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Abstract: Physics-informed neural networks (PINNs) have drawn attention in recent years in engineering problems 

due to their effectiveness and ability to tackle problems without generating complex meshes. PINNs use automatic 

differentiation to evaluate differential operators in conservation laws and hence do not need a discretization scheme. 
Using this ability, PINNs satisfy governing laws of physics in the loss function without any training data. In this work, 

we solve various incompressible thermal convection problems, and compare the results with numerical or analytical 

results. To evaluate the accuracy of the model we solve a channel problem with an analytical solution. The model is 

highly dependent on the weights of individual loss terms. Increasing the weight of boundary condition loss improves 

the accuracy if the flow inside the domain is not complicated. To assess the performance of different type of networks 

and ability to capture the Neumann boundary conditions, we solve a thermal convection problem in a closed enclosure 

in which the flow occurs due to the temperature gradients on the boundaries. The simple fully connected network 

performs well in thermal convection problems, and we do not need a Fourier mapping in the network since there is no 

multiscale behavior. Lastly, we consider steady and unsteady partially blocked channel problems resembling industrial 

applications to power electronics and show that the method can be applied to transient problems as well. 

Keywords: physics-informed neural networks, machine learning, automatic differentiation, incompressible, heat 

transfer. 
 

SIKIŞTIRILAMAZ ISIL TAŞINIM PROBLEMLERİNİN FİZİKLE ÖĞRENEN YAPAY 

SİNİR AĞLARI İLE ÇÖZÜMÜ 
 

Öz: Fizikle öğrenen yapay sinir ağları (PINN'ler), etkinlikleri ve karmaşık ağlar oluşturmadan problemlerin üstesinden 

gelme yetenekleri nedeniyle son yıllarda mühendislik problemlerinde dikkat çekmiştir. PINN'ler, koruma yasalarında 

diferansiyel operatörleri değerlendirmek için otomatik türevlenmeyi kullanır ve bu nedenle bir ayrıklaştırma şemasına 

ihtiyaç duymaz. Bu yeteneği kullanarak, PINN'ler herhangi bir eğitim verisi olmadan kayıp fonksiyonunda geçerli fizik 

yasalarını karşılar. Bu çalışmada, gerçek uygulamalar ve karşılaştırılabilir sayısal veya analitik sonuçlara sahip 

problemler de dahil olmak üzere çeşitli sıkıştırılamaz ısıl taşınım problemlerini çözüyoruz. Modelin performansını 

değerlendirmek için analitik çözümü olan bir kanal problemini çözüyoruz. Model, bireysel kayıp terimlerinin 

ağırlıklarına büyük ölçüde bağımlıdır. Alan içindeki akış çok karmaşık değilse, sınır koşulu kaybının ağırlığının 

arttırılması doğruluğu artırır. Farklı tipteki ağların performansını ve Neumann sınır koşullarını yakalama yeteneğini 
değerlendirmek için, sınırlardaki sıcaklık gradyanlarından dolayı akışın meydana geldiği kapalı bir muhafazada bir 

termal konveksiyon problemini çözüyoruz. Basit tam bağlantılı ağ, termal konveksiyon problemlerinde iyi performans 

gösterir ve çok ölçekli davranış olmadığından ağda Fourier dönüşümüne ihtiyacımız yoktur. Son olarak, endüstriyel 

uygulamaları güç elektroniğine benzeyen sabit ve kararsız kısmen bloke kanal problemlerini ele alıyoruz ve yöntemin 

geçici problemlere de uygulanabileceğini gösteriyoruz. 

Anahtar Kelimler: fizikle öğrenen yapay sinir ağları, makine öğrenmesi, otomatik türevlenme, sıkıştırılamaz, ısı 

transferi. 

