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ABSTRACT 
 

This work aims to conduct flux balance analysis of serine alkaline protease overproduction in Bacillus subtilis using enzyme-

constrained genome scale model and to compare the results with fluxes obtained from a smaller, bioreaction-based model. 

Fluxes of the enzyme constraint genome scale model were calculated using CobraToolbox v3.0 and compared with those of 

bioreaction-based model for the specific growth rate of zero. The active reaction number first increased and then remained 

constant with specific growth rate for enzyme constrained genome scale model. The SAP synthesis flux increased with a 

decrease in specific growth rate for both models. The TCA cycle was active for both models, but with lower fluxes for enzyme-

constrained genome scale model. Anaplerotic reactions were active only for bioreaction-based model. Glycolysis pathway 

fluxes were active for enzyme-constrained genome scale model, meanwhile gluconeogenesis pathway fluxes were active for 

bioreaction-based model. Oxidative pentose phosphate pathway was inactive for both models and generally higher pentose 

phosphate pathway fluxes were obtained using bioreaction-based model. The fluxes toward amino acid synthesis pathways and 

serine alkaline protease synthesis were higher with bioreaction-based model. Since TCA cycle fluxes were lower with enzyme 

constrained genome scale model, ATP synthesis was lower with enzyme constrained genome scale model compared to 

bioreaction-based model. For both models, active pathways were the same for TCA cycle, pentose phosphate pathway, amino 

acid synthesis pathways except glycolysis pathway. The results showed that bioreaction-based model gave more sound results 

compared to enzyme constrained genome scale model since gluconeogenesis should be active with the carbon source of citrate.  
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Abbreviations 

A: Stoichiometric matrix of the metabolic network 

ATPS4r: adp[c]+4h[e]+pi[c] atp[c]+h2o[c]+3h[c] 

ala_L[c]: Intracellular L-alanine 

arg_L[c]: Intracellular L-arginine 

asn_L[c]: Intracellular L-asparagine 

asp_L[c]: Intracellular L-aspartate 

atp[c]: Intracellular atp 

adp[c]: Intracellular adp 

BsBRM-2000: Bioreaction-based model [1] 

c(t): Metabolite accumulation vector 

c1(t): Extracellular metabolite accumulation vector  

c2(t): Intracellular metabolite accumulation vector 

[𝐸𝑗]: 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒 𝑗 

ec_iYO844: Enzyme constrained GEM [2] 

ec_iYO844-SAP: SAP synthesis reaction [1] and exchange reaction for SAP were added to ec_iYO844 

[2] forming ec_iYO844-SAP in this study 

EX_SAP(e): SAP exchange reaction 

FB: Flux balance 

FBA: Flux balance analysis 
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gln_L[c]: Intracellular L-glutamine 

glu_L[c]: Intracellular L-glutamate 

gly[c]: Intracellular glycine 

GEM: Genome scale metabolic model 

GECKO: Enzymatic Constraints using Kinetic and Omics data 

his_L[c]: Intracellular L-histidine 

ile_L[c]: Intracellular L-isoleucine 

iYO844: Bacillus subtilis GEM [3] 

leu_L[c]: Intracellular L-leucine 

lys_L[c]: Intracellular L-lysine 

met_L[c]: Intracellular L-methionine 

PPP: Pentose phosphate pathway 

PYK: adp[c]+h[c]+pep[c]=>atp[c]+pyr[c] 

PGK: 13dpg[c]+adp[c]+8.44309e-07PM_PGK_f 3pg[c]+atp[c]  

phe_L[c]: Intracellular L-phenylalanine 

pro_L[c]: Intracellular L-proline 

pi[c]: Intracellular phosphate 

r(t): reaction rate vector 

𝑘𝑐𝑎𝑡
𝑗

: Turnover number of enzyme j 

SAP: Serine alkaline protease 

SAP: SAP synthesis reaction 

SAP[e]: Extracellular SAP 

ser_L[c]: Intracellular L-serine 

thr_L[c]: Intracellular L-threonine 

trp_L[c]: Intracellular L-tryptophan 

tyr_L[c]: Intracellular L-tyrosine 

𝑣𝑗: 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑗     

val_L[c] : Intracellular L-valine                                                        
 

 

1. INTRODUCTION 
 

Genome scale metabolic models (GEMs) aim to describe the whole metabolism of an organism [4], 

containing: stochiometric reaction network and gene-protein-reaction-metabolite associations. 

