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Abstract 

 

In this paper, we study the mixed Volterra-Fredholm integral equations of the second kind by means of optimal homotopy 

asymptotic method (OHAM) and Homotopy Perturbation method (HPM).Our approach is independent of time and contains simple 

computations with quite acceptable approximate solutions in which approximate solutions obtained by these methods are close to 

exact solutions. Comparison of these methods have been discussed. The accuracy and efficiency of OHAM approach with respect to 

Homotopy Perturbation method (HPM) is illustrated by presenting four test examples. The results indicate that the OHAM is very 

effective and flexible to use with respect to HPM. 

 

Keywords: Mixed Volterra-Fredholm integral equations, Optimal homotopy asymptotic method, Least square method, Homotopy 
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Lineer Karma Volterra-Fredholm İntegral Denklemleri için Optimal Homotopi 
Asimptotik ve Homotopi Perturbasyon Metotları 

 
Öz 

 

Bu çalışmada, karma Volterra-Fredholm integral denklemleri optimal homotopi asimptotik metod (OHAM) ve Homotopi 

Perturbasyon metodu (HPM) vasıtasıyla irdelenmiştir. Yaklaşımımız zamandan bağımsız ve basit hesaplamalar yolu ile tam çözüme 

oldukça yaklaşık çözümler veren bir yöntemdir. Bu iki yöntemin karşılaştırılması tartışılmıştır. OHAM yaklaşımının doğruluğu ve 

etkinliği HPM çözümleri ile dört örnek kullanılarak karşılaştırılmıştır. Sonuçlar OHAM ın HPM ye göre daha verimli ve esnek bir 

yöntem olduğunu göstermektedir. 

 

Anahtar Kelimeler:  Karma Volterra-Fredholm integral denklemleri, Optimal homotopi asimptotik metodu, En küçük kareler 

yöntemi, Homotopi Perturbasyon Metodu. 
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1. Introduction 

Many models in  different areas of applied mathematics lead to mixed Volterra-Fredholm 

integral equations. They have been studied in some cases such as  boundary value problems of prabolic 

type,  Spatio-Temporal problem in Epidemic development  and some issues in different physical and 

biological structures. Spatial-temporal problems are studied a lot in statistical mathematics.They can be 

difined for example in a monitoring network of an atmospheric pollutant or a network in meteorological 

problems  so that their data are analyzed at regular intervals. Epidemic data have Spatio-temporal 

processes with autoregressive nature.Spread of a communicable disease in a population is described by 

epidemic structures. Spatio Temporal analysis has been studied by many researchers [5-7, 11, 18, 37, 43]. 

Therefore, numerical, analytical and semi-analytic methods play an important role to analyze 

such these phenomena. Spatio-temporal analysis in some mathematical models leads to mixed Volterra-

Fredholm integral equations. A comprehensive description for formulation of these models has proposed 

by Wazwaz [45] and other researchers in this field [3-4 , 44, 47-49]. The Volterra-Fredholm integral 

equations of mixed form [45] is in the folowing format :  

( ) ( ) ( , ) ( )
x d

c c
v x f x K y z v z dzdy= ( ∫ ∫                     (1) 

Such that  ( )f x and ( , )K y z  can be defined as  known functions. It is noticed that  Eq.1 includes 

mixed Volterra and Fredholm integral equations. Fredholm integral is defined in the interior part and 

Volterra integral is appeared in exterior one. Furthermore, the unknown function ( )v x exists in inside 

and outside of integral part that is called characteristic feature for these types of equations. The exact and 

analytic solutions of mentioned equations cannot be found easily. Hence some numerical methods have 

been suggested to solve them [2, 8, 13, 15, 24, 28,31, 36, 47, 48]. In some cases ,  partial differential 

equations in physics can be converted to mixed Volterra-Fredholm integral equation [32]. Double integral 

equations have been solved  through methods like Collocation and Galerkin method, Spline functions and 

Taylor series expansion method [1, 3, 32, 44]. 

