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ABSTRACT This article is about the dynamic nature of a prey-predator model exposed to the harvesting effect
on prey. Firstly, the model’s fixed points’ existence and stability are determined, and then, the presence and
direction of a Neimark-Sacker bifurcation are examined. By using the bifurcation theory, we show that the
system experiences Neimark-Sacker bifurcation. The hybrid control strategy is handled to control the chaos
caused by the Neimark-Sacker bifurcation. Additionally, some numerical simulations are given to validate the
theoretical outcomes obtained.
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INTRODUCTION

Basic models based on biological assumptions are used to better
understand the behavior of populations. Lotka and Volterra (Lotka
1925; Volterra 1978) are pioneers in proposing a mathematical prey-
predator model. In the interaction of the prey and the predator,
both the prey and the predator develop various strategies to sur-
vive and adapt to their environment. The balance of nature is
maintained by the continuity of the life of the species. Models are
used as tools to learn about future numbers of species. Here, the
analysis conducted by including the factors affecting the popula-
tion in the model allows us to reach more realistic results. It is
possible to have information about the dynamics of the population
with model analysis depending on these factors.

The analysis of prey-predator models with the harvesting effect
has an important place in dynamic systems. Since there is great
interest in the use of bioeconomic models (Clark 1985; Clark and
Clark 1990), the dynamic behaviors of harvesting populations are
examined in many studies. At the same time, this factor is effective
in controlling populations (Liu et al. 2008; Paul et al. 2021). In most
cases, the goal is not only population control; but also getting a
significant harvest gain from the population. If the harvest pushes
the population to extinction, this process should be stopped for a
certain period. It is possible to reach qualified conclusions about
the dynamics of these models with stability, bifurcation analy-
sis, presence of chaotic behaviors and chaos control (Elaydi 1996;
Gümüş and Feckan 2021; Kuznetsov et al. 1998; Liu et al. 2008;
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Madhusudanan et al. 2014; Murray 2002; Peng et al. 2009; Robinson
1998).

In the literature, many continuous-time prey-predator models
have been introduced to explain the complex relationships be-
tween species. However, in ecology, populations evolve in discrete
time steps, as there is no overlap between successive generations.
It is therefore benefical to use difference equations (Ak Gümüş
2014; Gümüş and Kose 2012; Gümüş et al. 2022b,c; Merdan and
Gümüş 2012; Merdan et al. 2018) or discrete-time systems involv-
ing prey-predator models (Danca et al. 2019; Elsadany et al. 2012;
Gümüş 2020; Liu and Xiao 2007; Rana 2015), host-parasitoid mod-
els (Gümüş 2015; Gümüş and Kangalgil 2015; Gümüs et al. 2020),
epidemic models (Gümüş et al. 2022a, 2019), and also fractional
models (Selvam et al. 2020; Singh et al. 2019).

In prey-predator population models, one can say that the prey
population has a limiting influence on the population dynamics
since the size of the predator population depends on the size of
the prey population. The size of predator populations that do
not catch sufficient numbers of prey decreases. Therefore, small
numerical changes in the prey population can cause large changes
in the dynamics of such models. To maintain a balanced life in
prey-predator populations, the prey population must have an ap-
propriate growth rate. The harvesting factor on the prey will affect
the growth rate of the prey population. In this study, our aim is
to investigate prey-predator dynamics by examining the effect of
the harvest factor on the internal growth rate of the prey popula-
tion. For this purpose, the prey population’s growth rate is taken
as the bifurcation parameter, and results are obtained about the
long-term behavior of the population.
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This paper examines a discrete-time prey-predator system that
depicts interactions between two populations of non-overlapping
generations that are affected by the harvesting effect.

xn+1 = axn(1 − xn)− bxnyn − hxn (1)

yn+1 = dxnyn

where xn and yn denote the numbers of prey and predator in
year (generation) n, respectively, and the parameters a, b, h, and d
are all positive parameters. In this model, bxn indicates the number
of prey individuals ingested per unit area and per unit time by an
individual predator, and dxnyn is the predator reaction. Here, a is
the growth rate of the prey population which has a logistic growth
rate, d is the growth rate of the predator population limited by the
number of prey, and h is the harvesting rate, where 0 < h < 1.