Functions of GEMs are calculation of intracellular reaction rates in bioprocesses; determination of 

bottleneck reactions in bioreaction network; increasing yield and selectivity of bioprocesses by changing 

medium components, bioreactor operation parameters, microorganism or genetic structure; prediction 

of the results of genetic and environmental changes; determination of the maximum theoretical yield; 

generation of hypotheses, model-driven discovery; metabolic engineering and strain design [5-6].  

 

Bacillus is an important group of industrial microorganisms acting as microbioreactors in fermentors 

[5]. Bacillus subtilis is the best defined Gram-positive bacteria [2]. B.subtilis genome was sequenced 

and updated totally over the last 20 years by many researchers [7-11], proven to be a model organism 

for systems biology. Progress in genome sequencing and consequently annotation studies results with 

reconstructing GEMs with more accurate gene-enzyme-reaction data and therefore with more accurate 

prediction capacity. There are six basic B.subtilis GEMs [12] apart from ec_iYO844 [2]. The first three 

GEMs are reconstructed with the biochemical and genomic knowledge based on genome sequencing of 

[7]. Therefore, they are called first generation B.subtilis GEMs [3, 13-14].  Second generation B.subtilis 

GEMs [15-16] are based on the genome sequencing of [8]. iBsu1144 [12] is a third generation B.subtilis 

GEM that takes its genome annotation from [9] and ec_iYO844 [2] is a first generation B.subtilis GEM 

since it is based on [3].   
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Serine alkaline protease (SAP), one of the major industrial enzyme [5] is produced by Bacillus sp. at the 

start of stationary phase of growth [1]. Aims of this work are to conduct flux balance analysis of SAP 

overproduction in Bacillus subtilis using ec_iYO844-SAP that contains 1269 reactions, 1010 

metabolites and to compare the results with those of biochemical reaction based model having 147 

reactions and 105 metabolites [1] to assess validity of enzyme constrained GEM. 

 

2. MATERIAL AND METHODS 

 

2.1 Flux Balance Analyses 

 

Stream of metabolites in a mathematically represented bioreaction network is computed with flux 

balance (FB) methodology to analyze metabolic flux distributions. The FB methodology cannot predict 

metabolite concentrations since it doesn’t use kinetic parameters. Using fermentation data as constraints, 

an allowable solution space is obtained. FBA can determine a single optimum flux distribution on the 

edge of the allowable solution space by optimizing an objective function [12].  

Mass-balance based stoichiometric equations are constructed for each metabolite in the cell, which is 

considered as a semi-batch microbioreactor. The algebraic sum of all conversion reactions of each 

metabolite-i in the defined reactions plus the transport of metabolite-i are equal to the accumulation of 

metabolite-i [6]. The scalar flux balance equations can be shown as a linear vector as follows: 

A x r(t) = c(t)                                                                                                                  (1), 

Where A is mxn stoichiometric coefficients matrix, m is the number of metabolites and n is the number 

of reactions [6], r(t) is the flux vector and c(t) is the metabolite accumulation vector. The elements of 

c(t) are two sub-vectors: 

c(t)=c1(t) + c2(t)                                                                                                                               (2) 

where c1(t) and c2(t) correspond to extracellular and intracellular metabolite accumulation vectors, 

respectively. Using pseudo steady state (PSS) approximation for the intracellular metabolites, c2(t) is set 

to zero. Intracellular fluxes can be calculated by minimizing or maximizing the objective function Z, 

specified for a selected component-i [17].  

Z=i.ri                                                                                                                              (3) 

where, Z is a linear combination of fluxes (ri) multiplied by the corresponding stoichiometric coefficient 

of component-i (i) for every reaction [12]. 

In this work, firstly SAP synthesis reaction [1] and exchange reaction for SAP were added to ec_iYO844 

[2] forming ec_iYO844-SAP. Secondly, the objective function was defined as the exchange reaction of 

SAP in the cells; whereupon, maximization of the objective function was carried out at citrate’s uptake 

rate at 10 mmole/gDW/h and at various growth rates (=0, 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75 h-1) 

using CobraToolbox v3.0 [18] to determine intracellular reaction rates. Reaction fluxes of metabolites are 

expressed in mmole/gDW/h; and the flux towards the cell is the specific growth rate, ( h-1) [12]. 

