynak türü tanımlamasına sahip homojen deprem katalogları ortaya konularak, araştırmacıların zaman kaybı yaşadığı ikincil çalışmaların da önüne geçilecektir.

Teşekkür (Acknowledgement)

Sismik veriler Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi (KRDAE-BDTİM) sunucusundan indirilmiştir. Şekiller ArcGIS 10.8.1, GMT (Wessel ve Smith, 1998), SAC (Goldstein vd., 2003), MATLAB 2015a ve Google Earth Pro kullanılarak çizilmiştir. Değerli yorumları ve katkılarından dolayı alan editörü Prof. Dr. Çağlayan Balkaya'ya ve hakemlere, Jeoloji Müh. Tarık Talay'a, Harita Tek. Nurcan Seyyar'a ve İBB Deprem ve Zemin İnceleme Şube Müdürlüğüne en içten teşekkürlerimi sunarım.

Çıkar Çatışması (Conflict of Interest)

Yazar tarafından herhangi bir çıkar çatışması beyan edilmemiştir. No conflict of interest was declared by the author.

Kaynaklar (References)

AFAD, 2018. Türkiye Deprem Tehlike Haritası.

- Aki, K., 1995. Discriminating Underground Explosions from Earthquakes Using Seismic Coda Waves. University of Southern California Los Angeles Center for Earth Sciences.
- Allmann, B.P., Shearer, P.M., Hauksson, E., 2008. Spectral discrimination between quarry blasts and earthquakes in southern California. Bulletin of the Seismological Society of America, 98 (4), 2073-2079.
- Arai, N., Yosida, Y., 2004. Discrimination by short-period seismograms. International Institute of Seismology and Earthquake Engineering, Building Research Institute (IISEE). Lecture Note, Global Course, Tsukuba, Japan, 10.
- Ataeva, G., Gitterman, Y., Shapira, A., 2017. The ratio between corner frequencies of source spectra of P-and S-waves—a new discriminant between earthquakes and quarry blasts. Journal of Seismology, 21 (1), 209-220.
- Badawy, A., Gamal, M., Farid, W., Soliman, M.S., 2019. Decontamination of earthquake catalog from quarry blast events in northern Egypt. Journal of Seismology, 23 (6), 1357-1372.
- Barka, A.A., 1992. The north Anatolian fault zone. Annales tectonicae, 6, 164-195.
- Baumgardt, D.R., Young, G.B., 1990. Regional seismic waveform discriminants and case-based event identification using regional arrays. Bulletin of the Seismological Society of America, 80 (6B), 1874-1892.
- Beck, S.L., Wallace, T.C., 1997. Broadband seismic recordings of mining explosions and earthquakes in South America. Arizona University Tucson Dept of Geoosciences.
- Budakoğlu, E., Horasan, G., 2018. Classification of seismic events using linear discriminant function (LDF) in the Sakarya region, Turkey. Acta Geophysica, 66 (5), 895-906.
- Carr, D.B., Garbin, H.D., 1998. Discriminating ripple-fired explosions with high-frequency (> 16 Hz) data. Bulletin of the Seismological Society of America, 88 (4), 963-972.
- Ceydilek, N., Horasan, G., 2019. Manisa ve çevresinde deprem ve patlatma verilerinin ayırt edilmesi. Türk Deprem Araştırma Dergisi, 1 (1), 26-47.
- Dalgıç, S., 2004. Factors affecting the greater damage in the Avcılar area of Istanbul during the 17 August 1999 Izmit earthquake. Bulletin of Engineering Geology and the Environment, 63 (3), 221-232.
- Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F., 2013. Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye. ISBN: 978-605-5310-56-1.
- Ergintav, S., Demirbağ, E., Ediger, V., Saatçılar, R., Inan, S., Cankurtaranlar, A., Dikbaş, A., Baş, M., 2011. Structural framework of onshore and offshore Avcılar, Istanbul under the influence of the North Anatolian fault. Geophysical Journal International, 185 (1), 93-105.
- Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7 (2), 179-188.
- Franc, V., Hlavác, V., 2004. Statistical pattern recognition toolbox for Matlab. Prague, Czech: Center for Machine Perception, Czech Technical University.
