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Abstract
In this paper we characterize concircular helices in R3 by means of a differential equation
involving their curvature and torsion. We find a full description of concircular surfaces in
R3 as a special family of ruled surfaces, and we show that M ⊂ R3 is a proper concircular
surface if and only if either M is parallel to a conical surface or M is the normal surface to a
spherical curve. Finally, we characterize the concircular helices as geodesics of concircular
surfaces.
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1. Introduction
The study of curves and surfaces in Euclidean 3-space R3 satisfying a certain condition

with respect to a special vector field has a long history. We will not go into detail on
this issue now, but we would like to show some classic examples. Generalized helices are
defined by the property that their tangents make a constant angle with a fixed direction
v. A classical result (see [1]) is that a unit speed curve γ is a generalized helix if and only
if τγ/κγ is constant, where κγ and τγ stand for the curvature and torsion. Generalized
helices have a nice characterization as geodesics of cylinders M whose rulings are parallel
to v, so that we have ⟨N, v⟩ = 0, N being the unit vector field normal to M .

In a similar way, slant helices are defined in [8] by the property that their principal
normals make a constant angle with a fixed direction v. Observe that principal normal
lines of a generalized helix are perpendicular to a fixed direction, so that a generalized
helix is also a slant helix. It is shown in [8] that γ is a slant helix if and only if

κ2
γ

(κ2
γ + τ2

γ )3/2

(
τγ

κγ

)′

= const.

It is not difficult to see that geodesics of a helix surface M (see [6]) must be slant helices,
and recently it is shown in [10] that every slant helix is a geodesic in a helix surface. In
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this case, the unit normal vector field N satisfies ⟨N, v⟩ = const, where the constant is
zero in case the helix surface is a cylinder.

As a third example, rectifying curves in R3 are defined in [2] as the curves whose position
vector always lies in its rectifying plane. A necessary and sufficient condition for a curve
γ with κγ > 0 be a rectifying curve is that (τγ/κγ)(s) = c1s + c0, for constants c0 and
c1 ̸= 0, s being the arclength parameter. It is not difficult to see that geodesics of a conical
surface are rectifying curves, and in [4] the author has shown the converse.

In this paper we want to put the above three examples into a common framework, and
to make this possible we need to remember the following concept. A vector field Y ∈ X(M)
on a Riemannian manifold M , with Levi-Civita connection ∇, is said to be concircular
if ∇Y = µI, where µ ∈ C∞(M) is a differentiable function called the concircular factor,
[5,7,9,14]. Let Con(M) denote the set of concircular vector fields on M . Inspired by [3,6],
we give the following definition.

Definition 1.1. Given a submanifold M ⊂ Rn and a concircular vector field Y ∈ Con(Rn),
we say that M is a concircular submanifold (with axis Y ) if ⟨n, Y ⟩ is a constant function
along M , n being any unit vector field in the first normal space of M .

It is well known (see [5]) that Con(Rn) is a real vector space of dimension n + 1, and a
basis is given by the position vector field and n linearly independent constant vector fields.
As a consequence, a concircular vector field Y ∈ Con(Rn) is defined by Y (p) = µp + v,
where µ ∈ R and v ∈ Rn.

This paper is organized as follows. Section 2 contains a characterization of all con-
circular helices, see theorem 2.4. In Section 3 we present some properties of concircular
surfaces, see propositions 3.4 and 3.5. We finish that section with some characterizations
of concircular surfaces in R3, see theorems 3.6 and 3.7. Section 4 contains the charac-
terization of geodesics curves of concircular surfaces, see propositions 4.1 and 4.3. That
characterization result is used to show that concircular helices can be described as the
geodesics of concircular surfaces, see theorem 4.4.

2. Concircular helices
Let γ : I → R3 be a differentiable curve parametrized by the arclength parameter s. At

each point of γ where γ′(s) × γ′′(s) ̸= 0, the Frenet frame {Tγ(s) = γ′(s), Nγ(s), Bγ(s) =
Tγ(s) × Nγ(s)} satisfies the usual Frenet-Serret equations:

T ′
γ(s) = κγ(s) Nγ(s), N ′

γ(s) = −κγ(s) Tγ(s) + τγ(s) Bγ(s), B′
γ(s) = −τγ(s) Nγ(s). (2.1)

The functions κγ and τγ are called the curvature and torsion of the curve γ.
Given a (non geodesic) unit speed curve γ in R3 and a concircular vector field Y ∈

Con(R3), from Definition 1.1 γ is a concircular helix (with axis Y ) if ⟨Nγ , Y ⟩ is a constant
function along γ, Nγ being the principal normal vector field of γ.