Now, we explain optimal homotopy asymptotic method (OHAM ) to solve these types of 

equations in comparison with HPM. Marinca and Herisanu [20, 40] invented this approach for the first 

time. In addition, they published some papers presented in [19, 25, 26, 27, 39] to show the ability of 

OHAM to expand their ideas in order to implement it to solve a vast domain of nonlinear problems. The 

advantage of OHAM is  its convergence criteria so that is similar to homotopy analysis method (HAM ) 

in more flexible area of convergence. Moreover, power of this method has been studied by some 

researchers [25,26,19]. Some different examples  are presented to indicate the power of the method 

compared to HPM in the section of numerical examples. Graphs are used to illustrate solutions obtained 

by OHAM. Therefore, we have presented a powerful approach OHAM which is generalized form HAM 

and HPM and has simple procedure to perform .This method has been used  by various researchers in 

different fields as a useful technique [29, 34, 38, 39, 42]. In this paper, we introduce the main structure of 

OHAM compared to HPM; Three numerical examples are tested and illustrated. At last, we discuss about 

the obtained computational results. 
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2. Uniqueness and existence theorems in mixed Volterra- Fredholm integral equations 

Now we take into account linear mixed Volterra-Fredholm type integral equation (1) so that  u  

is called  an unknown function, [ ], ,v f C c d∈ and [ ]2 ,K L c d∈ .The purpose is to study existence and 

uniqueness for the solution of equation (1). We apply Banach fixed-point theorem to discuss the existence 

and uniqueness of physical , biological and applied problems given by the equation (1). 

 

3. Main Results 

Suppose that S  be a space of  functions :[ , ] nc d Rc → ,  continuous in [ , ]c d  and satisfy the 

condition 

( )( )( ) [ ]( ) exp , ,x O x x c dλ θ= ∈                         (2) 

where 0µ >  is a constant. In the space S , we define the following norm  

[ ]
( )( )

,
sup ( ) exp

c d
x xλ λ θ =                   (3) 

It is noticed that S  is a Banach space. We notice that there is a nonnegative constant M  such that  

( )( ) [ ]( ) exp , ,x M x x c dλ θ≤ ∈                       (4) 

Then , we can conclude that  

Mλ ≤  

Now we give sufficient conditions for the existence and uniqueness of the solutions in equation (1). 

Theorem 1:  

We assume that   

1) Continuous kernel ( , ) ( )K y z v z  defined on [ ] [ ], ,c d c d×   

such that  

1 2 1 2( , ) ( ) ( , ) ( ) ( , )K y z v z K y z v z K y z v v− ≤ −                                    (5) 

for [ ] [ ]1 2( , , , ) , , , 1, 2y z v v c d c d i∈ × =  and  

( ) ( )( , ) ( ) exp exp
x d

c c
K y z v z y dydz Q xθ θ≤∫ ∫                 (6) 

So that  Q  is a nonnegative constant. 

2) There exists a constant 0N >  such that  

( ) ( )( ) ( , ) ( ) exp exp
x b

a a
f x K y z v z y dydz N xθ θ( ≤∫ ∫             (7) 

If 1,Q < then we can find  u S∈ as a solution of  Eq.1 that is considered as a limit for sequence of 

solutions. 
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Proof:  

For v S∈ , ( )A v  is defined as an operator in  right side of equation (1). It can be shown that 

 ( ) :A v S S→ . ( )A u  is continuous in [ ],c d  and [ ]2( ( )) ,A v x L c d∈  for [ ],x c d∈ . To verify 

Eq.2 , we have :  

( )

( )
[ ] ( )

1 20

20 0

( ) ( , , , ()) ( , , , ())

( ) ( , , , () ( , , ) exp

exp( ( ) ) exp .

x d

c
x d x d

c c

A v x K y z v K y z v dydz

f x K y z v dydz v h y z v y dydz

N y dydz MQ N x

θ

θ θ

≤ −

( ( ≤

( ≤ (

∫ ∫
∫ ∫ ∫ ∫            (8) 

Therefore , we conclude that ( )A u S∈ . Now we show that  the operator ( )A u  is a contraction 

mapping.  

