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Keywords − Cesàro summability, δ-quasi-monotone sequence, summability factors, almost increasing se-
quence, infinite series

Mathematics Subject Classification (2020) − 40F05, 40G05

1. Introduction

The absolute summability of some infinite series (ISs) is an interesting topic.
Especially, absolute Cesàro and absolute Riesz summability methods have different applications deal-
ing with some well-known classes of sequence such as δ-quasi monotone, (ϕ, δ) monotone, almost
increasing and quasi power increasing sequences. In [1], Bor and Özarslan proved two theorems on
| C, ρ;β |κ and | N̄ , pn;β |κ summability methods. In [2–4], the authors obtained theorems on abso-
lute Cesàro and absolute Riesz summability via almost increasing and δ-quasi monotone sequences.
Özarslan [5–9], Bor [10], Kartal [11] proved theorems on absolute Cesàro summability factors. Kar-
tal [12, 13] used almost increasing sequences to absolute Riesz summability, Bor and Agarwal [14],
Kartal [15] applied almost increasing sequences to absolute Cesàro summability, also Bor et al. [16],
Özarslan [17] operated quasi power increasing sequences. In [18], Özarslan and Şakar used (ϕ, δ)
monotone sequences to get sufficient conditions for absolute Riesz summability of an ISs.

This article is organized as following: preliminaries on some sequences and the absolute Cesàro
summability methods are given in Section 2, a known result about absolute Cesàro summability of
a factored ISs is stated in Section 3, a generalisation of the theorem stated in Section 3 is proved in
Section 4.

2. Preliminaries

In this section, several fundamental notions which will be used throughout this paper are defined.
Throughout this paper, let

∑
an be an ISs with the partial sums (sn) and (tρn) be the nth Cesàro
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mean of order ρ, with ρ > −1, of the sequence (nan), that is [19]

tρn =
1

Aρ
n

n∑
r=1

Aρ−1
n−rrar

where

Aρ
n ≃ nρ

Γ (ρ+ 1)
, Aρ

0 = 1, and Aρ
−n = 0 for n > 0

Here, Γ is gamma function defined by Γ (ρ) =
∫∞
0 xρ−1e−xdx.

Let (ωρ
n) be a sequence defined as below [20]

ωρ
n =

{
|tρn| , ρ = 1

max1≤r≤n |tρr | , 0 < ρ < 1
(1)

Definition 2.1. [21] Let (φn) be any positive sequence. The series
∑

an is said to be summable
φ− | C, ρ;β |κ, κ ≥ 1, ρ > −1, β ≥ 0, if

∞∑
n=1

φβκ+κ−1
n n−κ | tρn |κ< ∞

Remark 2.2. φ− | C, ρ;β |κ summability reduces to | C, ρ |κ summability [22] in case of φn = n and
β = 0.

Definition 2.3. [23] A sequence (Gn) is said to be δ-quasi-monotone if Gn → 0, Gn > 0 ultimately
and ∆Gn = Gn −Gn+1 ≥ −δn where δ = (δn) is a sequence of positive numbers.

Definition 2.4. [24] A positive sequence (cn) is said to be almost increasing if there exist a positive
increasing sequence (dn) and two positive constants M and N such that Mdn ≤ cn ≤ Ndn.

Lemma 2.5. [25] If 0 < ρ ≤ 1 and 1 ≤ v ≤ n, then∣∣∣∣∣
v∑

r=0

Aρ−1
n−rar

∣∣∣∣∣ ≤ max
1≤m≤v

∣∣∣∣∣
m∑
r=0

Aρ−1
m−rar

∣∣∣∣∣ (2)

Lemma 2.6. [26] Let (Hn) be an almost increasing sequence such that n|∆Hn| = O (Hn). If (Gn) is
a δ-quasi-monotone, and

∑
nδnHn < ∞,

∑
GnHn is convergent, then

nHnGn = O(1) as n → ∞ (3)

∞∑
n=1

nHn|∆Gn| < ∞ (4)

3.Known Result

In [27], | C, ρ |κ method has been used to obtain following theorem.

