Cesàro Summability Involving δ-Quasi-Monotone and Almost Increasing Sequences

Bağdagül Kartal ${ }^{1}$

Abstract

Article Info Received: 07 Oct 2022 Accepted: 16 Nov 2022 Published: 31 Dec 2022 doi:10.53570/jnt. 1185603 Research Article Abstract - This paper generalises a well-known theorem on $|C, \rho|_{\kappa}$ summability to the $\varphi-|C, \rho ; \beta|_{\kappa}$ summability of an infinite series using an almost increasing and a δ-quasi monotone sequence.

Keywords - Cesàro summability, δ-quasi-monotone sequence, summability factors, almost increasing sequence, infinite series

Mathematics Subject Classification (2020) - 40F05, 40G05

1. Introduction

The absolute summability of some infinite series (ISs) is an interesting topic. Especially, absolute Cesàro and absolute Riesz summability methods have different applications dealing with some well-known classes of sequence such as δ-quasi monotone, (ϕ, δ) monotone, almost increasing and quasi power increasing sequences. In [1], Bor and Özarslan proved two theorems on $|C, \rho ; \beta|_{\kappa}$ and $\left|\bar{N}, p_{n} ; \beta\right|_{\kappa}$ summability methods. In [2-4], the authors obtained theorems on absolute Cesàro and absolute Riesz summability via almost increasing and δ-quasi monotone sequences. Özarslan [5-9], Bor [10], Kartal [11] proved theorems on absolute Cesàro summability factors. Kartal [12,13] used almost increasing sequences to absolute Riesz summability, Bor and Agarwal [14], Kartal [15] applied almost increasing sequences to absolute Cesàro summability, also Bor et al. [16], Özarslan [17] operated quasi power increasing sequences. In [18], Özarslan and Şakar used (ϕ, δ) monotone sequences to get sufficient conditions for absolute Riesz summability of an ISs.

This article is organized as following: preliminaries on some sequences and the absolute Cesàro summability methods are given in Section 2, a known result about absolute Cesàro summability of a factored ISs is stated in Section 3, a generalisation of the theorem stated in Section 3 is proved in Section 4.

2. Preliminaries

In this section, several fundamental notions which will be used throughout this paper are defined. Throughout this paper, let $\sum a_{n}$ be an ISs with the partial sums $\left(s_{n}\right)$ and $\left(t_{n}^{\rho}\right)$ be the nth Cesàro

[^0]mean of order ρ, with $\rho>-1$, of the sequence $\left(n a_{n}\right)$, that is [19]
$$
t_{n}^{\rho}=\frac{1}{A_{n}^{\rho}} \sum_{r=1}^{n} A_{n-r}^{\rho-1} r a_{r}
$$
where
$$
A_{n}^{\rho} \simeq \frac{n^{\rho}}{\Gamma(\rho+1)}, \quad A_{0}^{\rho}=1, \text { and } A_{-n}^{\rho}=0 \text { for } n>0
$$

Here, Γ is gamma function defined by $\Gamma(\rho)=\int_{0}^{\infty} x^{\rho-1} e^{-x} d x$.
Let $\left(\omega_{n}^{\rho}\right)$ be a sequence defined as below [20]

$$
\omega_{n}^{\rho}=\left\{\begin{array}{cc}
\left|t_{n}^{\rho}\right|, & \rho=1 \tag{1}\\
\max _{1 \leq r \leq n}\left|t_{r}^{\rho}\right|, & 0<\rho<1
\end{array}\right.
$$

Definition 2.1. [21] Let $\left(\varphi_{n}\right)$ be any positive sequence. The series $\sum a_{n}$ is said to be summable $\varphi-|C, \rho ; \beta|_{\kappa}, \kappa \geq 1, \rho>-1, \beta \geq 0$, if

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|t_{n}^{\rho}\right|^{\kappa}<\infty
$$

Remark 2.2. $\varphi-|C, \rho ; \beta|_{\kappa}$ summability reduces to $|C, \rho|_{\kappa}$ summability [22] in case of $\varphi_{n}=n$ and $\beta=0$.