- Gitterman, Y., Pinsky, V., Shapira, A., 1998. Spectral classification methods in monitoring small local events by the Israel seismic network. Journal of Seismology, 2 (3), 237-256.
- Gitterman, Y., Shapira, A., 1993. Spectral discrimination of underwater explosions. Israel Journal of Earth Sciences, 42 (1), 37-44.
- Goldstein P., Dodge D., Firpo M., Minner L., 2003. SAC2000: Signal processing and analysis tools for seismologists and engineers, in: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) invited contribution to "The IASPEI international handbook of earthquake and engineering seismology". AcademicPress, London.

- Hedlin M.A., Minster J.B., Orcutt, J.A., 1989. The time-frequency characteristics of quarry blasts and calibration explosions recorded in Kazakhstan, USSR, Geophysical Journal International, 99 (1), 109-121.
- Hedlin M.A., Minster J.B., Orcutt J.A., 1990. An automatic means to discriminate between earthquakes and quarry blasts, Bulletin of the Seismological Society of America, 80 (6B), 2143-2160.
- Horasan, G., Güney, A.B., Küsmezer, A., Bekler, F., Öğütçü, Z., Musaoğlu, N., 2009. Contamination of seismicity catalogs by quarry blasts: An example from Istanbul and its vicinity, northwestern Turkey. Journal of Asian Earth Sciences, 34 (1), 90-99. İBB, 2011. İstanbul İl Alanının Jeolojisi.
- İBB, 2020. İstanbul İli Hevelan Bilgi Envanteri Projesi İlce Hevelan Bilgi Kitapçıkları.
- Kartal, Ö.F., Horasan, G., 2011. Trabzon ve civarındaki deprem ve patlatma verilerinin birbirinden ayırt edilmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15 (1), 68-74.
- Kekovalı, K., Kalafat, D., Deniz, P., 2012. Spectral discrimination between mining blasts and natural earthquakes: application to the vicinity of Tunbilek mining area, western Turkey. International Journal of Physical Sciences, 7 (35), 5339-5352.
- Krzanowski, W.J., 1988. Principles of multivariate analysis: a user's perspective. Clarendon.
- Koch, K., Fäh, D., 2002. Identification of earthquakes and explosions using amplitude ratios: the Vogtland area revisited. In Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Seismic Event Discrimination and Identification (pp. 735-757). Birkhäuser, Basel.
- Kolaj, M., 2018. Discriminating between low-magnitude shallow earthquakes and road construction blasts near Big Salmon River, New Brunswick, Canada. Seismological Research Letters, 89 (5), 1966-1976.
- Korrat, I.M., Lethy, A., ElGabry, M.N., Hussein, H.M., Othman, A.S., 2022. Discrimination Between Small Earthquakes and Quarry Blasts in Egypt Using Spectral Source Characteristics. Pure and Applied Geophysics, 179 (2), 599-618.
- Kuyuk, H.S., Yildirim, E., Dogan, E., Horasan, G., 2011. An unsupervised learning algorithm: application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul. Natural Hazards and Earth System Sciences, 11 (1), 93-100.
- Kuyuk, H.S., Yildirim, E., Dogan, E., Horasan, G., 2014. Clustering seismic activities using linear and nonlinear discriminant analysis. Journal of Earth Science, 25 (1), 140-145.
- Li, Z., Meier, M.A., Hauksson, E., Zhan, Z., Andrews, J., 2018. Machine learning seismic wave discrimination: Application to earthquake early warning. Geophysical Research Letters, 45 (10), 4773-4779.
- MATLAB Release 2015, The MathWorks, Inc, Natick, Massachusetts, United States.
- McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., Tealeb, A., 2003. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International, 155 (1), 126-138.
- Okay, A.I., Tüysüz, O., 1999. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156 (1), 475-515.
- Öğütçü, Z., Horasan, G., Kalafat, D., 2011. Investigation of microseismic activity sources in Konya and its vicinity, central Turkey. Natural Hazards, 58 (1), 497-509.
- Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., ... Karam, G., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111 (B5).
- Seber, G.A., 2009. Multivariate observations. John Wiley & Sons.