2.2 Enzyme Constrained Genome Scale Metabolic Model 

The enzymes that catalyze a reaction affect the metabolic flux. Different approaches have been 

developed to constrain the solution space and improve phenotypic predictions by integrating enzyme 

concentrations [2]. GECKO is the most promising method, using enzymatic data as a new constraint 

for each metabolic flux, provided that fluxes do not exceed the maximum capacity in a given condition 

[2, 19].  

A set of available enzyme constraints (absolute protein levels and turnover numbers) for the reactions 

of central carbon metabolism were integrated into the iYO844 GEM of B. subtilis [3] following the 
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principles of the GECKO [2]: An additional constraint that the metabolic flux through the j-th reaction 

(Rj) does not exceed its maximum capacity (vmax), corresponding to the product between the kcat value 

(converted to h−1) of the enzyme Ej (that catalyzes the j-th reaction) and its abundance [Ej], as shown in 

Eq 4, was considered to implement the GECKO approach [2]. 

𝑣𝑗 ≤ 𝑘𝑐𝑎𝑡
𝑗

∗ [𝐸𝑗]                                                 for       j=1…17                                                   (4) 
 

In this work ec_iYO844-SAP was constructed: Serine alkaline protease (SAP) synthesis reaction [1] 

(the reaction named as SAP) and exchange reaction for SAP (named as EX_SAP(e)) were added to 

ec_iYO844 [2] forming ec_iYO844-SAP containing 1269 reactions and 1010 metabolites. Since the 

system is underdetermined, optimization was carried out by maximizing the exchange reaction for SAP. 

SAP synthesis reaction was not chosen as the objective function since it yielded zero SAP production. 

Citrate uptake rate was considered as 10 mmole/gDW/hr during flux balance analyses, which was 

conducted in CobraToolbox  v3.0 [18].  The reason why citrate was chosen as the carbon source was 

that the aim of this study is to compare prediction capacities of a genome scale model and biochemical 

reaction-based model [1], which is named as BsBRM-2000 in this study for intracellular reaction 

rates/fluxes. Since there is already flux data obtained by theoretical capacity analysis conducted with 

BsBRM-2000 [1] taking citrate as the sole carbon source with its uptake rate as 10 mmole/gDW/h [1], 

citrate was chosen to be carbon source. 

Added reaction names and reactions are shown below: 

SAP: 40 ala_L[c] + 4 arg_L[c] + 18 asn_L[c] + 9 asp_L[c] + 1096 atp[c] + 7 gln_L[c] + 5 glu_L[c] + 

35 gly[c] + 5 his_L[c] + 10 ile_L[c] + 16 leu_L[c] + 9 lys_L[c] + 5 met_L[c] + 4 phe_L[c] + 10 pro_L[c] 

+ 32 ser_L[c] + 20 thr_L[c] + 1 trp_L[c] + 13 tyr_L[c] + 31 val_L[c] -> 1096 pi[c] + 1096 adp[c] + 

SAP[e] 

EX_SAP(e): SAP[e] -> 

 

3. RESULTS 
 

Theoretical capacity analysis led to optimized SAP overproduction by using a linear constrained 

optimization technique for several specific growth rates was conducted and the variation of the fluxes 

were calculated by fixing the sole carbon source citrate’s uptake rate at 10 mmole/gDW/h [1]. The 

objective function Z was defined as synthesis rate of SAP in the cells, whereupon optimum flux 

distributions were obtained by maximizing the objective function Z [1]. In this work, it was also aimed 

to conduct theoretical capacity analysis with ec_iYO844-SAP using the same citrate uptake rate, growth 

rates and however with different optimization functions (Exchange reaction for SAP, EX_SAP(e)) and 

compare the results with those of literature [1]. In this work, when the optimization function was taken 

as SAP synthesis reaction, there were no SAP synthesis in all growth rates. Therefore, exchange reaction 

for SAP was taken as optimization function since it yielded decreasing SAP synthesis with increasing 

specific growth rates as it was reported [1].  The mathematical model of [1], which is a bioreaction-

based model, is named as BsBRM-2000 in this study (Table 1). Prediction capacities of a genome scale 

model and biochemical reaction-based model for intracellular reaction rates/fluxes were compared for 

the first time in this study. 