Definition 2.3. [23] A sequence $\left(G_{n}\right)$ is said to be δ-quasi-monotone if $G_{n} \rightarrow 0, G_{n}>0$ ultimately and $\Delta G_{n}=G_{n}-G_{n+1} \geq-\delta_{n}$ where $\delta=\left(\delta_{n}\right)$ is a sequence of positive numbers.
Definition 2.4. [24] A positive sequence (c_{n}) is said to be almost increasing if there exist a positive increasing sequence (d_{n}) and two positive constants M and N such that $M d_{n} \leq c_{n} \leq N d_{n}$.
Lemma 2.5. [25] If $0<\rho \leq 1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{r=0}^{v} A_{n-r}^{\rho-1} a_{r}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{r=0}^{m} A_{m-r}^{\rho-1} a_{r}\right| \tag{2}
\end{equation*}
$$

Lemma 2.6. [26] Let $\left(H_{n}\right)$ be an almost increasing sequence such that $n\left|\Delta H_{n}\right|=O\left(H_{n}\right)$. If $\left(G_{n}\right)$ is a δ-quasi-monotone, and $\sum n \delta_{n} H_{n}<\infty, \sum G_{n} H_{n}$ is convergent, then

$$
\begin{gather*}
n H_{n} G_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{3}\\
\sum_{n=1}^{\infty} n H_{n}\left|\Delta G_{n}\right|<\infty \tag{4}
\end{gather*}
$$

3. Known Result

In [27], $|C, \rho|_{\kappa}$ method has been used to obtain following theorem.
Theorem 3.1. Let $\left(H_{n}\right)$ be an almost increasing sequence and $\left(\gamma_{n}\right)$ be any sequence with $\left|\Delta H_{n}\right|=O\left(H_{n} / n\right)$ such that

$$
\begin{equation*}
\left|\gamma_{n}\right| H_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{5}
\end{equation*}
$$

Assuming also that there exists a sequence of numbers $\left(G_{n}\right)$ such that it is δ-quasi-monotone such that $\sum n \delta_{n} H_{n}<\infty, \sum G_{n} H_{n}$ is convergent, and $\left|\Delta \gamma_{n}\right| \leq\left|G_{n}\right|$ for all n. If the sequence $\left(\omega_{n}^{\rho}\right)$ satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{u} \frac{\left(\omega_{n}^{\rho}\right)^{\kappa}}{n H_{n}^{\kappa-1}}=O\left(H_{u}\right) \quad \text { as } \quad u \rightarrow \infty \tag{6}
\end{equation*}
$$

then the series $\sum a_{n} \gamma_{n}$ is summable $|C, \rho|_{\kappa}, 0<\rho \leq 1, \kappa \geq 1$.

4. Main Result

The main concern of the article is to generalise Theorem 3.1 for the more general $\varphi-|C, \rho ; \beta|_{\kappa}$ method.
Theorem 4.1. Let $\left(H_{n}\right),\left(G_{n}\right)$ and $\left(\gamma_{n}\right)$ be the sequences satisfying the same conditions as given in Theorem 3.1. Assuming that there is an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-\kappa} \varphi_{n}^{\beta \kappa+\kappa-1}\right)$ is non-increasing. If

$$
\begin{equation*}
\sum_{n=1}^{u} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa} \frac{\left(\omega_{n}^{\rho}\right)^{\kappa}}{H_{n}^{\kappa-1}}=O\left(H_{u}\right) \quad \text { as } \quad u \rightarrow \infty \tag{7}
\end{equation*}
$$

then the series $\sum a_{n} \gamma_{n}$ is summable $\varphi-|C, \rho ; \beta|_{\kappa}, \beta \geq 0,0<\rho \leq 1, \epsilon+(\rho-1) \kappa>0, \kappa \geq 1$.
Proof. Let $0<\rho \leq 1$. Let $\left(I_{n}^{\rho}\right)$ be the nth (C, ρ) mean of the sequence $\left(n a_{n} \gamma_{n}\right)$. Using Abel's formula, we write

$$
\begin{aligned}
I_{n}^{\rho} & =\frac{1}{A_{n}^{\rho}} \sum_{i=1}^{n} A_{n-i}^{\rho-1} i a_{i} \gamma_{i} \\
& =\frac{1}{A_{n}^{\rho}} \sum_{i=1}^{n-1} \Delta \gamma_{i} \sum_{r=1}^{i} A_{n-r}^{\rho-1} r a_{r}+\frac{\gamma_{n}}{A_{n}^{\rho}} \sum_{i=1}^{n} A_{n-i}^{\rho-1} i a_{i}
\end{aligned}
$$