Theorem 3.1. Let (Hn) be an almost increasing sequence and (γn) be any sequence with
|∆Hn| = O (Hn/n) such that

|γn|Hn = O(1) as n → ∞ (5)

Assuming also that there exists a sequence of numbers (Gn) such that it is δ-quasi-monotone such
that

∑
nδnHn < ∞,

∑
GnHn is convergent, and |∆γn| ≤ |Gn| for all n. If the sequence (ωρ

n) satisfies
the condition

u∑
n=1

(ωρ
n)κ

nHκ−1
n

= O(Hu) as u → ∞ (6)

then the series
∑

anγn is summable | C, ρ |κ, 0 < ρ ≤ 1, κ ≥ 1.
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4.Main Result

The main concern of the article is to generalise Theorem 3.1 for the more general φ − | C, ρ;β |κ
method.

Theorem 4.1. Let (Hn), (Gn) and (γn) be the sequences satisfying the same conditions as given in

Theorem 3.1. Assuming that there is an ϵ > 0 such that the sequence (nϵ−κφβκ+κ−1
n ) is non-increasing.

If
u∑

n=1

φβκ+κ−1
n n−κ (ω

ρ
n)κ

Hκ−1
n

= O(Hu) as u → ∞ (7)

then the series
∑

anγn is summable φ− | C, ρ;β |κ, β ≥ 0, 0 < ρ ≤ 1, ϵ+ (ρ− 1)κ > 0, κ ≥ 1.

Proof. Let 0 < ρ ≤ 1. Let (Iρn) be the nth (C, ρ) mean of the sequence (nanγn). Using Abel’s
formula, we write

Iρn =
1

Aρ
n

n∑
i=1

Aρ−1
n−iiaiγi

=
1

Aρ
n

n−1∑
i=1

∆γi

i∑
r=1

Aρ−1
n−rrar +

γn
Aρ

n

n∑
i=1

Aρ−1
n−iiai

By Lemma 2.5, we achieve

|Iρn| ≤ 1

Aρ
n

n−1∑
i=1

| ∆γi |

∣∣∣∣∣
i∑

r=1

Aρ−1
n−rrar

∣∣∣∣∣+ | γn |
Aρ

n

∣∣∣∣∣
n∑

i=1

Aρ−1
n−iiai

∣∣∣∣∣
≤ 1

Aρ
n

n−1∑
i=1

Aρ
iω

ρ
i | ∆γi | + | γn | ωρ

n

= Iρn,1 + Iρn,2

To prove Theorem 4.1, we need to show that

∞∑
n=1

φβκ+κ−1
n n−κ | Iρn,j |

κ< ∞ for j = 1, 2

First, for j = 1, we have

u+1∑
n=2

φβκ+κ−1
n n−κ | Iρn,1 |

κ ≤
u+1∑
n=2

φβκ+κ−1
n n−κ(Aρ

n)
−κ

{
n−1∑
i=1

Aρ
iω

ρ
i |∆γi|

}κ

Using the fact that |∆γn| ≤ |Gn| and Hölder’s inequality, we achieve

u+1∑
n=2

φβκ+κ−1
n n−κ | Iρn,1 |

κ ≤
u+1∑
n=2

φβκ+κ−1
n n−κ(Aρ

n)
−κ

n−1∑
i=1

(Aρ
i )

κ(ωρ
i )

κ |Gi|κ
{

n−1∑
i=1

1

}κ−1

= O(1)
u∑

i=1

iρκ(ωρ
i )

κ |Gi| |Gi|κ−1
u+1∑

n=i+1

φβκ+κ−1
n nϵ−κ

n1+ϵ+(ρ−1)κ

Here, using (3), we get |Gi| = O(1/iHi), therefore

u+1∑
n=2

φβκ+κ−1
n n−κ | Iρn,1 |

κ = O(1)

u∑
i=1

iρκ(ωρ
i )