We assume that ,u z S∈ , and then from the assumption (1), we have  

( )

( )( )
( )( )

0

0

( ( , )) ( ( , ))

, , , , ( , ) ( , , , , ( , ))

( , , , ) exp

exp

t

t

A v t x A z t x

F t x s y v s y F t x s y z s y dyds

v z h t x s y s y dyds

Q v z t x

θ

θ

Ω

Ω

−

≤ −

≤ − (

≤ − (

∫ ∫

∫ ∫

( )
( )

0

0

( ( )) ( ( )) ( , , ) ( , , )

( , , ) exp

exp

x d

c
x d

c

A v x A z x K y z u K y z v dydz

u v h y z v x dydz

Q u v x

θ

θ

− ≤ −

≤ −

≤ −

∫ ∫
∫ ∫  

Then , we obtain :  

( )( ( )) ( ( )) expA u x A z x Q u v xθ− ≤ −  

Therefore, there is a unique solution u S∈  of equation (1) and it completes the proof.∎ 

 

4. Description of Optimal Homotopy Asymptotic Method (OHAM) 

Now, we introduce the general structure of OHAM based on the below scheme. We perform the 

OHAM to a general nonlinear equation like ( ( )) ( )A v y f y=   that can be decomposed as 

( ( )) ( ) ( ( )) 0L v y f y N v y( ( =                                         (9) 

So that L  is considered as a linear operator, N  an unknown function, ( )f y  a known function and

( ( ))N v y  a non-linear operator. Then, a new homotopy function is made for OHAM  as follows [16, 17, 

40]: 

[ ] [ ](1 ) ( ( , )) ( ) ( ) ( ( , )) ( ) ( ( , ))p L v y p f y H p L v y p f y N v y p− ( = ( (                      (10) 



Kasmaei H.D., Rashidinia J. 
 

90 
 

So that  [0,1]p ∈   is a small embedding parameter ( 0p ≠ ), ( )H p is an auxiliary function, and 

( , )v y p  is defined as unknown function that needs to be obtained. For values 0p =  and 1p = , we 

have :  

0( ,0) ( ), ( ,1) ( )v y v y v y v y= =                             (11) 

respectively. When p changes  from 0 to 1, the solution ( , )v y p  moves from 0 ( )v y  

to the solution ( )v y and 0 ( )v y  is attainable from Eq.9 for 0p = . 

[ ]0 ( ) ( ) 0L v y f y( =                                                    (12) 

We can define ( )H p , the  auxilary function as follows :  

2 3
1 2 3( )H p pc p c p c= ( ( (3                                        (13) 

in which the constants   1 2, ,...c c  need to be  determined.       

Therefore , the solution of Eq.9 can be obtained as   

0
1

( ; , ) ( ) ( , ) , 1, 2,k
i k i

k
v y p c v y v y c p i

≥

= ( =∑                   (14) 

Inserting Eq.14 to Eq.10 and finding the coefficients from similer powers of p  ,  0 ( )u y   is obtained by 

Eq.12.So , we have :  

( ) ( )1 1 0( ) ( )L v y c N v y=                                             (15) 

Therefore, we can obtain general iterative relation as follows: 

( ) ( ) ( )
1

1 0 0 0 1 1
1

( ) ( ) ( ) ( ( )) ( ), ( ), , ( )
k

k k k i k i k i k
i

L v y v y c N v y c L v y N v y v y v y
−

− − − −
=

− = ( (  ∑    (16) 

For the values  2,3,k = 3  such that  ( )0 1( ), ( ), , ( )m mN v y v y v y  can be obtained through using 

Taylor expansion of  ( ), , iN v p c  in series with respect to p as follows :  

( ) ( ) ( )0 0 0 1
1

( ; , ) ( ) , , , m
i m m

m
N v y p c N v y N v v v p

≥

= ( ∑                           (17) 

The unknown expression ( ; , )iv y p c  is obtained by Eq.14 .The elements ku  for 0k >  are calculated 

through the system of Eqns.14, 15 and 16 that we can easily solve it.  