- Sertçelik, F., Başer, O. (2010). Güney Ege Bölgesi'nde yapay ve doğal kaynaklı titreşimlerin ayırt edilmesi. Yerbilimleri, 31 (3), 141-168.
- Sertçelik, F., Yavuz, E., Birdem, M., Merter, G., 2020. Discrimination of the natural and artificial quakes in the Eastern Marmara Region, Turkey. Acta Geodaetica et Geophysica, 55 (4), 645-665.
- Su, F., Aki, K., Biswas, N.N., 1991. Discriminating quarry blasts from earthquakes using coda waves. Bulletin of the Seismological Society of America, 81 (1), 162-178.
- Şen, Ş., 2007. A fault zone cause of large amplification and damage in Avcılar (west of Istanbul) during 1999 Izmit earthquake. Natural Hazards, 43 (3), 351-363.
- Şengör, A.M.C., Tüysüz, O., Imren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X., Rangin, C., 2005. The North Anatolian fault: A new look. Annual Review of Earth and Planetary Sciences, 33, 37-112.
- Tan, A., Horasan, G., Kalafat, D., Gülbağ, A., 2021. Discrimination of earthquakes and quarries in the Edirne district (Turkey) and its vicinity by using a linear discriminate function method and artificial neural networks. Acta Geophysica, 69 (1), 17-27.
- Tezcan, S.S., Kaya, E., Bal, I.E., Özdemir, Z., 2002. Seismic amplification at Avcılar, Istanbul. Engineering structures, 24 (5), 661-667.
- Tur, H., Hoskan, N., Aktas, G., 2015. Tectonic evolution of the northern shelf of the Marmara Sea (Turkey): interpretation of seismic and bathymetric data. Marine Geophysical Research, 36 (1), 1-34.
- Tüysüz N., Yaylalı G., 2005. Jeoistatistik Kavramlar ve Bilgisayarlı Uygulamalar, Karadeniz Teknik Üniversitesi Yayınları, Trabzon.
- Ursino, A., Langer, H., Scarfi, L., Di Grazia, G., Gresta, S., 2001. Discrimination of quarry blasts from tectonic microearthquakes in the Hyblean Plateau (Southeastern Sicily). Annals of Geophysics, 44 (4).
- Wessel P., Smith W.H.F., 1998. New, improved version of generic mapping tools released. EOS Trans. Am. Geophys., 79(47), 579.
- Wüster, J., 1993. Discrimination of chemical explosions and earthquakes in central Europe—a case study. Bulletin of the Seismological Society of America, 83 (4), 1184-1212.
- Yavuz, E. (2022). Refining micro-seismic catalogs around Seydişehir, Turkey. Annals of Geophysics, 65 (5).
- Yavuz, E., Sertçelik, F., Livaoğlu, H., Irmak, T.S., 2019a. Gaziantep-Kahramanmaraş Bölgesinde Meydana Gelen Deprem ve Taş Ocağı Patlatmalarının Zaman ve Frekans Ortamı Yöntemleri ile Sınıflandırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8 (2), 642-651.
- Yavuz, E., Sertçelik, F., Livaoğlu, H., Woith, H., Lühr, B.G., 2019b. Discrimination of quarry blasts from tectonic events in the Armutlu Peninsula, Turkey. Journal of Seismology, 23 (1), 59-76.
- Yılmaz, Ş., Bayrak, Y., Çınar, H., 2013. Discrimination of earthquakes and quarry blasts in the eastern Black Sea region of Turkey. Journal of Seismology, 17 (2), 721-734.