By Lemma 2.5, we achieve

$$
\begin{aligned}
\left|I_{n}^{\rho}\right| & \leq \frac{1}{A_{n}^{\rho}} \sum_{i=1}^{n-1}\left|\Delta \gamma_{i}\right|\left|\sum_{r=1}^{i} A_{n-r}^{\rho-1} r a_{r}\right|+\frac{\left|\gamma_{n}\right|}{A_{n}^{\rho}}\left|\sum_{i=1}^{n} A_{n-i}^{\rho-1} i a_{i}\right| \\
& \leq \frac{1}{A_{n}^{\rho}} \sum_{i=1}^{n-1} A_{i}^{\rho} \omega_{i}^{\rho}\left|\Delta \gamma_{i}\right|+\left|\gamma_{n}\right| \omega_{n}^{\rho} \\
& =I_{n, 1}^{\rho}+I_{n, 2}^{\rho}
\end{aligned}
$$

To prove Theorem 4.1, we need to show that

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|I_{n, j}^{\rho}\right|^{\kappa}<\infty \quad \text { for } \quad j=1,2
$$

First, for $j=1$, we have

$$
\sum_{n=2}^{u+1} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|I_{n, 1}^{\rho}\right|^{\kappa} \leq \sum_{n=2}^{u+1} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left(A_{n}^{\rho}\right)^{-\kappa}\left\{\sum_{i=1}^{n-1} A_{i}^{\rho} \omega_{i}^{\rho}\left|\Delta \gamma_{i}\right|\right\}^{\kappa}
$$

Using the fact that $\left|\Delta \gamma_{n}\right| \leq\left|G_{n}\right|$ and Hölder's inequality, we achieve

$$
\begin{aligned}
\sum_{n=2}^{u+1} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|I_{n, 1}^{\rho}\right|^{\kappa} & \leq \sum_{n=2}^{u+1} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left(A_{n}^{\rho}\right)^{-\kappa} \sum_{i=1}^{n-1}\left(A_{i}^{\rho}\right)^{\kappa}\left(\omega_{i}^{\rho}\right)^{\kappa}\left|G_{i}\right|^{\kappa}\left\{\sum_{i=1}^{n-1} 1\right\}^{\kappa-1} \\
& =O(1) \sum_{i=1}^{u} i^{\rho \kappa}\left(\omega_{i}^{\rho}\right)^{\kappa}\left|G_{i}\right|\left|G_{i}\right|^{\kappa-1} \sum_{n=i+1}^{u+1} \frac{\varphi_{n}^{\beta \kappa+\kappa-1} n^{\epsilon-\kappa}}{n^{1+\epsilon+(\rho-1) \kappa}}
\end{aligned}
$$

Here, using (3), we get $\left|G_{i}\right|=O\left(1 / i H_{i}\right)$, therefore

$$
\begin{aligned}
\sum_{n=2}^{u+1} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|I_{n, 1}^{\rho}\right|^{\kappa} & =O(1) \sum_{i=1}^{u} i^{\rho \kappa}\left(\omega_{i}^{\rho}\right)^{\kappa}\left|G_{i}\right| \frac{1}{\left(i H_{i}\right)^{\kappa-1}} \varphi_{i}^{\beta \kappa+\kappa-1} i^{\epsilon-\kappa} \int_{i}^{\infty} \frac{d x}{x^{1+\epsilon+(\rho-1) \kappa}} \\
& =O(1) \sum_{i=1}^{u} i\left|G_{i}\right| \varphi_{i}^{\beta \kappa+\kappa-1} i^{-\kappa} \frac{\left(\omega_{i}^{\rho}\right)^{\kappa}}{H_{i}^{\kappa-1}}
\end{aligned}
$$