Example 2.1 (Generalized helix). Generalized helices are concircular helices with axis
Y = v, and its natural equation is that the ratio ρ = τγ/κγ of torsion and curvature is
constant (see [1]), i.e. ρ′ = 0.

Example 2.2 (Slant helix). Slant helices are concircular helices with axis Y = v, and its
natural equation can be rewritten in terms of ρ = τγ/κγ as

ρ′

κγ(1 + ρ2)3/2 = const.

Example 2.3 (Rectifying curve). Rectifying curves are concircular helices whose axis Y
is the position vector field, and its natural equation (see [2]) is ρ′ = const ̸= 0.
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We call γ a proper concircular helix if γ is neither a generalized helix nor a slant helix
nor a rectifying curve; in other words, a proper concircular helix is a concircular helix with
λµ ̸= 0, λ being the constant ⟨Nγ , Y ⟩.

Let γ ⊂ R3 be a proper concircular helix with associated concircular vector field given
by Y (p) = µp + v, and assume ⟨Nγ , Y ⟩ = λ ∈ R − {0}. Without loss of generality we can
assume that γ is parametrized by its arclength parameter s. Then

Y (γ(s)) = a(s) Tγ(s) + λ Nγ(s) + b(s) Bγ(s), (2.2)
for certain differentiable functions a and b. In the following computations we will drop
the parameter s to simplify the writing. By taking derivative in (2.2) we get

µ Tγ = (a′ − λκγ) Tγ + (aκγ − bτγ) Nγ + (b′ + λτγ) Bγ ,

and so

−λρκγ = λ

(
κγ(1 + ρ2)

ρ′

)′

+ µ

( 1
ρ′

)′
, (2.3)

which can be rewritten as

ρκγ +
(

κγ(1 + ρ2)
ρ′

)′

= µ

λ

ρ′′

ρ′2 . (2.4)

Now, a straightforward computation yields(
ρ′

κγ(1 + ρ2)3/2

)′

= m
ρ′′

κ2
γ(1 + ρ2)5/2 , (2.5)

where m = −µ/λ is a nonzero constant. Note that equations (2.3), (2.4) and (2.5) are
equivalent to each other. Observe that (2.5) reduces to classical equation for slant helices
when the constant m vanishes.

In the following we will show that equation (2.5) characterizes proper concircular helices.
Let γ be an arclength parametrized curve whose curvature κγ and function ρ (with

ρ′ ̸= 0) satisfy equation (2.5) for a nonzero constant m. Consider the vector field V (s)
along γ given by

V = b Dγ + λNγ , (2.6)
where Dγ = ρTγ + Bγ is the (modified) Darboux vector field and b is the differentiable
function given by

b = 1
ρ′
(
µ + λκγ(1 + ρ2)

)
, (2.7)

λ and µ being two nonzero constants such that µ = −λm. Observe that (2.3) implies that
b′ = −λτγ . By taking derivative in (2.6) and using (2.7) we get

V ′ =
(

− λκγ(1 + ρ2) + bρ′)Tγ = µ Tγ .

By integrating this equation along γ we obtain V (s) = µγ(s) + v, for a constant vector
v. Finally, we can easily check that the concircular vector field Y (p) = µp + v satisfies
⟨Nγ , Y ⟩ = λ along γ, so that γ is a proper concircular helix.

We have shown the following characterization result.

Theorem 2.4. Let γ be an arclength parametrized curve, with κγ > 0 and ρ′ ̸= 0. γ is a
proper concircular helix if and only if its curvature κγ and function ρ = τγ/κγ satisfy the
following differential equation:(

ρ′

κγ(1 + ρ2)3/2

)′

= m
ρ′′

κ2
γ(1 + ρ2)5/2 ,

for a certain nonzero constant m ∈ R. Moreover, a concircular vector field Y for the
proper concircular helix γ is the extension of the vector field V = b Dγ + λNγ, where b is
the differentiable function given by (2.7).
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3. Concircular surfaces
In the particular case of a surface, M is said to be a concircular surface (with axis Y )

if ⟨N, Y ⟩ is a constant function along M , N being a unit normal vector field.
Trivial examples of concircular surfaces are planes and spheres. It should be pointed

out that concircular surfaces are different from constant slope surfaces, [11]. A constant
slope surface is a surface whose unit normal vector field N makes a constant angle with
the position vector. Therefore, the sphere is the only surface that is at the same time a
concircular surface and a constant slope surface. We can thus say that these two families
are essentially distinct. Other nontrivial examples of concircular surfaces are the following.