la	yiai ili i	ongheri ve ka	aynak turieri	I ne mon	nation and	the source	types of the
		Olus	Olus	Enlem	Boylam	Büyüklük	Kaynak
	No	Tarihi	7amanı	(oK)	(0D)	(M)	Türü
	1	01.00.2007	2010.04.50	41.01(2)	20,40(0	<u>(m)</u>	Dulu
	1	01.08.2007	08:10:04.50	41.0162	28.4968	2.5	Patiatma
	2	01.12.2007	14:47:35.70	41.1100	28.8900	2.6	Patlatma
	3	06 12 2007	09.47.43.20	41 1 2 0 0	28 8900	2.6	Patlatma
	3	00.12.2007	07.47.43.20	41.1200	20.0700	2.0	Tatiatilia
	4	13.03.2008	14:38:20.80	41.1300	28.8500	2.3	Patlatma
	5	13.03.2008	14:48:54.37	41.0868	28.8347	2.4	Patlatma
	6	14.03.2008	16.24.51.06	41.0863	28 8757	24	Patlatma
	0	14.03.2008	10.24.31.00	41.0803	20.0737	2.4	Fatiatilla
	7	09.04.2008	12:18:34.18	41.0235	28.7718	2.5	Deprem
	8	08.09.2008	10:06:32.99	41.0673	28.8887	2.3	Patlatma
	0	00.00.2000	15,07,07.21	41.0510	20.0640	10	Datlatma
	9	09.09.2008	13.07.07.31	41.0310	20.0040	1.0	Fatlatilla
	10	09.09.2008	17:52:17.35	41.1105	28.8845	2.4	Patlatma
	11	11.09.2008	12:42:27.93	41.3278	28.2705	2.6	Patlatma
	12	20 10 2000	16.04.40.70	410650	20 26 10	20	Donrom
	12	20.10.2000	10.04.49.79	41.0030	20.3010	2.0	Deprein
	13	29.01.2009	12:50:30.09	41.4032	28.3888	2.3	Patlatma
	14	30.03.2009	04:00:06.10	41.0187	28.9508	2.7	Deprem
	15	16.04.2000	12.40.56.61	41 2240	20 2002	1.0	Datlatma
	15	10.04.2009	13:40:50.01	41.5546	20.2002	1.0	Patiatilia
	16	10.06.2009	14:34:09.92	41.4988	28.3730	2.7	Patlatma
	17	26.06.2009	11:34:50.28	41.3522	28.2903	2.5	Patlatma
	10	02.01.2010	10.51.40.06	41 2442	20.2512	2.0	Donnom
	10	05.01.2010	19:51:49.06	41.2445	20.2312	2.0	Deprem
	19	02.07.2010	15:16:20.25	41.4763	28.3265	2.6	Patlatma
	20	06.07.2010	13:39:11.24	41.3270	28.2718	2.6	Patlatma
	21	20.01.2012	00.17.04.27	41.2502	20.2550	2.0	Dennen
	41	20.01.2012	00:17:04.27	41.2503	20.2550	4.4	Deprem
	22	13.02.2012	14:32:47.57	41.1330	28.8667	2.4	Patlatma
	23	20.03 2012	09:23:36.24	41.1643	28,7718	1.7	Patlatma
	24	22 02 2012	15.04.25 45	A1 124E	20 0540	1.0	Datlatma
	24	23.03.2012	13.00:25.45	41.1245	20.0000	1.0	rauauna
	25	01.04.2012	07:34:22.61	41.4337	28.4610	1.9	Deprem
	26	04.04.2012	14:02:22.66	41.0908	28.8725	1.5	Patlatma
	27	22 04 2012	12,15,26.05	41 4277	20.07.20	2.0	Datlater -
	41	23.04.2012	13.13:20.05	41.43//	20.2303	4.1	rauauna
	28	01.06.2012	07:29:27.80	41.0890	28.3652	2.5	Deprem
	29	07.06.2012	11:17:06.98	41.3705	28.2647	2.0	Deprem
	20	12.06.2012	10.57.01.40	41 1 2 1 2	20.2660	2.0	Donnom
	30	15.06.2012	10:57:01.46	41.1212	20.3000	2.0	Deprem
	31	15.07.2012	06:20:09.74	41.5415	28.4883	2.2	Deprem
	32	07.12.2012	04:31:43.23	41.5480	28.4627	2.5	Deprem
	22	18 07 2013	16.04.3251	41 3825	28 4088	1.8	Patlatma