 

Intracellular reaction rates were calculated for ec_iYO844-SAP for different growth rates. Fluxes of 

common reactions were compared for ec_iYO844-SAP and BsBRM-2000. Active reaction number first 

increased with growth rate and then remained constant with  for ec_iYO844-SAP (Table 2). For both 

models, SAP synthesis rate decreased with growth rate; meanwhile, SAP synthesis flux was higher with 

BsBRM-2000 (Table 3). The flux ratio of SAP synthesis in two models increased with growth rate 

(Table 3). 
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Table 1. Comparison of models. 

Gene # Reaction # Metabolite # Model 

844 1269 1010 ec_iYO844-SAP 

- 147 105 BsBRM-2000  

 

 

Table 2. Number of active reactions with ec_iYO844-SAP. 

, h-1 ec_iYO844-SAP 

Active reaction # % percent 

0 162 12.8 

0.05 351 27.7 

0.15 351 27.7 
0.25 351 27.7 

0.35 351 27.7 
0.45 351 27.7 

0.55 351 27.7 

0.65 - - 
0.75 - - 

 

Table 3. SAP synthesis fluxes.  

, h-1 Intracellular SAP flux (mmole/gDW/h) Flux ratio 

ec_iYO844-SAP BsBRM-2000 

0.0 0.01511 0.0260 1.7 

0.05 0.0139 0.0243 1.7 

0.15 0.01148 0.0209 1.8 

0.25 0.009056 0.0175 1.9 

0.35 0.006635 0.0143 2.2 

0.45 0.004215 0.0107 2.5 

0.55 0.001795 0.0073 4.1 

0.65 - 0.0039 - 

0.75 - 0.0006 - 

 

TCA cycle fluxes increased with growth rate for ec_iYO844-SAP (Figure 1), while TCA cycle fluxes 

did not change considerably with respect to growth rate for BsBRM-2000 [1]. Anaplerotic reactions 

were inactive for ec_iYO844-SAP (Figure 2). Glycolysis pathway fluxes increased with growth rate 

(Figure 3), oxidative PPP fluxes were inactive for ec_iYO844-SAP (Figure 4).  

 

Fluxes toward serine-group, alanine- group, histidine, aromatic acid- group amino acid pathways 

decreased at least 1.2- fold with growth rate; meanwhile SAP synthesis flux decreased  8.4- fold with 

respect to growth rate (Table 4). There were similar decreases with BsBRM-2000 fluxes towards amino 

acid synthesis pathways (AAP) [1]. ATP synthesis rate increased 2.44- fold with growth rate for 

ec_iYO844-SAP (Table 5), meanwhile it did not change considerably for BsBRM-2000 [1]. 

Comparison of two models was carried out only for =0 h-1 since Çalık et al.[1] reported only central 

pathway fluxes for =0, 0.75 h-1 values and ec_iYO844-SAP was infeasible with =0.75 h-1. The TCA 

cycle was active for both models similarly but with lower fluxes of ec_iYO844-SAP (Figure 5). 

Anaplerotic reactions were active only with BsBRM-2000 (Figure 6).  
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Figure 1. Effects of growth rate on TCA cycle fluxes (mmole/gDW/hr) in SAP production calculated with 

ec_iYO844-SAP. 

 

           
 

Figure 2. Effects of growth rate on Pyr node fluxes (mmole/gDW/hr) in SAP production calculated with 

ec_iYO844-SAP. 
 

 

Figure 3. Effects of growth rate on glycolysis pathway fluxes (mmole/gDW/hr) in SAP production calculated with 

ec_iYO844-SAP. 
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Figure 4. Effects of growth rate on PPP fluxes (mmole/gDW/hr) in SAP production calculated with ec_iYO844-

SAP. 

 

 
 

Figure 5. Comparison of TCA cycle fluxes (mmole/gDW/h) in SAP production calculated with ec_iYO844-SAP 

and BsBRM-2000 for =0 h-1, respectively. 

 

 
 

Figure 6. Comparison of Pyr node fluxes (mmole/gDW/h) in SAP production calculated with ec_iYO844-SAP and 

BsBRM-2000 for =0 h-1, respectively. 
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Table 4. Fluxes towards amino acid synthesis pathways, mmole/gDW/h. 

Amino acid synthesis pathways =0 h-1 =0.55 h-1 Fold change 

Serine group amino acid pathways 0.9959 0.6578 1.5 

Alanine group amino acid pathways 0.6042 0.4685 1.3 

Histidine synthesis 0.07553 0.05393 1.4 

Aspartic acid group amino acid pathways 1.24 1.298 1 

Aromatic group amino acid pathways 0.2719 0.2203 1.2 

 

Table 5. Effects of growth rate on ATP synthesis fluxes in SAP production calculated with ec_iYO844-SAP. 