Example 3.1 (Generalized cylinder). Let M be a surface parametrized by X(s, z) =
β(s) + z v, where β is a plane curve with Frenet frame {Tβ, Nβ} and v is a constant
vector orthogonal to the plane containing the curve β. The unit normal vector field is
given N(s, z) = Nβ(s) and the concircular vector field can be chosen as Y = v, satisfying
⟨N, Y ⟩ = 0 everywhere.

Example 3.2 (Helix surface). Let M be a surface parametrized by X(s, z) = β(s) +
z (cos φ Nβ(s)+sin φ v), φ ∈ (0, π/2], where β and v are as in the previous example. Here,
the normal vector field is given N(s, z) = − sin φ Nβ(s)+cos φ v and the concircular vector
field can be chosen again as Y = v, satisfying ⟨N, Y ⟩ = cos φ. These surfaces are also
known as constant angle surfaces, [6].

Example 3.3 (Conical surface). Let M be a surface parametrized by X(s, z) = z β(s),
where β is a spherical curve, β(s) ∈ S2(1), with Darboux frame {Tβ, Nβ}. In this case,
the normal vector field is given by N(s, z) = Nβ(s) and the concircular vector field Y can
be chosen as the position vector field.

A nontrivial concircular surface M ⊂ R3 is said to be proper if it is neither a generalized
cylinder, nor a helix surface nor a conical surface, i.e., λµ ̸= 0.

For a proper concircular surface, we can think that the concircular vector field Y is
essentially the position vector (µ = 1, v = 0), so that condition ⟨Y (s, z), N(s, z)⟩ = λ is
equivalent to saying that the distance from the origin to the tangent planes to the surface
is constant and equal to λ, i.e., that all planes tangent to the surface are also tangent to
the sphere of radius λ centered at the origin.

Proposition 3.4. A surface M ⊂ R3 admits a concircular vector field parallel to its
normal vector field along M if and only if M is an open piece of a plane or a sphere (i.e.,
if and only if M is a trivial concircular surface).

Proof. Let N denote the unit normal vector field of the surface and assume there is a
concircular vector field Y such that its restriction to M satisfies Y |M = λ N , for a certain
differentiable function λ. Then we have µ X = X(λ) N −λ AX, for all tangent vector field
X, where A stands for the Weingarten operator of M . By equating the normal components
of both sides we deduce that λ is a nonzero constant. Moreover we get AX = −(µ/λ) X,
showing that M is a totally umbilical surface. This concludes the proof. □

Let M ⊂ R3 be a nontrivial concircular surface and let Y denote the corresponding
concircular vector field on R3 with ⟨Y, N⟩ = λ (constant) along M . By taking tangent
and normal components of Y restricted to M we can write

Y |M = Y T + Y N = δ T + λ N, (3.1)
where T is a unit tangent vector field and δ is a nonzero differentiable function (otherwise,
M should be a trivial concircular surface by the previous proposition).

Proposition 3.5. Let M be a proper concircular surface in R3. Then:
i) M is a flat surface.
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ii) The integral curves of T are straight lines.

Proof. By derivating in (3.1) with respect to a tangent vector field X and using the Gauss
and Weingarten formulae we have

µX = X(δ)T + δ∇XT − λAX + δσ(X, T ), (3.2)
where ∇ and σ denote de Levi-Civita connection and second fundamental form of M . By
equating normal components of (3.2) and bearing in mind that δ ̸= 0 we get σ(X, T ) = 0,
for any tangent vector field X. These equation is equivalent to AT = 0, which implies i).
Now, by taking X = T in (3.2), we also obtain ∇T T = 0, showing ii). □