	33	10.07.2013	10.04.52.51	41.3023	20.4000	1.0	Fatiatilla
	34	30.09.2013	12:58:47.29	41.4087	28.3257	1.9	Deprem
	35	18.02.2014	00:38:10.39	41.0435	28.5608	2.4	Deprem
	26	10.06.2014	14.45.50.15	41 2040	20.0000	1.2	Detletme
	30	10.00.2014	14.45.50.15	41.3040	20.7907	1.2	Fatlatilla
	37	24.06.2014	18:07:58.83	41.4692	28.3228	1.5	Patlatma
	38	25.12.2014	13:17:03.68	41.3452	28.3130	1.7	Patlatma
	20	05 02 2015	10.50.02.20	41.2245	20.2047	17	Datlatma
	39	05.02.2015	10:50:03.39	41.3245	28.2947	1./	Patlatina
	40	24.02.2015	12:10:28.31	41.3147	28.9663	1.3	Patlatma
	41	13.04.2015	14.44.03.93	41 3 3 9 7	28 3033	1.5	Patlatma
	42	02.05.2015	10.2(.01.2)	41 2007	20.0005	1.0	Detleture
	42	02.05.2015	10:26:01.26	41.3007	28.9805	1.4	Patlatma
	43	19.11.2015	10:27:52.17	41.5263	28.3773	2.0	Deprem
	44	24 11 2015	10.06.15.28	41 2848	28 9942	14	Patlatma
	45	02.12.2015	10.00.15.20	41.2010	20.7712	2.1	Dulu
	45	03.12.2015	10:36:56.52	41.3527	28.7250	Z.1	Patlatma
	46	01.03.2016	10:49:52.22	41.5093	28.3725	1.9	Patlatma
	47	17 12 2016	01.23.17.07	41 5033	28 5442	23	Denrem
	47	17.12.2010	01.23.17.07	41.5055	20.3442	2.5	Deprem
	48	11.01.2017	02:12:53.54	41.4533	28.4468	2.7	Deprem
	49	22.03.2017	10:10:34.17	41.3463	28.7272	1.7	Patlatma
	50	12.05.2017	10.11.51.25	41 3307	28 7868	16	Patlatma
	50 F4	14.05.2017	10.12.46.20	41 2110	20.7000	1.0	Detle
	51	14.05.2017	10:12:46.20	41.2118	28.6792	1.5	Patiatma
	52	14.06.2017	10:43:43.07	41.3145	28.8975	1.7	Patlatma
	53	30.06 2017	09:56:32.88	41 1810	28 6825	1.8	Patlatma
	E 4	11 00 2017	10.41.04.00	41 4100	20 4702	2.0	Donrom
	54	11.00.2017	17.41:04.99	41.4100	20.4/03	2.5	Deprein
	55	23.08.2017	09:57:04.49	41.2972	28.9343	1.5	Patlatma
	56	11.09.2017	09:48:31.47	41.4063	28.6620	1.9	Deprem
	57	15 09 2017	09.30.04 72	41 2318	28 6337	22	Denrem
	57	10.00.2017	00.01.42.45	41 2252	20.0007	1 /	Depicin
	58	18.09.2017	09:01:42.65	41.3352	28.3212	1.4	Patlatma
	59	22.09.2017	09:58:35.09	41.2890	28.8567	1.5	Patlatma
	60	24 09 2017	09.29.27 38	41,2932	28,8572	14	Patlatma
	(1	24.00.2017	10.05.20.55	41 2257	20.0572	1.1	Datlat
	01	24.09.2017	10:05:30.55	41.2257	20.0522	1.9	ratiatma
	62	29.09.2017	13:48:01.82	41.1118	28.6055	1.7	Deprem
	63	03.10.2017	09:53:1930	41.2763	28 7698	1.9	Patlatma
	64	11 10 2017	12,15,21 72	41 10(2	20 6100	17	Denno
	04	11.10.201/	14:15:41.74	41.1963	20.0180	1./	Deprem
	65	13.11.2017	10:05:23.32	41.2322	28.6445	1.7	Patlatma
	66	14,11,2017	09:57:03.26	41 2332	28.6330	1.7	Patlatma
	67	15 11 2017	10.00.22.01	41 21 22	20.6112	1.0	Datletore
	07	15.11.201/	10:00:23.01	41.2122	20.0113	1.9	Patiatma