κ |Gi|
1

(iHi)
κ−1φ

βκ+κ−1
i iϵ−κ

∫ ∞

i

dx

x1+ϵ+(ρ−1)κ

= O(1)

u∑
i=1

i |Gi|φβκ+κ−1
i i−κ (ω

ρ
i )

κ

Hκ−1
i
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Now, by applying Abel’s formula, and by the hypotheses of Theorem 4.1 and Lemma 2.6, we achieve

u+1∑
n=2

φβκ+κ−1
n n−κ | Iρn,1 |

κ = O(1)
u−1∑
i=1

∆(i |Gi|)
i∑

r=1

φβκ+κ−1
r r−κ (ω

ρ
r )κ

Hκ−1
r

+O(1)u |Gu|
u∑

i=1

φβκ+κ−1
i i−κ (ω

ρ
i )

κ

Hκ−1
i

= O(1)

(
u−1∑
i=1

i|∆Gi|Hi +
u−1∑
i=1

|Gi|Hi + u |Gu|Hu

)
= O(1) as u → ∞

Now, we write that |γn| = O(1/Hn) from (5). Therefore, for j = 2, we get

u∑
n=1

φβκ+kκ−1
n n−κ | Iρn,2 |

κ =

u∑
n=1

φβκ+κ−1
n n−κ |γn| |γn|κ−1 (ωρ

n)
κ

= O(1)
u∑

n=1

φβκ+κ−1
n n−κ |γn|

1

Hκ−1
n

(ωρ
n)

κ

From Abel’s formula, we get

u∑
n=1

φβκ+κ−1
n n−κ | Iρn,2 |

κ = O(1)

u−1∑
n=1

∆ |γn|
n∑

i=1

φβκ+κ−1
i i−κ (ω

ρ
i )

κ

Hκ−1
i

+O(1) |γu|
u∑

i=1

φβκ+κ−1
i i−κ (ω

ρ
i )

κ

Hκ−1
i

Then, we achieve

u∑
n=1

φβκ+κ−1
n n−κ | Iρn,2 |

κ = O(1)

(
u−1∑
n=1

|∆γn|Hn + |γu|Hu

)

= O(1)

(
u−1∑
n=1

|Gn|Hn + |γu|Hu

)
= O(1) as u → ∞

5. Conclusion

In this paper, a theorem dealing with generalised absolute Cesàro summability has been introduced
which reduces to Theorem 3.1 for φn = n, β = 0 and ϵ = 1. Hence, the equality (7) reduces to the
equality (6). Furthermore, a known result on |C, 1|κ summability can be deducted whenever φn = n,
β = 0, ρ = 1 and ϵ = 1 [27]. In the light of this study, one can generalise these results for using either
different summability methods or different sequence classes.
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Analysis and Applications 12 (3) (2010) 581–585.
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and Optimization 42 (4) (2021) 474–479.

[12] B. Kartal, New Results for Almost Increasing Sequences, Annales Universitatis Paedagogicae
Cracoviensis Studia Mathematica 18 (2019) 85–91.

[13] B. Kartal, A Theorem on Absolute Summability of Infinite Series, Cumhuriyet Science Journal
40 (3) (2019) 563–569.

[14] H. Bor, R. P. Agarwal, A New Application of Almost Increasing Sequences to Factored Infinite
Series, Analysis and Mathematical Physics 10 Article Number 26 (2020) 7 pages.

[15] B. Kartal, An Application of Almost Increasing Sequences, Russian Mathematics 65 (2021) 14–17.

[16] H. Bor, H. M. Srivastava, W.T. Sulaiman, A New Application of Certain Generalized Power
Increasing Sequences, Filomat 26 (4) (2012) 871–879.
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