In the following, we present a method for constructing nontrivial concircular surfaces
from curves on totally umbilical surfaces. Let S ⊂ R3 be a totally umbilical surface of
constant curvature c (we can take S as a plane or a sphere of radius r centered at p0).
Take a unit speed curve β : I ⊂ R → S ⊂ R3, with curvature κβ(t) and Darboux frame
{Tβ(t), Nβ(t), η(t) = Tβ(t) × Nβ(t)}. Then we have the Frenet-Darboux equations of β,

T ′
β(t) = −

√
c η(t) + κβ(t) Nβ(t), N ′

β(t) = −κβ(t) Tβ(t), η′(t) =
√

c Tβ(t).
Let M = Mβ,φ be the ruled surface built on the curve β parametrized by

X(t, z) = β(t) + z
(

cos φ Nβ(t) + sin φ η(t)
)
, (3.3)

for a constant φ ∈ (0, π/2]. The unit normal vector field is given by N(t, z) = − sin φ Nβ(t)+
cos φ η(t), and this shows that surfaces M parametrized by (3.3) are concircular sur-
faces. Indeed, if S is a plane with unit normal vector η0, then the concircular vector field
Y (p) = η0 satisfies ⟨Y, N⟩ = cos φ constant. Otherwise, if S is a sphere of radius r cen-
tered at p0, then the concircular vector field Y (p) =

√
c (p−p0) also satisfies the condition

⟨Y, N⟩ = cos φ constant.

Theorem 3.6. Let M be a nontrivial concircular surface with associated concircular vector
field Y . Then M can be locally parametrized by

X(t, z) = β(t) + z
(

cos φ Nβ(t) + sin φ η(t)
)
, (3.4)

with φ ∈ (0, π/2], β being a curve in a totally umbilical surface S ⊂ R3 whose normal
vector field η is parallel to Y along S.

Proof. Assume that Y (q) = µ q + v, for all point q ∈ R3, and ⟨Y, N⟩ = λ for a certain
constant λ, N being the unit vector field normal to M . Given a point p ∈ M , with
Y (p) ̸= 0, let Sp be a totally umbilical surface containing the point p and whose normal
vector field is parallel to Y . This surface Sp can be constructed as follows:

• when µ = 0, let Sp be the plane Sp = {q ∈ R3 : ⟨q − p, v⟩ = 0}.
• when µ ̸= 0, let Sp be the sphere S2((−1/µ)v, r) centered at the critical point of

vector field Y and of radius r = ||p + (1/µ)v||, its distance to the point p.
From Proposition 3.4, there is a point p ∈ M such that the tangent planes at p to the
surfaces Sp and M are distinct. This allows us to define the curve β = Sp∩M , parametrized
by β(t) with β(0) = p. As before, consider the decomposition of vector field Y along M
as Y = δ T + λ N , T being a unit tangent vector field. It is easy to see that the tangent
plane to M along β is spanned by {Tβ, T} (note that T and Tβ are orthogonal). By using
Proposition 3.5, we deduce there exists a neighborhood U of the point p given by

U = {β(t) + zT (β(t)) : t ∈ (−ε1, ε1), z ∈ (−ε2, ε2)}, ε1, ε2 > 0.

Since the vector fields T and Tβ are orthogonal along β, there is a function φ = φ(t) such
that T (β(t)) = cos φ(t) Nβ(t)+sin φ(t) η(t), and so we also have N(β(t)) = − sin φ(t) Nβ(t)
+ cos φ(t) η(t). Now we can write the concircular vector field Y along β as follows

Y (β(t)) =
(
δ(β(t)) cos φ(t) − λ sin φ(t)

)
Nβ(t) +

(
δ(β(t)) sin φ(t) + λ cos φ(t)

)
η(t). (3.5)
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Since the normal vector field η of Sp is parallel to vector field Y and Y |β is of constant
length (specifically ||Y |β|| = ||v|| when µ = 0, and ||Y |β|| = |µ| r when µ ̸= 0), then from
(3.5) we get δ is constant along β, and so φ is constant. Without loss of generality we can
assume φ ∈ (0, π/2]. Therefore U can be parametrized as in (3.4) and this concludes the
proof. □

The above result characterizes the three classic examples of concircular surfaces: the
cylindrical surfaces (µ = 0, φ = π/2), the helix surfaces (µ = 0, φ ∈ (0, π/2)) and the
conical surfaces (µ ̸= 0, φ = π/2).

To finish this section, we present a nice characterization of proper concircular surfaces.