	68	17.11.2017	10:32:24.86	41.2017	28.6093	1.8	Patlatma
	69	17.11.2017	10:03.49.07	41,2185	28.6357	2.0	Patlatma
	70	10 11 2017	00.20.21.27	41 2005	20.0507	1.0	Datlat
	70	18.11.2017	09:28:31.27	41.2985	28.8597	1.3	Patlatma
	71	23.11.2017	13:15:04.01	41.2630	28.6538	1.8	Patlatma
	72	25,11,2017	10:24:55.41	41.2477	28 6470	1.7	Patlatma
		25.11.2017	06.20.20.25	41.10.15	20.51/0	1.0	Declar
	73	25.11.2017	06:29:39.27	41.1945	28.5665	1.8	Patlatma
	74	26.11.2017	11:10:31.44	41.2642	28.6118	1.3	Patlatma
	75	28,11,2017	14:23:13:90	41.2370	28 5617	1.7	Patlatma
	76	20 11 2017	12.27.22.24	41 2212	20 6252	1.6	Datlater -
	/0	20.11.2017	12:37:32.34	41.2213	20.0252	1.0	Pauatina
	77	30.11.2017	10:42:53.13	41.1862	28.6198	1.7	Patlatma
	78	30.11.2017	09:46:10.43	41.3013	28.5957	1.7	Patlatma

Ek 1. Olayların bilgileri ve kaynak türleri (The information and the source types of the events)

79	27.12.2017	10:01:29.61	41.3750	28.5338	1.5	Patlatma
		Ek	1. (devan	nı)		
Na	Oluş	Oluş	Enlem	Boylam	Büyüklük	Kaynak
NO	Tariĥi	Zamanı	(°K)	(°D)	(M)	Türü
80	07.01.2018	10:09:31.22	41.2528	28.7147	1.5	Patlatma
81	09.01.2018	09:59:19.69	41.2487	28.7058	1.2	Patlatma
82	03.02.2018	09:35:56.86	41.2447	28.7005	1.4	Deprem
83	15.03.2018	09:32:57.93	41.2577	28.7343	1.5	Patlatma
84	27.03.2018	11:30:55.38	41.0970	28.5778	1.4	Patlatma
85	06.04.2018	11:23:40.04	41.2857	28.8757	1.4	Patlatma
86	12.04.2018	08:51:47.01	41.0383	28.5155	1.4	Patlatma
87	13.04.2018	10:02:53.66	41.2917	28.8688	1.4	Patlatma
88	18.05.2018	10:25:47.06	41.3702	28.6877	1.5	Patlatma
89	21.05.2018	10:18:23.23	41.3158	28.8523	1.5	Patlatma
90	07.06.2018	09:43:08.56	41.3122	28.8/18	1.3	Patlatma
91	14.06.2018	09:24:54.05	41.2902	28.8873	1.3	Patlatma
92	04.07.2018	09.37.00.13	41.2033	28.8320	1.0	Patlatma
93	05.07.2018	09.35.55.36	41.2003	28,20,27	0.9	Patlatma
95	10.07.2018	09.39.12.58	41.2612	28 7073	1.7	Patlatma
96	11.07.2018	09:40:01 99	41.2012	28.6965	1.7	Patlatma
97	15.07.2018	07.42.32.72	41 1905	28.8410	0.7	Patlatma
98	18.07.2018	09:57:02.17	41,2197	28.8450	1.2	Patlatma
99	19.07.2018	09:24:59.01	41.2113	28.8402	1.2	Patlatma
100	01.08.2018	14:50:18.13	41.1193	28.8912	1.6	Patlatma
101	01.08.2018	09:44:51.54	41.2065	28.8273	1.1	Deprem
102	02.08.2018	14:47:33.58	41.1427	28.9172	1.5	Patlatma
103	03.08.2018	09:47:42.65	41.0980	28.8717	1.6	Patlatma
104	04.08.2018	14:45:43.63	41.1020	28.8783	1.7	Patlatma
105	08.08.2018	15:38:02.80	41.1170	28.8503	1.1	Patlatma
106	08.08.2018	09:46:49.67	41.5045	28.3728	1.3	Patlatma
107	08.08.2018	09:34:35.62	41.1927	28.8343	0.8	Patlatma
108	09.08.2018	14:46:12.21	41.1158	28.8773	1.1	Patlatma