 

NOMENCLATURE 

 

Abbreviations 

𝐺𝑟 Grashof Number [= 𝑔𝛽(𝑇 − 𝑇𝑟)𝐿𝑟
3/𝜈2] 

𝑃𝑟 Prandtl Number [= 𝜈/𝛼] 
𝑅𝑎 Rayleigh Number [= 𝐺𝑟𝑃𝑟] 
𝑅𝑒 Reynolds Number [= 𝑈𝑟𝐿𝑟/ν] 
DGM Deep Galerkin Method 

DNS Direct Numerical Simulation 

FCN Fully Connected Network 

MLP Multilayer Perceptron 
NS Navier-Stokes 

NTK 

PDE 

PINN 

Neural Tangent Kernel 

Partial Differential Equation 

Physics Informed Neural Network 
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Subscripts 

𝑢 Velocity Related Value 

θ Temperature Related Value 

BC Boundary Condition 

𝐷 Dirichlet Boundary 

IC Initial Condition 

𝑁 Neumann Boundary 

R Residual 

𝑟 Reference Value 

Greek Symbols 

α Thermal Diffusivity [= 𝑚2/𝑠] 
β Expansion Coefficient [= 1/∘𝐶] 
∇ ⋅ Divergence Operator 

∇ Gradient Operator 

Δ Laplace Operator 

ν Kinematic Viscosity [= 𝑚2/𝑠] 
ω Weight of loss terms 

σ Activation Function 

θ Non-dimensional Temperature 

Symbols 

𝑠𝑢  Source Term of Momentum Equation 

𝑢 Velocity Vector 

𝓛 Loss Term of a Neural Network 

𝒩 Generalized Differential Operator 

𝑔𝐷 Dirichlet Boundary Condition 

𝑔𝑁 Neumann Boundary Condition 

𝐿2 𝐿2 Vector Norm of Error 

𝑝 Non-dimensional Pressure 

𝑠𝜃 Source Term of Energy Equation 

𝑡 Non-dimensional Time 

 

INTRODUCTION 

 

Thermal convection problems arise in many practical 

engineering applications, such as cooling electronic 

chips. This type of real-life analysis of fluid flow and heat 

transfer requires high degrees of freedom to minimize the 

numerical error. This can be achieved with high-quality 

mesh or high order discretizations. However, mesh 

generation is time consuming and requires expertise. 

Also, high order simulation tools for these types of 

problems are computationally demanding. 

 

The incompressible thermal convection is studied in the 

literature with various numerical methods (Baïri et al., 

2014). Tang and Tsang (1993) used a least squares finite 

element method based on a velocity, pressure, vorticity, 

temperature, and heat flux formulation for time 

dependent problems. Hossain et al. (2021) developed a 

spectral/hp element method for the Direct Numerical 

Simulation (DNS) of incompressible thermal convective 

flows by considering Boussinesq type thermal body-

forcing with periodic boundary conditions and enforcing 

a constant volumetric flow rate. In Karakus (2022), the 

author presented a GPU accelerated nodal discontinuous 

Galerkin method on unstructured triangular meshes for 

solving problems on different convective regimes. 

 

Apart from the conventional numerical methods such as 

finite difference, finite volume, and finite element 

methods, data-driven machine learning methods are used 

to solve the partial differential equations (PDE) (Willard 

et al., 2020). These regression methods offer effective 

and mesh free approaches (Karniadakis et al., 2021). 

Neural networks were first employed to solve the PDEs 

as in Lee and Kang (1990) and Lagaris et al. (1998), and 

in Raissi et al. (2017a) and Raissi et al. (2017b), the 

authors employed Gaussian processes regression to 

accurately predict the solution and provide the 

uncertainty in the model. Raissi et al. (2019) introduced 

the concept of physics-informed neural networks 

(PINNs) that use automatic differentiation (Baydin et al., 

2017) to solve forward and inverse problems for several 

types of PDEs. PINNs do not require mesh generation. 