The  series Eq.14 converges by obtaining optimal values of auxiliary constants 1 2, , , mc c c2 .  

In 1p = , it yeilds  

0
1

( , ) ( ) ( , ).i k i
k

v y c v y v y c
≥

= ( ∑                           (18) 

Then, the solution of Eq.2 is obtained in this form :  

0
1

( , ) ( ) ( , )  , 1, 2, ,
m

m
i k i

k
v y c v y v y c i m

=

= ( =∑ 2              (19) 

Residual is obtained by  substituting Eq.19 into Eq.9 as follows :  
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( ) ( )( ; ) ( , ) ( ) ( , ) ,   1, 2, ,m m
i i iR y c L v y c g y N v y c i m= ( ( = 2            (20) 

If ( ; ) 0iR y c = , then ( , )m
iu y c is the exact solution.Auxiliary constants , 1, 2,ic i = 2  can be obtained 

by finite element methods like Galerkin, Ritz,Collocation and Least Squares methods. Now, we use least 

square method to minimize the residual function.Then , we have :  

( )2( ) , ,
d

i ic
J c R y c dy= ∫                                     (21) 

The values c  and d are optional and can be chosen based on the type of problem and its given interval .  

By forming  system of normal equations , we find optimal parameters , 1, 2, ,ic i m= 2  as follows :  

1 2

0.
m

J J J
c c c

∂ ∂ ∂= = = =
∂ ∂ ∂

                                          (22) 

Therefore,  the favorite approximate solution is easily obtained . Then ,  if [ ],k c d∈  , putting ik   into 

Eq.20 gives the follwing equation :  

1 2( , ) ( , ) ( , ) ,   1, 2, ,i i m iR k c R k c R k c i m= = = =              (23) 

Therefore, we can propose advantages and disadvantages of the method as follows:  

(1) OHAM sometimes takes a lot of time to evaluate the residual by increasing the convergence 

parameters. Therefore, computing of convergence constants is not feasible over three or four times. Time-

consuming problems have presented by [33] and [41, 46]. 

(2) Although OHAM obtains best approximations for many cases but the closed form solution cannot be 

achieved all the time. This case occurs due to the existence of the convergence constants ic  in the 

auxiliary function ( )H p . 

 

5. Structure of Homotopy Perturbation Method(HPM) 

To express this method ,we make homotopy function by a small embedding parameter p ∈ [0, 1], 

. The structure of method includes a deformation from intial solution to the final step that is obtained our 

favorite solution. This method has been used by many researchers to solve different types of non linear 

problems[9, 10,14,21,22,23,34,35,12]. HPM is  considered as a combination of the classical perturbation 

technique and the homotopy from topology in pure mathematics It is not restricted to small parameters 

like traditional perturbation methods.We can find highly accurate solutions in  just few iterations. He in  

[23] extended methods of nonlinear analysis for a vast range of problems. In order to explain the structure 

of  HPM, we assume  the following nonlinear functional equation 

( ) ( ) 0,A v f y y− = ∈Ω                            (24) 

with the following boundary conditions: 

, 0,vB v y
y

 ∂ = ∈Γ ∂ 
                               (25) 
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So that  A  is considered as  general differential operator, B   a boundary operator, ( )f y  a known 

analytic function, and Γ  the domain boundary for A   can be divided into two operators L  and N , such 

that  L  is linear and N  is  nonlinear so that Eq.24 can be cosidered as  

( ) ( ) ( ) 0.L v N v f y( − =                                 (26) 

Now , we construct the homotopy function as :   

[ ]
[ ] [ ]

0( , ) (1 ) ( ) ( )

( ) ( ) ( ) 0, 0,1 ,

H V p p L V L v

p L v N v f y p y

= − − (

( − = ∈ ∈Ω
             (27) 

or 

[ ] [ ]
0( , ) ( ) ( )

( ) ( ) ( ) 0, 0,1 ,
H V p L V L v
p L v N v f y p y

= − (
( − = ∈ ∈Ω

              (28) 