Theorem 3.7. M ⊂ R3 is a proper concircular surface if and only if one of the following
conditions hold:

1) M is the normal surface to a spherical curve.
2) M is parallel to a conical surface.

Proof. Let M be a concircular surface and consider X(t, z) its parametrization as in
(3.4), where we assume β(t) is a unit speed curve in the sphere S2(r). Take the curve
δ(t) = r(sin φ Nβ(t)−cos φ η(t)), with η(t) = 1

r β(t), whose Darboux frame {Tδ, Nδ, (1/r)δ}
is given without loss of generality by Tδ(u(t)) = −Tβ(t) and Nδ(u(t)) = cos φ Nβ(t) +
sin φ η(t), where u = u(t) denotes the arc parameter of δ. From here we obtain

β(t) = − cos φ δ(u(t)) + r sin φ Nδ(u(t)), Nβ(t) = 1
r

sin φ δ(u(t)) + cos φ Nδ(u(t)),

and then X(t, z) can be rewritten as

X(t, z) = − cos φ δ(u(t)) + (r sin φ + z) Nδ(u(t)).

This shows that M is the normal surface to a spherical curve.
In a similar way, using the same type of reasoning but applying it to the curve δ(t) =

r(cos φ Nβ(t) + sin φ η(t)), we show that M is parallel to a conical surface.
To prove the converse, let us assume M is the normal surface to a spherical curve δ(u)

in the sphere S2(r), with Darboux frame {Tδ, Nδ, (1/r)δ}, and consider the surface M
parametrized by

X(u, z) = δ(u) + zNδ(u).
Then the unit normal vector field N(u, z) is given without loss of generality by N(u, z) =
(1/r)δ(u), and therefore ⟨N(u, z), X(u, z)⟩ = r, i.e., M is a concircular surface.

A similar reasoning can be done if M is parallel to a conical surface. □

Example 3.8 (A family of concircular surfaces). Without loss of generality (see [12,13]),
an arclength parametrized spherical generalized helix is given by

δ(u) =
(

a + m

2a
cos

(a − m

a
η(u)

)
− a − m

2a
cos

(a + m

a
η(u)

)
,

a + m

2a
sin
(a − m

a
η(u)

)
− a − m

2a
sin
(a + m

a
η(u)

)
,

w

a
cos

(m

a
η(u)

))
,

where η(u) = a
m arccos(−m

w u) and a2 = m2 + w2. Taking µ(u) =
√

w2 − m2u2, a straight-
forward computation leads to

δ(u) = 1
aw

(
− m2u cos η(u) + aµ(u) sin η(u), −aµ(u) cos η(u) − m2u sin η(u), −mwu

)
,

Tδ(u) = 1
a

(
w cos η(u), w sin η(u), −m

)
,

Nδ(u) = 1
aw

(
mµ(u) cos η(u) + amu sin η(u), −amu cos η(u) + mµ(u) sin η(u), wµ(u)

)
.
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According to Theorem 3.7, a family of concircular surfaces is given by the following
parametrization

X(u, v) = 1
aw

(
(−m2u + mµ(u)v) cos η(u) + (aµ(u) + amuv) sin η(u),

− a(muv + µ(u)) cos η(u) + (mµ(u)v − m2u) sin η(u), −mwu + wµ(u)v
)
,

for certain non-zero parameters a, m, w.

4. Geodesics of concircular surfaces
Let M be a nontrivial proper concircular surface. Since any geodesic of M satisfies that

its principal normal vector field is parallel to the unit vector field normal to M , it is clear
that every geodesic on a concircular surface is a concircular helix. Now we will find the
equations characterizing the geodesics in a concircular surface.

Let γ(s) = X
(
t(s), z(s)

)
be a unit speed geodesic of M , with κγ > 0, where X is given

by (3.4). Making the same computations as in [10] we can deduce there is a differentiable
function θ such that

t′(s)
(
1 + z(s)(− cos φ κβ(t(s)) +

√
c sin φ)

)
= sin θ(s), (4.1)

z′(s) = cos θ(s). (4.2)
From the Frenet equations (2.1), and using that γ is a geodesic, we deduce

cos θ(s)
(
θ′(s) − cos φ t′(s) κβ(t(s)) +

√
c sin φ t′(s)

)
= 0, (4.3)

sin θ(s)
(
t′(s) κβ(t(s)) − cos φ θ′(s)