Instead, the PDEs and any other constraints can be 

directly enforced into the loss function of the neural 

network using automatic differentiation by forcing the 

prediction to the target value. The loss function includes 

zero residuals for conservation laws and satisfying the 

boundary/initial conditions. 

 

To solve PDEs using PINNs, generally, fully connected 

networks are used. However, plain fully connected 

networks perform poorly for different types of problems. 

In the learning process, these networks have a learning 

bias toward low-frequency functions called spectral bias 

(Rahaman et al., 2019). This reduces the accuracy in 

which the target function exhibits high frequency or 

multi-scale behavior. To overcome this problem, Tancik 

et al. (2020) and Wang et al. (2021b) proposed Fourier 

feature mapping of the input vectors before feeding them 

into the network. The input coordinates v is mapped with  

γ(𝒗) = 𝑎1𝑐𝑜𝑠(2π𝒃1
𝑇𝒗), 𝑎1𝑠𝑖𝑛(2𝜋𝒃1

𝑇𝒗), …, 
𝑎𝑚 cos(2𝜋𝒃𝑚

𝑇 𝒗),𝑎𝑚𝑠𝑖𝑛(2𝜋𝒃𝑚
𝑇 𝒗) and then passed into 

the multi-layer perceptron (MLP). This mapping 

transforms the Neural Tangent Kernel (NTK) (Jacot et 

al., 2018) into a stationary kernel and enables controlling 

the learning of the range of frequencies by modifying the 

frequency vectors 𝒃 in the mapping function. Tancik et 

al. (2020) show the performance of this method in many 

low-dimensional tasks in computer vision. Wang et al. 

(2021b) show its efficiency for challenging problems 

involving partial differential equations with multi-scale 

behavior where conventional PINN models might have 

issues, such as wave propagation and reaction-diffusion 

equations.  

 

In another approach, Esmaeilzadeh et al. (2020) proposed 

a PDE constrained deep learning algorithm that 

reconstructs high-resolution solutions using the low 

resolution physical solutions in space and time, and 

solved the well-known Rayleigh-Bénard instability 

problem. This model is referred to as super resolution 

model and enables effectively scaling to large domains 

and having physically reasonable solutions by 
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regularizing the outputs with PDE constraints. The 

framework is named as MeshfreeFlowNet and consists of 

two subnetworks. The first network, called Context 

Generation Network, is a convolutional encoder that 

takes low resolution physical input and creates a Latent 

Context Grid. This grid contains latent context vectors 

along with the spatio-temporal coordinates, and these 

values are fed into another network called Continuous 

Decoding network modeled as an MLP. This framework 

allows the output to be continuous instead of a discrete 

output, removing the output resolution limitations. In 

addition, this continuous output allows us to effectively 

compute the output's gradients, enabling us to enforce the 

PDE-based constraints. 

 

Due to the popular deep learning frameworks such as 

TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et 

al., 2019), and their easy implementation, PINNs have 

become quite popular for solving PDEs. Moreover, some 

software libraries are designed explicitly for physics-

informed machine learning, such as DeepXDE (Lu et al., 

2021) and NeuralPDE (Zubov et al., 2021). It is used for 

solving incompressible and compressible Navier-Stokes 

equations (Rao et al., 2020; Jin et al., 2021; Cai et al., 

2022), as well as in inverse heat transfer problems (Cai et 

al., 2021). To the best of our knowledge, solving forward 

thermal convection problems with PINNs, the effect of 

different neural networks on the accuracy, and the effect 

of the weights in the loss terms for different thermal 

convection regimes are not studied in detail. 

 

In this work, we present the application of PINNs to 

coupled fluid flow and heat transfer problems in different 

thermal convection regimes. In particular, we examined 

the effectiveness of specific weights assigned to the 

different loss terms in the composite loss function. 

Changing these specific weights can increase the 

accuracy of the model according to the problem where 

boundary conditions or flow inside the computational 

domain dominates the residual. In addition, for thermal 

convection problems, different types of networks can be 

used instead of simple, fully connected networks. These 

various networks can change the convergence of the 

model. 