Such that p  is  in the range of zero and one as homotopy parameter and 0v   is the first approximation for 

the solution of Eq.24 that satisfie in the boundary conditions. Eq.24 or Eq.26 is written as a power series 

of p   

2
0 1 2V p pν ν ν= +++                                             (29) 

Substituting Eq.29 into Eq.27 or Eq.28 and equating similar  powers of p  , we can obtain the sequence 

0 1 2, , ,vν ν 2  .When 1p → ,  the approximate solution is given for Eq.24 in the form 

0 1 2 3V v v v v= ++++   3                                       (30) 

 

6. Convergence theorem for optimal homotopy asymptotic method: 

If the series  

0
1

( , ) ( ) ( , )i k i
k

v y c v y v y c
≥

= ( ∑                                     (31) 

converges to ( )v y  where [ ]2( ) ,kv y L c d∈  in which it can be produced by relations:  

( )1 1 0( ) ( ( ))L v y c N v y=                                                             (32) 

( ) ( ) ( )
1

1 0 0 0 1 1
1

( ) ( ) ( ) ( ( )) ( ), ( ), , ( )
k

k k k i k i k i k
i

L v y v y c N v y c L v y N v y v y v y
−

− − − −
=

− = ( (  ∑    (33) 

Such that  2,3,k = 3 .Then, ( )v y  is the exact solution of the problem as follows: 

( ( )) ( ) ( ( )) 0L v y f y N v y( ( =                                                (34) 

Proof: If the series  

( )
1

,k i
k

v y c
∞

≥
∑                      (35) 

converges, it can be written as  

1
( ) ( , )k i

k
S x v y c

∞

=

= ∑                                                   (36) 
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In addition, it holds that  

lim ( , ) 0k ik
v y c

→∞
=                                                    (37) 

Left hand side of relation (16) satisfies 

1 1 1 1 2 2 1 1 1 1
2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
n n

k k k k n n n n n n
k k

v y c v y c v y c v y c v y c v y c v y c v y c− − − −
= =

( − = − ( − =∑ ∑
(38) 

According to summation relation in (36), we have: 

( ) ( ) ( ) ( )1 1 1 1
2 2

, , , lim , 0
n n

k k k k n nnk k
v y c v y c v y c v y c− − →∞= =

+ − = =∑ ∑                                      (39) 

By using linear operator L , we have: 

( ) ( )

( ) ( )

1 1 1 1
2 2

1 1 1 1
2 2

( ( , )) ( , ) ( , )

( ( , )) ( , ) ( , ) 0

k k k k
k k

k k k k
k k

L v y c L v y c L v y c

L v y c L L v y c L L v y c

∞ ∞

− −
= =

∞ ∞

− −
= =

( −

   = ( − =      

∑ ∑

∑ ∑
              (40) 

that satisfies in the relation:  

( ) ( ) ( )

1 1 1 1
2 2

1

0 0 1
2 1

( ( , )) ( , ) ( , )

( ) ( , ( , ( ) 0

k k k k
k k

k

k i k i k i k i k i k
k i

L v y c L v y c v y c

c N v y c L v y c N v y c f y

∞ ∞

− −
= =

∞ −

− − − − −
= =

   ( −      
 = ( ( ( =  

∑ ∑

∑ ∑
          (41) 

Right hand side of Eq.41 can be written as follows:  

( ) ( )1 1 1 1
1 1

( , ) , ( ) 0
k

i k i i k i k k
k i

c L v y c N v c f y
∞

− − − − − −
= =

 ( ( =    
∑ ∑                                (42) 

If , 1,2, ,ic i m=   are chosen appropriately, then relation (42) leads to  

( ( )) ( ) ( ( )) 0L v y f y N v y( ( =                                       (43) 

That is the exact solution of the problem. 

 

7. Illustrative examples 

7.1. Example1. We consider the mixed Volterra-Fredholm integral equation as follows: 

12

0 0

17( ) 11 ( ) ( ) .
2

x
v x x x y z v z dzdy= ( ( −∫ ∫               (44) 

in which whose exact solution is given by 2( ) 6 12v x x x= ( . 