Reaction ATP synthesis, mmole/gDW/h 

=0 h-1 =0.55 h-1 

PYK 1.205 4.055 

ATPS4r 20.81 52.24 

PGK 5.988 12.08 

Total 28.003 68.375 

 

Glycolysis pathway fluxes were active for ec_iYO844-SAP, meanwhile gluconeogenesis pathway 

fluxes were active for BsBRM-2000 at =0 h-1 [1]. Oxidative PPP was inactive for both models and 

generally higher PPP fluxes were obtained with BsBRM-2000 (Figure 7). The fluxes toward amino acid 

synthesis pathways and SAP synthesis were higher for BsBRM-2000 (Table 6). Since TCA cycle fluxes 

were lower with ec_iYO844-SAP, ATP synthesis was lower with ec_iYO844-SAP compared to 

BsBRM-2000 (Table 7).  

 

 

Figure 7. Comparison of PPP fluxes (mmole/gDW/h) in SAP production calculated with ec_iYO844-SAP and 

BsBRM-2000 for =0 h-1, respectively. 

 
Table 6. Comparison of fluxes (mmole/gDW/h) toward amino acid synthesis pathways in SAP production for =0 h-1. 

Amino acid synthesis pathways ec_iYO844-SAP BsBRM-2000 Fold change 

Serine-group amino acid pathways 0.9959 1.573 1.6 

Alanine-group amino acid pathways 0.6042 1.040 1.7 

Histidine synthesis 0.07553 0.130 1.7 

Aspartic acid- group amino acid pathways 1.24 2.081 1.7 

Aromatic- group amino acid pathways 0.2719 0.273 1.0 

Glutamic acid- group amino acid pathways 3.761 7.763 2.1 
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Table 7. Total ATP synthesis fluxes, mmole/gDW/h: Comparison of ATP synthesis fluxes in SAP production for =0 h-1. 

ec_iYO844-SAP BsBRM-2000 Fold change 

28.003 52.46 1.9 

 

 

4. DISCUSSION AND CONCLUSIONS 

 

According to ec_iYO844-SAP and BsBRM-2000 results, active pathways were the same for TCA cycle, 

PPP and amino acid synthesis pathways except glycolysis pathway. Divergence of fluxes at glycolysis 

pathway was because enzyme-constraint GEM allows for glucose exchange, otherwise central carbon 

pathways were inactive with no SAP production at =0 h-1 with ec_iYO844-SAP. Citrate exerts a 

negative feedback on glycolysis by inhibiting phosphofructokinase 1 and 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatases (PFK2); on the contrary it stimulates pathways consuming ATP 

such as gluconeogenesis and lipid synthesis [20]. BsBRM-2000 yielded more sound results since an 

active gluconeogenesis pathway is expected with citrate as sole carbon source.  

The number of active reactions increased with respect to growth rate and was maximum as 351. The 

minimum number of active reactions was 162 at =0 h-1 as anticipated since stationary phase implies 

less maintenance energy and less active metabolism inside the cell. This result was in harmony with the 

literature [21] where active reactions were calculated to be 322, 318, 43 for Bacillus subtilis (rBsP) in 

Period I (0<t<4h), Period II (4<t<12h), Periods III-V (12<t<32 h) calculated using GEM of iYO844 

using glucose as carbon source, respectively. The number of active reactions at stationary phase 

calculated with enzyme constrained iYO844 (ec_iYO844-SAP) is 162, while the number of active 

reactions at stationary phase calculated with iYO844 [21] is 43 since different carbon sources were 

utilized in both models. 

A bigger model does not necessarily yield better results as it was depicted in this study. The bioreaction 

- based model produced more sound results probably due to better connectivity. ec_iYO844-SAP could 

describe the changes in central carbon metabolism with growth rate in a better way. The number of 

enzyme-constrained reactions is 17 [2] although ec-iYO844-SAP has 1269 reactions and 1010 

metabolites. If the number of enzyme-constrained reactions were 1269 for ec-iYO844-SAP, the actual 

metabolism could have been better depicted with ec-iYO844-SAP. Results will be convergent as more 

Bacillus subtilis reactions are discovered; enzyme information and intracellular regulations are 

integrated into GEMs. 
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