 

The remainder of this paper is organized as follows. First, 

we present the mathematical formulation of 

incompressible Navier-Stokes equations coupled with 

the energy equation through Boussinesq approximation. 

Then we give brief information about the physics-

informed neural networks and their loss functions, 

followed by the 2D numerical validation cases. The last 

section is about concluding remarks and future works. 

 

 

 

 

FORMULATION 

 

We consider a closed two-dimensional domain Ω ⊂ 𝑅𝟚 

and denote the boundary of Ω by ∂Ω. Following the 

notation presented in Karakus et al. (2019b), we assume 

that ∂Ω can be partitioned into two non-overlapping 

regions denoted by ∂Ω𝐷 and ∂Ω𝑁 referring prescribed 

Dirichlet or Neumann boundary conditions, respectively. 

We are interested in the approximation of non-isothermal 

incompressible Navier-Stokes equations coupled by the 

energy equations through Boussinesq approximation 

which reads: 

 

∇ ⋅ 𝒖 = 0, (1.1) 

𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅  ∇)𝒖 = −∇𝑝 +

1

𝑅𝑒
Δ𝒖 + 𝒔𝒖,  (1.2) 

𝜕𝜃

𝜕 𝑡
+ (𝒖 ⋅ ∇)𝜃 =

1

𝑅𝑒 𝑃𝑟
Δ𝜃 + 𝑠𝜃 ,  (1.3) 

 

in non-dimensional form and space-time slap Ω × (0, 𝒯] 
subject to the initial conditions 

 
𝒖 = 𝒖𝟎, 𝜃 = 𝜃0  𝑓𝑜𝑟   𝑡 = 0, 𝒙 ∈ 𝛺, (2) 

 

and the boundary conditions 

 

𝒖 = 𝒈𝑫  𝑜𝑛  𝑥 ∈ 𝜕𝛺𝐷
𝑢 , 𝑡 ∈ (0, 𝒯], (3.1) 

𝜕𝒖

𝜕𝒏
= 0, 𝑝 = 0  𝑜𝑛  𝒙 ∈ 𝜕𝛺𝑁

𝒖 , 𝑡 ∈ (0, 𝒯], (3.2) 

𝜃 = 𝑔𝐷  𝑜𝑛  𝑥 ∈ 𝜕𝛺𝐷
𝜃 , 𝑡 ∈ (0, 𝒯], (3.3) 

𝜕𝜃

𝜕𝑛
= 𝑔𝑁   𝑜𝑛  𝑥 ∈ 𝜕𝛺𝑁

𝜃 , 𝑡 ∈ (0, 𝒯]. (3.4) 

 

Here 𝑢, 𝑝, and 𝜃 are non-dimensional velocity, static 

pressure, and temperature fields, respectively. In the 

equation, following parameters are used to get 

dimensionless quantities, 

 

𝑥 =
𝑥∗

𝐿𝑟

, 𝑡 =
𝑡∗

𝐿𝑟/𝑈𝑟

, 𝒖 =
𝒖∗

𝑈𝑟

, 𝑝 =
𝑝∗

𝜌𝑟𝑈𝑟
2
 

(4) 

𝜌 =
𝜌∗

𝜌𝑟

, 𝜈 =
𝜈∗

𝜈𝑟

, 𝛼 =
𝛼∗

𝛼𝑟

, 𝜃 =
𝑇 − 𝑇𝑟

𝑇𝑠

, 

 

where superscript ∗ denotes the dimensional parameter, 

and the subscript 𝑟 refers to the corresponding reference 

value i.e., reference length scale 𝐿𝑟, velocity 𝑈𝑟, density 

ρ𝑟, viscosity ν𝑟, thermal diffusivity α𝑟 and temperature 

𝑇𝑟. The non-dimensional Reynolds and Prandtl numbers 

are defined as Re = 𝑈𝑟𝐿𝑟/𝜈𝑟 and 𝑃𝑟 = 𝜈𝑟/𝛼𝑟. 𝒔𝒖 =
(𝒈𝛽(𝑇 − 𝑇𝑟)𝐿𝑟/𝑈𝑟)𝜃 is the forcing term for Navier-