Item1: Homotopy Perturbation method (HPM) 

The Homotopy function can be constructed from Eq.44 as follows: 

1

0 0
( , ) ( ) ( ) ( ) ( )

x
H v p v x f x p y z v z dzdy= − − −∫ ∫                    (45) 
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where 217( ) 11 .
2

f x x x= ( By using Eq.29 into Eq.45 and finding the coefficients from similar powers 

of p , we have :  

2
0

17( ) ( ) 11
2

v x f x x x= = (                   (46) 

1

0 0
( ) ( ) ( )

x

i iv x y z v z dzdy= −∫ ∫  

In this case, our experience shows that in 16-th iteration we can obtain the approximate solution as 

follows: 
16

0

( (2218611106740437146 + 4437222213480873833 ))( ) ( )
369768517790072832i

i

x xu x u x
=

= =∑  

The comparative graph of approximate and exact solution of Example1 by HPM and graph of error 

function are illustrated in Fig.1 and Fig.2. In addition, numerical results have been tabulated in Table 1. 

 

 
Fig1. Graph of approximate and exact solutions of Example 1 by HPM. 

 

 
Fig2. The error function of Example 1 by HPM. 

 

Item2: Optimal Homotopy Asymptotic method (OHAM) 

We construct homotopy function from Eq.44 as follows: 

217( ) 11
2

f x x x= (  

( ) ( )1

0 0
( , ) (1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

x
H v p p v x f x H p v x f x y z v z dzdy= − − = − − −∫ ∫             (47) 

By using Eq.29 into Eq.47 and doing the similar procedures , we have :  

2
0

17( ) 11
2

v x x x= (  
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1 1
1( ) ( 139 + 100 )
24

v x x x c= − −  

2 2
1 1 1

2 2 2 2
1 2 2

1668 1200 19241( )
288 1417 1668 1200

xc x c xc
v x

x c xc x c

 − (
=   − ( − 

 

Then, by using least square method presented in section 3, we find real optimal parameters 1c  and 2c  

among a set of complex and real roots as follows:  

1 20.923077 , 3.69231c c= = −  

Then, the series solution is given as: 

( )2
2

2979.69230769230817 1( ) 11 0.038461538461538464 139 100
2 288 +2115.692307692308

x
v x x x x x

x
− 

= ( − − ( (  
 

(48) 

The comparative graph of approximate and exact solution of Example 1 by OHAM and graph of error 

function are illustrated in Figure 3 and Figure 4. 

 
Fig3. Graph of approximate and exact solutions of Example 1 by OHAM. 

 

 
Fig4. The error function of Example 1 by OHAM. 

Table1. Approximate and exact solutions with absolute error of Example 1 by OHAM. 
Absolute Error  Exact solution OHAM x   

0 0 0 0 

0 0.720000 0.720000 0.1 

0 1.680000 1.680000 0.2 

0 2.880000 2.880000 0.3 

0 4.320000 4.320090 0.4 

0 6.000000 6.000000 0.5 

0 7.920000 7.920000 0.6 

0 10.080000 10.080000 0.7 



Kasmaei H.D., Rashidinia J. 
 

96 
 

0 12.480000 12.480000 0.8 

0 15.120000 15.120000 0.9 

0  18.000000 18.000000 1.0 

 

 

7.2. Example2. We consider the mixed Volterra-Fredholm integral equation as follows: 

12 3

0 0

9( ) 2 4 5 ( ) ( ) .
8

x
v x x x x y z v z dzdy= ( − − ( −∫ ∫                                   (49) 

In which the exact solution is given by 3( ) 2 3 5v x x x= ( − .  