)
= − sin φ κγ(s), (4.4)

− sin θ(s)
(√

c t′(s) + sin φ θ′(s)
)

= cos φ κγ(s). (4.5)
Since M is a proper concircular surface then cos θ(s) ̸= 0, and from (4.3) we get

θ′(s) = t′(s)
(

cos φ κβ(t(s)) −
√

c sin φ
)
. (4.6)

Finally, from a straightforward computation, we deduce that the curvature and torsion of
the geodesic γ are given by

κγ(s) = − sin θ(s) t′(s) (sin φ κβ(t(s)) +
√

c cos φ), (4.7)
τγ(s) = cos θ(s) t′(s) (sin φ κβ(t(s)) +

√
c cos φ). (4.8)

We have proved the following result.

Proposition 4.1. A unit speed curve γ(s) = X
(
t(s), z(s)

)
, with κγ > 0, is a geodesic of

the nontrivial concircular surface M if and only if there is a differentiable function θ such
that equations (4.1), (4.2) and (4.6) hold. Moreover, the curvature and torsion of γ are
given by (4.7) and (4.8), respectively.
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Example 4.2 (Concircular helices “of constant precession”). Let β be a curve in a totally
umbilical surface S with curvature

κβ(t) = a

cos φ
√

4 − a2t2
+

√
c tan φ, t ∈

(
− 2

a
,

2
a

)
,

where c ∈ {0, 1} is the curvature of S, a > 0 and φ ∈ (0, π/2). To find geodesics γ of a
concircular surface M constructed on the curve β (which will be concircular helices), we
need to solve the ODE system given in Proposition 4.1. It is not difficult to check that a
solution of (4.1), (4.2) and (4.6) is given by the following functions:

θ(s) = as, t(s) = −2
a

cos(as), z(s) = 1
a

sin(as), (4.9)

for s ∈ (0, π/a) (in general, s ∈ (kπ/a, (k + 1)π/a) for a integer number k). In this case,
the curvature and torsion of these concircular helices can be written by using (4.7) and
(4.8) as follows,

κγ(s) = − sin as
(
a tan φ + 2

√
c sec φ sin(as)

)
,

τγ(s) = cos as
(
a tan φ + 2

√
c sec φ sin(as)

)
.

Hence, γ is a curve of constant precession for c = 0, [12]. In Figure 1 we show some
examples for c = 1, φ = 0.4 π, and several values of a.

a = 1 a = 5 a = 100

Figure 1. Concircular helices “of constant precession”

4.1. A natural parametrization for the concircular surfaces
Since the natural parametrization of a cylindrical surface, a conical surface or a helix

surface is well known (see [2, 8, 10], respectively), let us consider the case when M is a
proper concircular surface.

Let S ⊂ R3 be a sphere of radius r centered at p0. Take a unit speed curve β : I ⊂
R → S ⊂ R3, an angle φ ∈ (0, π/2), and consider the ruled surface M parametrized by

X(t, z) = β(t) + z
(

cos φ Nβ(t) + sin φ η(t)
)
.

When κβ is constant (i.e. β is a circle), M is a cone and its striction line reduces to a
single point (the vertex of the cone). Assume without loss of generality that κ′

β ̸= 0.
A straightforward computation shows that the striction line of M is given by

α(t) = β(t) + 1
cos φ κβ(t) −

√
c sin φ

(
cos φ Nβ(t) + sin φ η(t)

)
.
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Hence the arclength parameter of α is

u(t) = 1
cos φ κβ(t) −

√
c sin φ

,

and the unit tangent vector field is given by Tα(u(t)) = cos φ Nβ(t) + sin φ η(t). By tak-
ing derivative here we deduce Nα is parallel to Tβ. Since ⟨Tβ(t), β(t) − p0⟩ = 0 then
⟨Nα(u(t)), α(t) − p0⟩ = 0, and this shows α is a rectifying curve.

A straightforward computation leads to

τα(u(t)) = −κα(u(t))
(

tan φ +
√

c sec φ u(t)
)
.

Hence, a natural parametrization of M is the following

Z(u, v) = α(u) + (v − u) Tα(u), v ̸= u, (4.10)

α being a rectifying curve. Since ⟨Bα, α⟩ is constant for a rectifying curve and Bα is
parallel to N , then the tangent surface M to a rectifying curve α is a concircular surface.