Stokes, where 𝒈 is the gravitational acceleration, 𝛽 is the 

expansion coefficient. In free convection problems, the 

reference velocity is selected as 𝑈𝑟 = 𝑔𝛽(𝑇 − 𝑇𝑟)𝐿𝑟. 

𝑠𝜃 = 𝑠𝜃(𝜃, ∇𝜃, 𝒖) is the generic generation term for the 

energy equation written in terms of temperature. We 

would like to emphasize that superscripts 𝑢 and 𝜃 in 
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boundary representation separate the Dirichlet and 

Neumann conditions on the physical boundary set for 

flow and heat transfer equations.  

 

 
Figure 1. Schematic of a PINN framework

 

PHYSICS-INFORMED NEURAL NETWORKS 

 

Consider a general partial differential equation expressed 

as: 

 𝒖𝑡 + 𝒩[𝒖] = 0,  𝒙 ∈ Ω, t ∈ [0, 𝑇] (5.1) 

 𝒖(𝑥, 0) = 𝑓(𝒙),  𝒙 ∈ Ω (5.2) 

 𝒖(𝑥, 𝑡) = 𝑔(𝒙, 𝑡),  𝒙 ∈ ∂Ω, t ∈ [0, 𝑇] (5.3) 

 

where 𝒩 is a generalized differential operator that can be 

linear or nonlinear, 𝑥 ∈ 𝑅𝑑  and 𝑡 are the spatial and 

temporal coordinates. Ω and ∂Ω represent the 

computational domain and the boundary, respectively. 

𝑢(𝑥, 𝑡) is the general solution of the PDE with 𝑓(𝑥) is the 

initial condition and 𝑔(𝑥, 𝑡) is the boundary condition. 

 

The solution 𝑢(𝑥, 𝑡) can be approximated by a fully 

connected network according to the framework of 

physics-informed neural networks (PINN) proposed by 

Raissi et al. (2019). This network takes the spatio-

temporal coordinates (𝑥, 𝑡) as input and outputs a 

solution 𝑢𝑁𝑁(𝑥, 𝑡). Between these input and output 

layers, there exist multiple hidden layers. Each hidden 

layer takes input 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑖] and outputs 𝑌 =

[𝑦1, 𝑦2, … , 𝑦𝑗] through a nonlinear activation function  

𝜎(·) such as 

 

𝑦𝑗 = σ(ω𝑖,𝑗 + 𝑏𝑗), (6) 

 

where ω𝑖,𝑗 and 𝑏𝑗 are trainable hyperparameters, weights 

and biases, respectively. These hyperparameters are 

tuned such that it minimizes a composite loss function in 

the form 

 

ℒ = ω𝐷ℒ𝒟 + 𝜔𝑅 ℒ𝑅 + 𝜔𝐵𝐶ℒ𝐵𝐶 + 𝜔𝐼𝐶 ℒ𝐼𝐶 (7) 

 

where 

 

ℒ𝒟 =
1

𝑁𝐷

∑|𝑢(𝑥𝑖 , 𝑡𝑖) − 𝑢𝑖|
2

𝑁𝐷

𝑖=1

 (8.1) 

ℒℛ =
1

𝑁𝑅

∑|𝑢𝑡 + 𝒩[𝑢(𝑥𝑖 , 𝑡𝑖)]|
2

𝑁𝑅

𝑖=1

 (8.2) 

ℒℬ𝒞 =
1

𝑁𝐵𝐶

∑|𝑢(𝑥𝑖 , 𝑡𝑖) − 𝑔(𝑥𝑖 , 𝑡𝑖)|
2

𝑁𝐵𝐶

𝑖=1

 (8.3) 