In a previous study (Danca et al. 2019), the dynamics of discrete-
time prey-predator model (1) are presented without the harvesting
effect. We explore the stability and bifurcation of the system (1) by
incorporating the harvesting effect and observe the dynamics of
the system. We refer to studies (Elaydi 1996; Liu and Xiao 2007;
Din 2013) for some basic concepts that we have used throughout
our paper.

The paper is arranged as follows: In Section 2, we present the
existence and local asymptotic stability of fixed points of the sys-
tem (1) in R2

+ with plots showing system behavior. In Section 3,
the dynamics of system (1) which undergoes a Neimark-Sacker
bifurcation are investigated by choosing a as a bifurcation param-
eter. The chaos emerging with the Neimark-Sacker bifurcation is
controlled by a hybrid method. The dynamical characteristics of
the system (1) are displayed via numerical simulations in the form
of trajectories, bifurcation diagrams, and phase portraits. The last
section provides a summary of the results.

THE EXISTENCE AND STABILITY OF FIXED POINTS OF
SYSTEM (1)

The analyses of the system (1)’s fixed points’ existence and local
stability are presented in this section. First, let us examine the
existence of all available fixed points of system (1). System (1)
has a trivial (extinction) fixed point E0 = (0, 0) for all positive
parameters. If a > h + 1, then, system (1) has an exclusion fixed
point E1 = ( a−h−1

a , 0).

If a > d(h+1)
d−1 such that d > 1, then E∗ = ( 1

d , ad−a−d−dh
bd ) is a

unique coexistence fixed point of system (1).

Remark 1 When a < h + 1, the fixed point E0 is locally asymptotically
stable, and when 1 < d and h + 1 < a < min (3 − h, d(h+1)

d−1 ), the fixed
point E1 is locally asymptotically stable. The magnitude of the eigenval-
ues of the Jacobian matrix determines the local stability conditions of the
fixed points of discrete-time systems.

• The Local Stability of the Coexistence Fixed Point

Let us investigate the locally asymptotic stability of the coexis-
tence fixed point as follows:

E∗ = (x∗, y∗) = (
1
d

,
ad − a − d − dh

bd
). (2)

where a > d(h+1)
d−1 , d > 1. The Jacobian matrix of system (1) as-

sessed at E∗ is

JE∗ =

 1 − a
d

−b
d

−a−d+ad−dh
b 1


and the characteristic polynomial of the Jacobian matrix is

F(λ) = λ2 + [−2 +
a
d
]λ + a − 2a

d
− h.

So, we have the following Lemma.

Lemma 2 Suppose that a > d+dh+d2h
d−1 , d > 3. Then the coexistence

fixed point E∗ is respectively locally asymptotically stable and unstable,
if the following cases are provided:

(i) If a < d(h+1)
d−2 , h < 1

d2−2d−1 , then E∗ is a sink point.

(ii) If a > d(h+1)
d−2 , h < 1

d2−2d−1 , then E∗ is a source point.

We can give examples to confirm the results obtained in Lemma
2. The trajectories and phase portrait of the prey-predator densities
are exhibited in Figure 1 and Figure 2 with the parameter values
b = 0.2, and d = 3.5 which are taken from a previous study (Danca
et al. 2019).

Example 3 Let us take into account the following population model to
expose the appearance of the trajectories and phase portrait of system (1)
for the parameter values a = 2.33, b = 0.2, d = 3.5, and h = 0.002:

xn+1 = 2.33xn(1 − xn)− 0.2xnyn − 0.002xn, (3)

yn+1 = 3.5xnyn

where the initial conditions are x0 = 0.5 and y0 = 2.5.

Figure 1 (a) The trajectories of the prey and predator densities in sys-
tem (3) when a = 2.33, b = 0.2, h = 0.002, and d = 3.5. (b) The phase
portrait of system (3) when a = 2.33, b = 0.2, h = 0.002 and d = 3.5.

In this example, it is seen that the fixed point (0.285714, 3.31143)
is locally asymptotically stable (see Lemma 2-(i)).