Now, by applying Abel's formula, and by the hypotheses of Theorem 4.1 and Lemma 2.6, we achieve

$$
\begin{aligned}
\sum_{n=2}^{u+1} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|I_{n, 1}^{\rho}\right|^{\kappa}= & O(1) \sum_{i=1}^{u-1} \Delta\left(i\left|G_{i}\right|\right) \sum_{r=1}^{i} \varphi_{r}^{\beta \kappa+\kappa-1} r^{-\kappa} \frac{\left(\omega_{r}^{\rho}\right)^{\kappa}}{H_{r}^{\kappa-1}} \\
& +O(1) u\left|G_{u}\right| \sum_{i=1}^{u} \varphi_{i}^{\beta \kappa+\kappa-1} i^{-\kappa} \frac{\left(\omega_{i}^{\rho}\right)^{\kappa}}{H_{i}^{\kappa-1}} \\
= & O(1)\left(\sum_{i=1}^{u-1} i\left|\Delta G_{i}\right| H_{i}+\sum_{i=1}^{u-1}\left|G_{i}\right| H_{i}+u\left|G_{u}\right| H_{u}\right) \\
= & O(1) \text { as } u \rightarrow \infty
\end{aligned}
$$

Now, we write that $\left|\gamma_{n}\right|=O\left(1 / H_{n}\right)$ from (5). Therefore, for $j=2$, we get

$$
\begin{aligned}
\sum_{n=1}^{u} \varphi_{n}^{\beta \kappa+k \kappa-1} n^{-\kappa}\left|I_{n, 2}^{\rho}\right|^{\kappa} & =\sum_{n=1}^{u} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|\gamma_{n}\right|\left|\gamma_{n}\right|^{\kappa-1}\left(\omega_{n}^{\rho}\right)^{\kappa} \\
& =O(1) \sum_{n=1}^{u} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|\gamma_{n}\right| \frac{1}{H_{n}^{\kappa-1}}\left(\omega_{n}^{\rho}\right)^{\kappa}
\end{aligned}
$$

From Abel's formula, we get

$$
\begin{aligned}
\sum_{n=1}^{u} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|I_{n, 2}^{\rho}\right|^{\kappa}= & O(1) \sum_{n=1}^{u-1} \Delta\left|\gamma_{n}\right| \sum_{i=1}^{n} \varphi_{i}^{\beta \kappa+\kappa-1} i^{-\kappa} \frac{\left(\omega_{i}^{\rho}\right)^{\kappa}}{H_{i}^{\kappa-1}} \\
& +O(1)\left|\gamma_{u}\right| \sum_{i=1}^{u} \varphi_{i}^{\beta \kappa+\kappa-1} i^{-\kappa} \frac{\left(\omega_{i}^{\rho}\right)^{\kappa}}{H_{i}^{\kappa-1}}
\end{aligned}
$$

Then, we achieve

$$
\begin{aligned}
\sum_{n=1}^{u} \varphi_{n}^{\beta \kappa+\kappa-1} n^{-\kappa}\left|I_{n, 2}^{\rho}\right|^{\kappa} & =O(1)\left(\sum_{n=1}^{u-1}\left|\Delta \gamma_{n}\right| H_{n}+\left|\gamma_{u}\right| H_{u}\right) \\
& =O(1)\left(\sum_{n=1}^{u-1}\left|G_{n}\right| H_{n}+\left|\gamma_{u}\right| H_{u}\right) \\
& =O(1) \text { as } u \rightarrow \infty
\end{aligned}
$$

5. Conclusion

In this paper, a theorem dealing with generalised absolute Cesàro summability has been introduced which reduces to Theorem 3.1 for $\varphi_{n}=n, \beta=0$ and $\epsilon=1$. Hence, the equality (7) reduces to the equality (6). Furthermore, a known result on $|C, 1|_{\kappa}$ summability can be deducted whenever $\varphi_{n}=n$, $\beta=0, \rho=1$ and $\epsilon=1$ [27]. In the light of this study, one can generalise these results for using either different summability methods or different sequence classes.

Author Contributions

The author read and approved the last version of the paper.

Conflicts of Interest

The author declares no conflict of interest.