109	09.08.2018	14:45:22.04	41.1112	28.8518	0.9	Patlatma
110	13.08.2018	14:44:47.63	41.1063	28.8827	2.0	Patlatma
111	14.08.2018	09:32:51.73	41.1988	28.8438	1.1	Patlatma
112	15.08.2018	14:45:30.53	41.1353	28.8680	1.1	Patlatma
113	15.08.2018	09:41:06.91	41.2115	28.8227	1.4	Patlatma
114	17.00.2010	09:41:15.56	41.0097	20.0773	0.8	Patlatina
115	18.08.2018	10.01.47.47	41.1223	28.8003	1.0	Patlatma
117	24.08.2018	09.39.23.95	41 1892	28.8487	1.1	Patlatma
118	27.08.2018	09:30:54.70	41.1915	28.8233	1.3	Patlatma
119	03.09.2018	10:11:07.00	41.2250	28.8328	1.1	Patlatma
120	11.09.2018	09:57:28.44	41.2078	28.8122	1.0	Patlatma
121	11.09.2018	09:33:15.32	41.2015	28.8128	0.8	Patlatma
122	23.09.2018	09:43:08.02	41.1160	28.8748	1.3	Patlatma
123	23.09.2018	09:36:36.20	41.1727	28.8257	0.6	Patlatma
124	10.10.2018	09:41:17.90	41.1797	28.8373	1.1	Patlatma
125	10.10.2018	09:33:36.05	41.1985	28.8303	1.0	Patlatma
126	11.10.2018	09:31:41.66	41.2153	28.8415	1.3	Patlatma
127	18.10.2018	09:25:08.22	41.1922	28.8260	1.0	Patlatma
128	20.10.2018	09:44:37.47	41.1190	28.8513	0.9	Patlatma
129	21.10.2018	09:29:43.02	41.1965	28.8357	0.9	Patlatma
130	03.11.2018	10:05:19.05	41.1187	28.8615	0.9	Patlatma
131	20.11.2018	09:49:11.02	41.1083	28.8603	1.5	Patlatma
132	04.01.2010	12.10.12.16	41.1100	20.0///	0.7 25	Patlatma
133	08.01.2019	11.50.22.97	41 1958	28 7077	1.5	Patlatma
135	01.02 2019	15:35:26:20	41.1257	28,7018	1.0	Patlatma
136	14.03.2019	16:02:09.39	41.1368	28.7148	1.4	Patlatma
137	25.03.2019	17:06:59.33	41.1477	28.7127	1.5	Patlatma
138	01.07.2019	09:45:44.77	41.1607	28.7877	0.9	Patlatma
139	02.07.2019	09:42:42.30	41.1802	28.7932	1.0	Patlatma
140	31.07.2019	16:31:44.68	41.2142	28.8925	1.5	Patlatma
141	03.10.2019	09:43:35.40	41.0753	28.8967	1.4	Patlatma
142	04.11.2019	14:43:01.61	41.2512	28.8857	1.4	Patlatma
143	10.12.2019	09:55:07.47	41.1557	28.8085	0.9	Patlatma
144	11.12.2019	14:44:05.58	41.2383	28.7737	0.8	Patlatma
145	23.12.2019	09:37:33.17	41.1827	28.7785	1.0	Patlatma
146	04.02.2020	09:45:39.76	41.1197	28.8512	1.2	Patlatma
147	18.02.2020	11:30:37.43	41.1117	28.9610	0.8	Patlatma
148	20.02.2020	09:17:50.41	41.2597	28.8807	1.3	Patlatma
149	26.02.2020	14:51:48.75	41.1773	28.7628	1.1	Patlatma
150	21 02 2020	15:18:25.71	41.08/7	20.9672	0.8	Patlatma
151	21.03.2020	10:00:20.33	41.192/	20./0/0	1.4	Patlatma
152	30.03.2020	10:03:14.19	41.2532	20.0050	1.2	Patiatma
153	28 04 2020	10.13.20.70	41 1012	20.7320	1 1	Patlatma
155	29.04 2020	10:46:43.87	41.5010	28.3947	1.1	Patlatma
156	30.04 2020	14:44.42.30	41 1827	28.7678	0.9	Patlatma
157	02.05.2020	09:47:28.60	41.1500	28.7878	0.8	Patlatma