Example 4 Let us take into account the following population model to
expose the appearance of the trajectories and phase portrait of system (1)
for a = 2.34, b = 0.2, h = 0.002 and d = 3.5:

xn+1 = 2.34xn(1 − xn)− 0.2xnyn − 0.002xn, (4)

yn+1 = 3.5xnyn

where the initial conditions are x0 = 0.5 and y0 = 2.5.
The fixed point (0.285714, 3.34714) of system (4) with the selected

values is unstable (see the Lemma 2-(ii)).
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Figure 2 (a) The trajectories of the prey and predator densities in sys-
tem (4) when a = 2.34, b = 0.2, h = 0.002, and d = 3.5. (b) The
phase portrait of system (4) when a = 2.34, b = 0.2, h = 0.002 and
d = 3.5.

NEIMARK-SACKER BIFURCATION ANALYSIS AND CHAOS
CONTROL

• Neimark-Sacker Bifurcation

In this section, we discuss whether system (1) experiences
a Neimark-Sacker bifurcation by using the bifurcation theory
(Kuznetsov et al. 1998; Wiggins 2003).As the prey population’s
growth rate changes, we see that system (1) has a Neimark-Sacker
bifurcation. In other words, a is taken as a bifurcation parameter to
get the conditions of Neimark–Sacker bifurcations. The direction
of the Neimark–Sacker bifurcation is also obtained for system (1).
If system (1) ensures the eigenvalue assignment, transversality and
nonresonance conditions, then the Neimark–Sacker bifurcation
emerges at a bifurcation point aNS. The conditions that cause the
bifurcation to occur at the coexistence fixed point E∗ are deter-
mined as

NSBE∗ = {a, b, h, d ∈ R+ : d > 3, a1 < a < a2 and a = aNS}

where

a1 = −2
√

d4 − 2d3 − d2h + 2(−d + d2),

a2 = +2
√

d4 − 2d3 − d2h + 2(−d + d2),

h < −2

√
(−1 + d)2d[−1 + (−2 + d)d2]

(1 + d)4 +
−1 + d[1 + 2(−2 + d)d]

(1 + d)2 ,

and

aNS =
d(1 + h)

d − 2
.

By using the transformation u = x − 1
d , v = y − ad−a−d−dh

bd , the
fixed point E∗ is shifted to the origin. So, we obtain u

v

→ JE∗

 u

v

+

 F1(u, v)

F2(u, v)

 . (5)

where

F1(u, v) = −au2 − buv + O(∥U∥3) (6)

F2(u, v) = duv + O(∥U∥3) (7)

such that U = (u, v)T . From here, system (1) becomes

(Un+1) → JE∗ (Un) +
1
2

B(un, un) +
1
6

C(un, un, un) + O(∥Un∥4),

(8)

with the multilinear vector functions of u, v, w ∈ R2 :

B(u, v) =

 B1(u, v)

B2(u, v)


and

C(u, v, w) =

 C1(u, v, w)

C2(u, v, w)

 .

These vectors are stated by

B1(u, v) =
2

∑
j,k=1

∂2F1
∂ξ j∂ξk

|ξ=0 ujvk =−2au1v1−b(u2v1+u1v2)

B2(u, v) =
2

∑
j,k=1

∂2F2
∂ξ j∂ξk

|ξ=0 ujvk = d(u2v1 + u1v2)

C1(u, v, w) =
2

∑
j,k=1

∂3F1
∂ξ j∂ξkξl

|ξ=0 ujvkwl = 0

C2(u, v, w) =
2

∑
j,k=1

∂3F2
∂ξ j∂ξkξl

|ξ=0 ujvkwl = 0.

For a = aNS, the eigenvalues of the matrix JE∗ associated with
the linearization in map (5) are conjugate complex numbers. These
eigenvaues are

λ, λ |a=aNS=
−5 + 2d − h ± i

√
(1 + h)(−9 + 4d − h)

2(d − 2)

such that

|λ(aNS)| = 1.