ℒℐ𝒞 =
1

𝑁𝐼𝐶

∑|𝑢(𝑥𝑖 , 0) − 𝑓(𝑥𝑖)|
2

𝑁𝐼𝐶

𝑖=1

 (8.4) 

ℒ is a loss term indicating the accuracy of the prediction 

if there are some data available in the domain, 

ℒℛ , ℒ𝐵𝐶 , and ℒ𝐼𝐶  represent the residual of the governing 

PDE, the boundary conditions, and the initial condition, 

respectively. 𝒩𝒟 , 𝒩𝑅 , 𝒩𝐵𝐶, and 𝒩𝐼𝐶 are the number of 

data points for different terms, ω𝐷 , 𝜔𝑅 , 𝜔𝐵𝐶 and 𝜔𝐼𝐶  are 

user specified weighting coefficients of each loss term. 

To calculate the residuals for ℒℛ, one needs to take the 

derivative of the output 𝒖 with respect to inputs (𝒙, 𝑡). In 

PINNs, this can be achieved by using automatic 

differentiation (Baydin et al., 2017). Automatic 

differentiation applies the chain rule repeatedly to the 

elementary functions and arithmetic operations to 

achieve the derivative of the overall composition. It plays 

a key role in the development of PINNs by enabling the 

computation of the residual of the governing differential 

equation (Raissi et al., 2019). Automatic differentiation 

is well implemented in most deep learning frameworks, 

such as TensorFlow (Abadi et al., 2016) and PyTorch 

(Paszke et al., 2019). 

 

Figure 1 illustrates a schematic of the PINN framework 

in which the residuals of the coupled Navier-Stokes and 

energy equations are shown as the loss terms. This 

general schematic of the neural network takes the spatio-

temporal coordinates as the input, and through the hidden 

layers, it outputs the pressure, velocity, and temperature 

fields. After this output, the framework calculates the 
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boundary losses from the boundary conditions and the 

data loss if there are any observations. In the next step, 

PINN uses automatic differentiation and calculates the 

residual inside the domain by enforcing the neural 

network output to the Navier-Stokes and energy 

equations. Also, if the boundary conditions are Neumann 

type, the neural network output can be differentiated to 

find the boundary loss. Then the overall loss can be 

calculated by adding the residual loss from the PDE, the 

boundary loss, and if there exist any available 

observations, the data loss. An optimization algorithm 

minimizes this combined loss function via changing the 

hyperparameters. 

 

RESULTS 

 

We have implemented our physics-informed neural 

network on top of the NVIDIA Modulus framework 

(Hennigh et al., 2021). We use the Adam optimizer 

(Kingma and Ba, 2017) to minimize the loss function 

defined in Equation 7 and use 8 hidden layers with 40 

units for each test case where the neural network 

parameters are initialized using the Glorot scheme 

(Glorot and Bengio, 2010). We solve different 2D 

thermal convection tests to show the solutions by 

representing the velocity, pressure, and temperature 

fields. 

 

Poiseuille Flow 

 

In the first test case, we consider two-dimensional 

channel flow with a fully developed Poiseuille profile. 

The channel dimension is [0,2] × [−1,1]. The upper and 

lower walls have a constant temperature of θ𝐿 = 1 and 

𝜃𝑈 = 0. No-slip boundary conditions are imposed for 

upper and lower walls. The fully developed solution of 

the velocity field with the linear temperature profile 

shown below is implemented as the boundary conditions 

of the inlet and the outlet. the flow conditions are stated 

as 𝑅𝑎 = 103, 𝑃𝑟 = 0.71, 𝑎𝑛𝑑 𝑅𝑒 = 100. 

𝑢 = 1 − 𝑦2,  𝑣 = 0,  

𝑝 =
𝑅𝑎

2𝑃𝑟𝑅𝑒2
(𝑦 −

𝑦2

2
) −

2𝑥

𝑅𝑒
,  𝜃 =

1 − 𝑦

2
. 