Item1: Homotopy Perturbation method (HPM) 

The Homotopy function can be constructed from Eq.28 as follows:   

( ) 1

0 0
( , ) (1 ) ( ) ( ) ( ) ( ) ( ) ( )

x
H v p p v x f x v x f x p y z v z dzdy= − − = − − −∫ ∫          (50) 

where 2 39( ) 2 4 5 .
8

f x x x x= ( − −  

By using Eq.29 into Eq.50 and finding the coefficients from similar powers of p , we obtain solutions 

similar to Eq.46 with 2 3
0

9( ) ( ) 2 4 5
8

v x f x x x x= = ( − − .  

The comparative graph of approximate and exact solution of Example 2 by HPM and graph of error 

function are illustrated in Fig.5 and Fig.6. It can be shown that increasing the number of iterations cannot 

effect on the accuracy of approximation obtained by HPM. This shows that this method has been 

saturated. Therefore, HPM has disability to solve this integral equation. Partial fractions are provided in 

higher iterations and continuing the iterations is not effective. 

 
Fig5. Graph of approximate and exact solutions of Example 2 by HPM. 

 

 

Fig6. The error function of Example 2 by HPM. 
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Item 2: Optimal Homotopy Asymptotic method (OHAM) 

The homotopy function for  Eq.28 is made as follows: 

2 39( ) 2 4 5
8

f x x x x= ( − −  

( ) ( )1

0 0
( , ) (1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

x
H v p p v x f x H p v x f x y z v z dzdy= − − = − − −∫ ∫      (51) 

By using Eq.22 into Eq.51 and finding the coefficients from similar powers of p , we have :  

2 3
0

9( ) 2 4 5
8

v x x x x= ( − −  

( )1 1
1( ) 101 114

96
v x x x c= − − (  

2 2 2 2 2
1 1 1 1 2 2

2
1212 1368 1274 1443 1212 1368( )

1152 1152
xc x c xc x c xc x cv x − ( − ( −= (  

Moreover, by using least square method presented in section 2, we find real optimal parameters 1c  and 

2c  among a set of complex and real roots as follows: 

1 20.923077, 3.69231c c= = −  

Then, we obtain the series solution as  

2 3

2

9( ) 2 4 5 0.009615384615384616 ( 101 + 114 )
8

2270.769230769231 2558.7692307692314+
1152 1152

v x x x x x x

x x

= ( − − − −

− ((
                   (52) 

The comparative graph of approximate and exact solution of Example 2 and graph of error function are 

illustrated in Fig.7 and Fig.8.Also; numerical results have been tabulated in Table 2.  

 

 
Fig7. Graph of approximate and exact solutions of Example 2 by OHAM. 
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Fig8. The error function of Example 2 by OHAM. 

 

Table2. Approximate and exact solutions with absolute error of Example 2 by OHAM. 
Absolute Error  Exact solution OHAM x   

0 2.000000  2.000000 0 

0 2.295000 2.295000 0.1 

0 2.560000 2.560000 0.2 

0 2.765000 2.765000 0.3 

0 2.880000 2.880000 0.4 

0 2.875000 2.875000 0.5 

0 2.720000 2.720000 0.6 

0 2.385000 2.385000 0.7 

0 1.840000 1.840000 0.8 

0 1.055000 1.055000 0.9 

0  0.000000 0.000000 1.0 

 

7.3. Example3. The mixed Volterra-Fredholm integral equation is defined as follows: 

12

0 0
( ) cos sin ( ) ( ) .

2
x

v x x x x x y z v z dzdyπ= ( − ( ( −∫ ∫                (53) 

In which whose exact solution is given by ( ) cos sin .v x x x= (  

Item1: Homotopy Perturbation method (HPM) 

The Homotopy function can be constructed from Eq.53 as follows: 

1

0 0
( , ) ( ) ( ) ( ) ( )

x
H v p v x f x p y z v z dzdy= − − −∫ ∫                                  (54) 

where 2( ) cos sin
2

f x x x x xπ= ( − (  . 

By using Eq.22 into Eq.54 and finding the coefficients from similar powers of p , we have a sequence of 

solutions similar to Eq.46 with 2
0 ( ) ( ) cos sin

2
v x f x x x x xπ= = ( − ( . 