Now, we will find the equations of their geodesic curves. Let γ(s) = Z(u(s), v(s)) be a
unit speed geodesic of the ruled surface M . Then

Tγ(s) = u′(s) (v(s) − u(s)) κα(u(s)) Nα(u(s)) + v′(s) Tα(u(s)),

so that there is a differentiable function ω such that

u′(s) (v(s) − u(s)) κα(u(s)) = sin ω(s),
v′(s) = cos ω(s).

The function ω represents the angle between the geodesic γ and the base curve α. Bearing
in mind the Frenet equations (2.1) we obtain

κγ(s) Nγ(s) = − sin ω(s)
(
u′(s) κα(u(s)) + ω′(s)

)
Tα(u(s))

+ cos ω(s)
(
u′(s) κα(u(s)) + ω′(s)

)
Nα(u(s))

+ sin ω(s) u′(s) τα(u(s)) Bα(u(s)). (4.11)

Without loss of generality we can assume that Nγ(s) = N(u(s), v(s)) = −Bα(u(s)), that
jointly with (4.11) leads to ω′(s) = −u′(s) κα(u(s)). This yields the following equations
for the curvature and torsion of the geodesic:

κγ(s) = − sin ω(s) u′(s) τα(u(s)) = sin ω(s) ω′(s) (τα/κα)(u(s)), (4.12)
τγ(s) = cos ω(s) u′(s) τα(u(s)) = − cos ω(s) ω′(s) (τα/κα)(u(s)). (4.13)

Hence, we have shown the following result.

Proposition 4.3. Let M be a proper concircular surface parametrized by (4.10). An
arclength parametrized curve γ(s) = Z(u(s), v(s)), with κγ > 0, is a geodesic of M if and
only if there is a differentiable function ω such that

u′(s) (v(s) − u(s)) κα(u(s)) = sin ω(s), (4.14)
v′(s) = cos ω(s), (4.15)

u′(s) κα(u(s)) = −ω′(s). (4.16)

Moreover, the curvature and torsion of γ are given by (4.12) and (4.13), respectively.

Theorem 4.4. Let γ(s) be an arclength parametrized curve fully immersed in R3. If γ is
a proper concircular helix, then there exists a rectifying curve α such that γ is (congruent
to) a geodesic of the tangent surface to α.
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Proof. Let us consider the following functions:

ω(s) = − arccot ρ(s), (4.17)

u(s) = − 1
m

(
κγ(s) (1 + ρ(s)2)3/2

ρ′(s)
+ n

)
, (4.18)

v(s) =u(s) − sin ω(s)
ω′(s)

, (4.19)

for a constant n. Here, m and ρ(s) are given in Theorem 2.4.
Let α be the rectifying curve determined by the curvature function

κα(t) = −ω′(u−1(t))
u′(u−1(t))

(4.20)

and whose torsion satisfies (τα/κα)(u) = m u + n.
On the tangent surface to α, let us take the curve γ̃(s) = Z(u(s), v(s)). From (4.20) we

get (4.16), and then equation (4.19) leads to (4.14).
By derivating (4.18) and using (2.5) we obtain

u′(s) =
√

1 + ρ(s)2 ρ′′(s)
ρ′(s)2 ,

and then we get

v′(s) = ρ′′(s)
√

1 + ρ(s)2

ρ′(s)2 +
(√

1 + ρ(s)2

ρ′(s)

)′

= ρ(s)√
1 + ρ2(s)

= cos ω(s).

In conclusion, by Proposition 4.3 we get γ̃ is a geodesic in the tangent surface to a rectifying
curve, so it is a concircular helix.

On the other hand, we have

τα

κα
(u(s)) = m u(s) + n = −κγ(s) (1 + ρ(s)2)3/2

ρ′(s)
.

Since the curvature and torsion of γ̃ satisfy (4.12) y (4.13), respectively, we get

κγ̃(s) = −1√
1 + ρ(s)2

ρ′(s)
1 + ρ(s)2

−(1 + ρ(s)2)3/2

ρ′(s)
κγ(s) = κγ(s),

τγ̃(s) = − ρ(s)√
1 + ρ(s)2

ρ′(s)
1 + ρ(s)2

−(1 + ρ(s)2)3/2

ρ′(s)
κγ(s) = τγ(s),

which shows that γ and γ̃ are congruent curves. □
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