For a ∈ NSBE∗ , we get

∂ |λi(a)|
∂a

|a=aNS ̸= 0 , i = 1, 2. (9)

Moreover, if
trJ(a) |a=aNS ̸= 0,−1, (10)

then, we reach
λk(aNS) ̸= 1 , k = 1, 2, 3, 4. (11)

Let q, p ∈ C2 be the eigenvectors which correspond to the
eigenvalues λ of J(NSBE∗ ) and the eigenvalues λ of J(NSBE∗ )T ,
respectively. If these eigenvectors are computed with the Mathe-
matica program, then we get

q ∼
(
−b(h + 1) + ib

√
(−9 + 4d − h)(h + 1)

2d(h + 1)
, 1

)T
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and

p ∼
(

d(h + 1)− id
√
(−9 + 4d − h)(h + 1)

2b(d − 2)
, 1

)T

.

By using the inner product in C2 : < p, q >= p1q1 + p2q2, we get
the following vector to normalize p in accordance with q

p∼
(

d2(1+h)
bdi
√

(−9+4d−h)(h+1)
, 2(d−2)
−9+4d−h+i

√
(−9+4d−h)(h+1)

)T

where < p, q >= 1. ∀ U ∈ R2 can be uniquely represented for
some z as

U = zq + zq (12)

Here, z denotes the conjugate of the complex number z, and z =<
p, U >. For all sufficiently small |a| about aNS, we can convert
system (1) as follows:

z → λ(a)z + g(z, z, a), (13)

where λ(a) = (1 + ω(a))eiθ(a) for ω(aNS) = 0, and g(z, z, a) is a
smooth function of z and z. The Taylor expression of g with respect
to g(z, z) is

g(z, z, a) = ∑
k+l≥2

1
k!l!

gkl(a)zkzl , (14)

and the Taylor coefficients gkl calculated through multilinear vector
functions are expressed by the formulae

g20(aNS) =< p, B(q, q) >

g11(aNS) =< p, B(q, q) >

g02(aNS) =< p, B(q, q) >

g21(aNS) =< p, C(q, q, q) > .

For system (5) which exhibits the Neimark-Sacker bifurcation, the
coefficient φ(aNS) determining the direction of the appearance of
the invariant curve can be calculated as:

φ(aNS) = Re(
e−iθ(aNS)g21

2
)−Re

(
(1 − 2eiθ(aNS))e−2iθ(aNS)

2(1 − eiθ(aNS))
g20g11

)
(15)

−1
2
|g11|2 −

1
4
|g02|2

where eiθ(aNS) = λ(aNS). As a result, we get the following theorem
regarding the Neimark-Sacker bifurcation:

Theorem 5 If (10) holds, φ(aNS) ̸= 0 and the parameter a changes
in the small vicinity of NSBE∗ , then system (1) experiences a Neimark-
Sacker bifurcation at the only fixed point E∗. Moreover there is a unique
attracting (φ(aNS) < 0) or repelling ((φ(aNS) > 0)) invariant closed
curve that bifurcates from E∗.

Example 6 Let us take into account the following system for the param-
eter values b = 0.2, d = 3.5, and h = 0.002,

xn+1 = 2.338xn(1 − xn)− 0.2xnyn − 0.002xn, (16)

yt+1 = 3.5xnyn

where aNS = 2.338 is the Neimark-Sacker bifurcation point. The
computation yields (x∗, y∗) = (0.285714, 3.34), and the Jacobian matrix
assessed at (x∗, y∗) is

J(x∗ ,y∗) =

 0.332 −0.0571429

11.69 1

 .