Again, in this case, there is no convergent series solution in close agreement with exact solution and 

increasing the number of iterations is ineffective too. 

Item 2: Optimal Homotopy Asymptotic method (OHAM) 

We construct homotopy function from Eq.2.2 as follows: 

2( ) cos sin
2

f x x x x xπ= ( − (  

( ) ( )1

0 0
( , ) (1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

x
H v p p v x f x H p v x f x y z v z dzdy= − − = − − −∫ ∫      (55) 
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By using Eq.22 into Eq.55 and finding  the coefficients from similar  powers of p , we obtain :  

2
0 ( ) ( ) cos sin

2
v x f x x x x xπ= = ( − (  

( )( )3
1 1

1( ) 96 2
192

v x x xcπ π= ( −  

In addition, by using least square method presented in section 2, we find real optimal parameter 1c  as 

follows: 

1 0.755868c = −  

Therefore, the approximate solution is given by:  

( ) 2( ) 0.5 2 cos sin
2
xv x x x x x xπ π= − − − ( (                (56) 

Graph of approximate and exact solutions of Example 4 and its error function are illustrated in Fig.9 and 

Fig.10. In addition, numerical results have been tabulated in Table 3.  

 
Fig9. Graph of approximate and exact solutions of Example 4 by OHAM. 

 
Fig10. The error function of Example 4 by OHAM. 

 
Table3. Approximate and exact solutions with absolute error of Example 3 by OHAM. 

Absolute Error  Exact solution OHAM x   

0 1.000000 1.000000 0 

0 1.144120 1.144120 / 20π   

0 1.260070 1.260070 2 / 20π  

0 1.345000 1.345000 3 / 20π  

0 1.396800 1.396800 4 / 20π  

0 1.414210 1.414210 5 / 20π  

0 1.396800 1.396800 6 / 20π  

0 1.345000 1.345000 7 / 20π  

0 1.260070 1.260070 8 / 20π  
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0 1.144120 1.144120 9 / 20π  

0  1.000000 1.000000 / 2π  

 

8. Results and discussion 

The purpose of the present paper is to demonstrate the power of OHAM with respect to HPM in 

order to find the solutions of mixed Volterra-Fredholm integral equations. We implemented all 

computations in a laptop by processor 2.53 GHz and we could handle them in OHAM until suitable 

number of iterations. Therefore, we confront with high cost of computations that occupy a vast space of 

our memory and it is natural that the process of computations takes a long time especially to compute 

integral components directly. If we have powerful processors, we can enhance accuracy of the OHAM 

approximations. Thus, we can conclude that the obtained results of OHAM method can solve mixed 

Volterra-Fredholm integral equations in just few iterations rather than HPM in high number of iteration 

and make favorite approximations close to exact solutions. It means that we can find a suitable series 

solution close to exact solution of expressed examples if we continue to computations in just enough 

number of iterations. In spite of the cost of computations, the OHAM method is very powerful, reliable, 

efficient and accurate compared to HPM and many competitive numerical methods that sometimes 

equations need to be changed before solving the problem by some approaches such as change of 

variables, Laplace transform, and mesh-based methods by a huge cost of programming and so on. 

Therefore, we can perform OHAM directly on any favorite problem without any concern. In addition, in 

cases that we have complicated integrals, quadrature methods such as Trapezoidal and Simpson rules can 

be used to approximate integral components numerically and it cannot make a problem in general to solve 

integral equations by implementation of OHAM and HPM. 

 

9. Conclusions 

In this paper, OHAM and HPM were employed to solve Mixed Volterra-Fredholm integral 

equations of the second kind. Our approach is time independent. In addition, our comparison shows that 

OHAM is a powerful method to solve these types of integral equations and we found out that HPM has 

powerlessness to solve these types of equations for high successive iterations to find an accurate 

approximation. The Advantage of OHAM with respect to HPM is optimal parameters ic . In fact; these 

parameters play an important role to find approximations with high accuracy. In addition, other types of 

mixed integral equations can be solved easily by means of OHAM. 
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