References

[1] H. Bor, H. S. Özarslan, A Note on Absolute Summability Factors, Advanced Studies in Contemporary Mathematics 6 (1) (2003) 1-11.
[2] H. S. Özarslan, A Note on Absolute Summability Factors, Proceedings of the Indian Academy of Sciences 113 (2) (2003) 165-169.
[3] H. Bor, H. S. Özarslan, On the Quasi-Monotone and Almost Increasing Sequences, Journal of Mathematical Inequalities 1 (4) (2007) 529-534.
[4] H. Bor, H. S. Özarslan, A New Application of Quasi-Monotone and Almost Increasing Sequences, Journal of Computational Analysis and Applications 13 (5) (2011) 886-891.
[5] H. S. Özarslan, Absolute Cesàro Summability Factors, Journal of Concrete and Applicable Mathematics 5 (3) (2007) 231-236.
[6] H. S. Özarslan, On Absolute Cesàro Summability Factors of Infinite Series, Communications in Mathematical Analysis 3 (1) (2007) 53-56.
[7] H. S. Özarslan, A Note on Generalized Absolute Cesàro Summability, Journal of Computational Analysis and Applications 12 (3) (2010) 581-585.
[8] H. S. Özarslan, A Note on Generalized Absolute Cesàro Summability, Advances in Pure and Applied Mathematics 5 (1) (2014) 1-3.
[9] H. S. Özarslan, On the Generalized Absolute Cesàro Summability Methods, Russian Mathematics 65 (2021) 29-33.
[10] H. Bor, A New Factor Theorem on Generalized Absolute Cesàro Summability, Quaestiones Mathematicae 44 (5) (2021) 653-658.
[11] B. Kartal, An Extension of a Theorem on Cesàro Summability, Numerical Functional Analysis and Optimization 42 (4) (2021) 474-479.
[12] B. Kartal, New Results for Almost Increasing Sequences, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica 18 (2019) 85-91.
[13] B. Kartal, A Theorem on Absolute Summability of Infinite Series, Cumhuriyet Science Journal 40 (3) (2019) 563-569.
[14] H. Bor, R. P. Agarwal, A New Application of Almost Increasing Sequences to Factored Infinite Series, Analysis and Mathematical Physics 10 Article Number 26 (2020) 7 pages.
[15] B. Kartal, An Application of Almost Increasing Sequences, Russian Mathematics 65 (2021) 14-17.
[16] H. Bor, H. M. Srivastava, W.T. Sulaiman, A New Application of Certain Generalized Power Increasing Sequences, Filomat 26 (4) (2012) 871-879.
[17] H. S. Özarslan, On a New Application of Quasi Power Increasing Sequences, Journal of Applied Mathematics and Informatics 39 (3-4) (2021) 321-326.
[18] H. S. Özarslan, M.Ö. Şakar, A New Application of (ϕ, δ) Monotone Sequences, Russian Mathematics 3 (2022) 38-43.
[19] E. Cesàro, Sur la Multiplication des Séries, Bulletin des Sciences Mathematiques 14 (1890) 114120.
[20] T. Pati, The Summability Factors of Infinite Series, Duke Mathematical Journal 21 (1954) 271283.
[21] H. Seyhan, On the Generalized Cesàro Summability Factors, Acta et Commentationes Universitatis Tartuensis de Mathematica 3 (1999) 3-6.
[22] T. M. Flett, On an Extension of Absolute Summability and Some Theorems of Littlewood and Paley, Proceedings of the London Mathematical Society (3) 7 (1957) 113-141.
[23] R. P. Boas (Jr.), Quasi-Positive Sequences and Trigonometric Series, Proceedings of the London Mathematical Society (3) 14A (1965) 38-46.
[24] N. K. Bari, S. B. Stec̆kin, Best Approximations and Differential Proprerties of Two Conjugate Functions (in Russian), Trudy Moskovskogo Matematicheskogo Obshchestva 5 (1956) 483-522.
[25] L. S. Bosanquet, A Mean Value Theorem, Journal of the London Mathematical Society 16 (1941) 146-148.
[26] H. Bor, Corrigendum on the Paper "An Application of Almost Increasing and δ-Quasi-Monotone Sequences", Journal of Inequalities in Pure and Applied Mathematics 3 (1) Article Number 16 (2002) 2 pages.
[27] H. Bor, Quasimonotone and Almost Increasing Sequences and Their New Applications, Abstract and Applied Analysis 2012 Article ID 793548 (2012) 6 pages.

[^0]: ${ }^{1}$ bagdagulkartal@erciyes.edu.tr (Corresponding Author)
 ${ }^{1}$ Department of Mathematics, Faculty of Science, Erciyes University, Kayseri, Türkiye