We trained our framework with 250 samples inside the 

domain and 30 samples on each boundary with 10000 

iterations for this case. The training points are sampled 

using Latin hypercube sampling, and the loss function for 

this problem contains only the Dirichlet boundary 

condition loss for the velocity and the temperature on the 

walls combined with the residual loss inside the domain. 

After training, we performed a prediction on a (251 ×

251) grid and obtained the velocity, pressure, and 

temperature fields. The predicted fields can be seen in 

Figure 2. The accuracy of the PINN is highly dependent 

on the weights of the loss function. In this case, we tried 

different weights of the different terms of the loss 

function to match our solution with the exact solution. 

Especially for an accurate pressure field, we increased 

the weights of the boundary condition losses. The 

solution in Figure 2 is obtained with a boundary loss 

weight 𝜔𝐵𝐶  which is eight times higher than the weight 

of the residual loss 𝜔𝑅 . Since the convective effects are 

not very dominant for this problem, boundary losses are 

dominant, so increasing the boundary loss weights 

increases the accuracy. 

 

We test the performance of the PINNs with the addition 

of true observations at random points on the domain. We 

fused a different number of randomly sampled exact 

solutions inside the domain to the network and added a 

data loss term into the loss function. The training process 

is done with 250 points inside the domain and 30 

boundary points on each boundary beside the true 

solution points. In Table 1, we can see the 𝐿2 norm of the 

error of the predicted 𝑢 velocity and temperature fields. 

The number of observations represents the addition of the 

true solutions, and increasing this number reduces the 𝐿2 

norm of the prediction of the velocity and the temperature 

from the true solution.

 
 

Figure 2. Prediction of Poiseuille flow with PINN. The 𝑢 velocity, pressure and temperature fields are shown in order. Black 

contours show the exact solution and red dashed contours show the solution with PINN 
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Table 1. 𝐿2 norm of the error of the predicted 𝑢 velocity and the temperature fields 

 

Number of observations 𝑢 𝑇 

20 0.527 0.087 

50 0.253 0.057 

100 0.166 0.034 

150 0.141 0.032 

 

Differentially Heated Square Cavity 

 

We focus on the natural convection problem on a two 

dimensional closed enclosure. The enclosure is a square 

cavity with its height denoted as 𝐻 = 1, and width as 

𝑊 = 1. The boundary conditions of the cavity are simple 

no-slip walls, = 0, 𝑣 = 0, on all four walls. The thermal 

boundary conditions on the left and right walls are 

prescribed as 

 

𝜃𝐿 = 1, 𝜃𝑅 = 0 

 

and the upper and the lower walls are thermally insulated 

∂𝜃

∂𝑦
= 0,  for 𝑦 = 0, 𝑦 = 𝐻. 

The flow conditions are 𝑃𝑟 = 0.71, and three different 

Rayleigh numbers as 𝑅𝑎 = 103, 104, 105.  

 

For the PINN solution, we sampled 150 points on each 

boundary and 1000 collocation points inside the domain 

for the training process. Boundary points are used to 

minimize the loss of Dirichlet and Neumann boundary 

conditions, and collocation points are used to minimize 

the residual inside the domain. Automatic differentiation 

is used to calculate the derivatives on Neumann 

boundaries.

 

Table 2. Maximum and minimum velocities along the center lines of the square cavity for 𝑃𝑟 = 0.71 and 𝑅𝑎 = 103 , 104 , 105. 