The eigenvalues are λ1,2 = 0.666 ± 0.745952i such that |λ1,2| = 1. Let
q, p ∈ C2 be the complex eigenvectors corresponding to λ1,2, respectively,
q ∼ (−0.0285714 + 0.0638111i, 1)T and p ∼ (5.845 − 13.0542i, 1)T .
We get the vector p ∼ (−7.83563i, 0.5 − 0.223875i)T by normalizing p
according to q, such that < p, q >= 1. So, we obtain

g20(aNS) = 2.338 + 1.31495i
g11(aNS) = 2.238 + 1.09161i
g02(aNS) = −2.538 + 0.868276i
g21(aNS) = 0

where

F1(u, v) = −au2 − buv + O(∥U∥3)

F2(u, v) = duv + O(∥U∥3)

B(q, q) =

 0.145029 − 0.323905i

−0.2 + 0.446678i



C(q, q, q) =

 0

0



C(q, q, q) =

 0

0



B1(u, v) = −4.676u1v1 − 0.2(u2v1 + u1v2)

B2(u, v) = 3.5(u2v1 + u1v2)

C1(u, v, w) = 0

C2(u, v, w) = 0.

From (15), we get φ(aNS) = −3.57837 < 0. Consequently, the Neimark-
Sacker bifurcation emerges at aNS = 2.338. The Figure 3 gives the
bifurcation and phase portraits of system (16) with the initial conditions
x0 = 0.5 and y0 = 2.5. Figure 3.(a) shows Neimark-Sacker bifurcation
diagram of the system (16). The phase portraits of system (16) are
presented in Figure 3.(b)-(d).

• Chaos control

For many researchers, the focus point is the control of chaos in
dynamic systems. It is possible to avoid chaos with some chaos
strategies applied to systems (Danca et al. 2019; Din et al. 2017;
Gümüş and Feckan 2021; Gümüş et al. 2022b; Liu et al. 2008; Yuan
and Yang 2015). We apply a controlling strategy based on the hy-
brid control feedback methodology to control the chaos in system
(1).

As system (1) undergoes a Neimark-Sacker bifurcation at the
fixed point (x∗, y∗), the corresponding controlled system can be
handled as follows:

xn+1 = β[axn(1 − xn)− bxnyn − hxn] + (1 − β)xn (17)

yn+1 = βdxnyn + (1 − β)yn

where β is the control parameter for 0 < β < 1. The Jacobian
matrix of the controlled system (17) is provided by
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(a) (b)

(c) (d)

Figure 3
(a) Bifurcation diagram of the prey-predator system (16) with the param-
eter values a ∈ (2, 3), b = 0.2, d = 3.5, and h = 0, 002. (b) The phase
portrait of system (16) when a = 2.31, b = 0.2, d = 3.5, and h = 0, 002.
(c) The phase portrait of system (16) when a = 2.338, b = 0.2,
d = 3.5, and h = 0, 002. (d) The phase portrait of system (16) when
a = 2.35, b = 0.2, d = 3.5, and h = 0, 002.

 1 − β + (−h + a(1 − x∗)− ax∗ − by∗)β −bx∗β

dy∗β 1 − β + dx∗β

 .

If

∣∣∣∣ aβ

d
− 2
∣∣∣∣ < 1 +

−aβ(1 + β) + d(1 + (−1 + a − h)β2)

d
< 2

is provided, then the positive fixed point (x∗, y∗) of the controlled
system (17) is locally asymptotically stable.

Example 7 We consider the parameters b = 0.2, d = 3.5, h = 0.002,
and a = 2.35 for the initial conditions x0 = 0.5 and y0 = 2.5. For these
parametric values, the controlled system is

xn+1 = β[2.35xn(1 − xn)− 0.2xnyn − hxn] + (1 − β)xn(18)

yn+1 = 3.5βxnyn + (1 − β)yn

and system (18) has a unique coexistence fixed point (x∗, y∗) =
(0.285714, 3.38286). Additionally, the Jacobian matrix evaluated at
(0.285714, 3.38286) is 1 − 0.671429β −0.0571429β

11.84β 1

 (19)

and the characteristic equation (19) is obtained as

λ2 + (−2 + 0.671429β)λ + 1 − 0.671429β + 0.676571β2 = 0. (20)

From the Jury condition, we conclude that if 0 < β < 0.9923991, then
the roots of (20) lie in a unit open disk. Therefore, the Neimark-Sacker
bifurcation is fully controlled for values β in the obtained range.

Figure 4 (a) The trajectories of the controlled system (18) for b = 0.2,
d = 3.5, h=0.002, a = 2.35, and β = 0.9. (b) The phase portrait of the
controlled system (18) for b = 0.2, d = 3.5, h=0.002, a = 2.35, and
β = 0.9.