					0.0	

79	27.12.2017	10:01:29.61	41.3750	28.5338	1.5	Patlatma	
Ek 1. (devamı)							
No	Oluș Tarihi	Oluş Zamanı	Enlem (ºK)	Boylam (°D)	Büyüklük (M)	Kaynak Türü	
80	07.01.2018	10.09.31.22	41 2528	28 7147	15	Patlatma	

158	01.06.2020	14:43:21.06	41.1325	28.7468	0.9	Deprem			
Ek 1. (devamı)									
No	Oluş	Oluş	Enlem	Boylam	Büyüklük	Kaynak			
NO	Tarihi	Zamanı	(°K)	(•D)	(M)	Türü			
159	11.06.2020	14:55:53.89	41.1390	28.8407	0.7	Patlatma			
160	16.07.2020	07:52:33.13	41.1617	28.7780	0.7	Patlatma			
161	24.09.2020	14:49:23.02	41.1323	28.9720	0.9	Patlatma			
162	02.10.2020	13:58:59.41	41.2070	28.6898	0.8	Patlatma			
163	06.10.2020	10:12:54.14	41.1827	28.8203	0.9	Patlatma			
164	22.10.2020	14:02:54.96	41.2032	28.7215	1.0	Patlatma			
165	17.11.2020	09:11:47.50	41.1555	28.7062	1.2	Patlatma			
166	24.11.2020	08:46:20.05	41.0995	28.9858	0.9	Patlatma			
167	11.01.2021	14:11:28.53	41.1120	28.7315	1.4	Patlatma			
168	12.01.2021	09:41:35.03	41.1560	28.7043	1.4	Patlatma			
169	31.01.2021	17:18:23.41	41.1133	28.9535	1.3	Patlatma			
170	04.02.2021	17:25:24.78	41.1117	28.9712	1.0	Patlatma			
171	11.02.2021	14:17:36.47	41.1407	28.7487	1.2	Patlatma			
172	27.03.2021	10:08:33.06	41.1612	28.7140	1.5	Patlatma			
173	03.04.2021	15:49:02.69	41.1072	28.9713	1.1	Patlatma			
174	06.04.2021	16:03:28.49	41.1175	28.9643	1.2	Patlatma			
175	17.04.2021	11:32:12.39	41.1827	28.7063	1.3	Patlatma			
176	23.04.2021	15:50:18.75	41.1080	28.9870	0.8	Patlatma			
177	23.04.2021	15:39:33.28	41.1018	28.9595	0.7	Patlatma			
178	16.05.2021	13:20:19.75	41.5168	28.4682	1.4	Deprem			
179	28.05.2021	09:45:22.43	41.2202	28.7110	1.3	Patlatma			
180	03.06.2021	10:01:23.25	41.1787	28.7645	1.2	Patlatma			
181	09.06.2021	15:13:44.12	41.1588	28.7585	1.4	Deprem			
182	11.06.2021	14:49:37.44	41.1827	28.7917	1.1	Patlatma			
183	22.06.2021	15:33:31.92	41.1312	28.9702	0.9	Patlatma			
184	16.07.2021	15:30:04.70	41.1623	28.7578	0.7	Patlatma			
185	20.10.2021	15:41:18.28	41.1113	28.9622	0.8	Patlatma			
186	02.11.2021	14:59:23.50	41.2048	28.8243	1.1	Patlatma			
187	02.11.2021	07:50:55.32	41.1827	28.7105	1.1	Patlatma			
188	19.11.2021	07:23:35.01	40.9960	28.8030	2.0	Deprem			
189	19.11.2021	14:56:12.12	41.1123	28.9882	0.9	Patlatma			
190	20.11.2021	14:55:18.71	41.1180	28.9362	1.3	Patlatma			
191	23.11.2021	14:48:56.94	41.1810	28.9310	1.3	Patlatma			
192	29.11.2021	14:54:38.31	41.0847	28.9607	0.9	Patlatma			
193	01.12.2021	01:24:56.67	41.1443	28.8745	1.2	Deprem			
194	02.12.2021	15:07:08.91	41.1860	28.8180	1.0	Patlatma			
195	04.12.2021	14:43:14.86	41.0985	28.9940	1.0	Patlatma			