CONCLUSION

Harvesting in a natural population is one of the most important
concerns in population ecology. In this study, the dynamics of sys-
tem (1) are investigated depending on the harvest effect applied
to the prey population. We determine that system (1) has a trivial
(extinction) fixed point E0, an exclusion fixed point E1, and a co-
existence fixed point E∗. The stability conditions of extinction and
exclusion fixed points are investigated. The stability and bifurca-
tion conditions of the coexistence fixed point of system (1) are also
obtained. To examine the Neimark-Sacker bifurcation, the growth
rate of the prey population a is taken as a bifurcation parameter.
The stabilization of the unstable fixed point of system (1) is pro-
vided by the hybrid control method. The hybrid control strategy
allows us to successfully control the chaotic behavior by suppress-
ing the unstable fixed point. The dynamic properties of system
(1) are presented by the trajectories, phase portraits, and bifurca-
tion diagram belonging to system (1) by means of SageMath (see
Kapçak (2018)). Furthermore, diagrams presenting the dynamic
behaviour of system (1) with and without the harvesting effect
are included in Figure 5 and Figure 6. A comparison is provided
by giving the bifurcation value obtained without the harvesting
effect. These dynamic behaviours are applied to understand the
difference caused by the harvesting effect. In the examples given,
the system behaviour is examined by choosing the initial point
close to the fixed point.

Without the harvesting effect while system (1) undergoes a
Neimark-Sacker bifurcation for a = d

d−2 , with the harvesting effect,

it undergoes a Neimark-Sacker bifurcation for a = d(1+h)
d−2 . For h =

0.025, the bifurcation values are a = 2.88864 and a = 2.81818 with
and without the harvesting effect, respectively. With this effect,
the system will continue to remain stable for a certain period. If h
is taken as 0.002, the bifurcation point is obtained as a = 2.82382.
The smaller the effect value, the shorter the equilibrium time of
the system. In other word, as the harvesting effect value increases,
the bifurcation of the system will be delayed. We conclude that
the harvesting effect on the prey population delays the Neimark-
Sacker bifurcation (see (Danca et al. 2019)). Thus, the population
will remain in equilibrium for a while.
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Figure 5
(a) Bifurcation diagram of the prey-predator system (1) without the harvesting effect for the parameter values a ∈ (2.7, 3.3), b = 0.2, and d = 3.1. (b)
Bifurcation diagram of the prey-predator system (1) with the harvesting effect for a ∈ (2.7, 3.3), b = 0.2, d = 3.1 and h = 0.020. (c) The phase portrait
of system (1) without the harvesting effect for a = 2.7, b = 0.2, and d = 3.1 (d) The phase portrait of system (1) without the harvesting effect for
a = 2.9, b = 0.2, d = 3.1. (e) The phase portrait of system (1) with the harvesting effect for a = 2.8, b = 0.2, d = 3.1, and h = 0.020. (f) The phase
portrait of system (1) with the harvesting effect for a = 3, b = 0.2, d = 3.1, and h = 0.020.
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(a) (b)

(c) (d)

Figure 6
(a) Time series diagram of system (1) without the harvesting effect for
the parameter values a = 2.7, b = 0.2, and d = 3.1. (b) Time
series diagram of system (1) without the harvesting effect for the
parameter values a = 2.9, b = 0.2, and d = 3.1. (c) Time series
diagram of system (1) with the harvesting effect for the parameter
values a = 2.8, b = 0.2, d = 3.1 and h = 0.020. (d) Time series
diagram of system (1) with the harvesting effect for the parameter
values a = 3, b = 0.2, d = 3.1and h = 0.020.
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Merdan, H. and Ö. A. Gümüş, 2012 Stability analysis of a general
discrete-time population model involving delay and allee effects.
Applied Mathematics and Computation 219: 1821–1832.

Merdan, H., O. A. Gumus, and G. Karahisarli, 2018 Global stability
analysis of a general scalar difference equation. Discontinuity,
Nonlinearity, and Complexity 7: 225–232.
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