 

 𝑅𝑎 =  103 𝑅𝑎 =  104 𝑅𝑎 =  105 

 𝑢𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 𝑢𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 𝑢𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 

PINN 0.137 0.138 0.192 0.233 0.128 0.258 

Karakus (2022) 0.137 0.139 0.192 0.233 0.129 0.257 

Stokos et al. (2015) 0.137 0.139 0.192 0.233 0.130 0.256 

De Vahl Davis (1983) 0.136 0.138 0.192 0.234 0.153 0.261 

After the training process, prediction is performed on a 

(251 × 251) grid. In Table 2, we presented the 

maximum and minimum velocities on the horizontal and 

vertical centerlines after the prediction with PINN. For 

cases with different Ra numbers, our framework has 

values that are comparable with the ones in the literature. 

In Figure 3, the solution of PINN and its comparison with 

a high-fidelity solver through the temperature contours 

can be seen. Also, in Figure 4, the center line profiles of 

velocity and temperature for different Ra numbers are 

shown. These contours and profiles qualitatively match 

with the high order solutions (Karakus, 2022). To 

increase the accuracy, we changed the weights of 

different loss terms as Ra changes. In Table 3, we 

presented the center line velocities for different Ra 

numbers and different weight ratios of the residual loss 

over the boundary loss where 𝜔𝑅  represents the weight 

of the residual loss, and 𝜔𝐵𝐶  represents the weight of loss 

on the boundary conditions. We stopped changing 

weights when we matched the center line velocities with 

the reference solutions. As the Ra increases, the 

convective effect inside the domain becomes more 

dominant. Hence, we need to decrease the weight of the 

boundary losses and focus more on the residual inside the 

domain. We select the loss ratio according to Table 3 

which minimizes the error both inside the domain and on 

the boundaries. 

 

 

Table3. Maximum and minimum velocities along the centerlines with different weight ratio of residual loss and the boundary loss 

 

ω𝑅/ω𝐵𝐶 
𝑅𝑎 =  103 𝑅𝑎 =  104 𝑅𝑎 =  105 

𝑢𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 𝑢𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 𝑢𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 

0.5 0.137 0.138 0.190 0.231 0.137 0.273 

1   0.192 0.233 0.128 0.258 

2     0.132 0.261 

4     0.130 0.261 
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We tested different types of neural network architectures 

and monitored the behavior of the total loss of the Adam 

optimizer for the cavity problem with 𝑅𝑎 = 103 and 

presented in Figure 5. The plain fully connected network 

(FCN), a variation of the fully connected network named 

as Deep Galerkin Method (DGM) (Sirignano and 

Spiliopoulos, 2018), a Fourier network, and a modified 

Fourier network (Wang et al., 2021a), a modified 

highway network using Fourier features (Srivastava et 

al., 2015), and a multiplicative filter network (Fathony et 

al., 2021) are used. All of these architectures are readily 

available in NVIDIA Modulus framework. In all the 

tests, 8 layer networks are constructed with 40 units. 

Hyperbolic tangent is set as the activation function, and 

the learning rate is 10−3. The architectures that use 

Fourier mapping converges later than the plain fully 

connected network since the problem does not have 

multi-scale behavior. For this simple problem, we do not 

need a Fourier mapping; hence networks that are 

basically built on plain fully connected networks 

converge in fewer iterations. 

 

Heated Block 

 

In this section, we focus on an application of coupled heat 

transfer with a heat transfer in a partially blocked 

channel. The domain and the boundary conditions can be 

seen in Figure 6. The heated block represents an 

electronic part on a vertical electronic board (Habchi and 

Acharya, 1986). The top wall is adiabatic, and the bottom 

wall is at a prescribed temperature. A low temperature 

flow comes from the inlet and the outflow is a fully 

developed outlet meaning the changes in the x direction 

is zero. The Prandtl number is set to 0.7 for this problem 

and the Reynolds number is 37.8. The ratio of 𝐺𝑟/𝑅𝑒2 is 

1 and the forcing is on the x direction. 

 

 
Figure 3: Temperature contours for the square cavity test. The high fidelity solution obtained with high fidelity discontinuous 

Galerkin solver between 1 and 0 with the increment of 0.05 for 𝑅𝑎 = 103 , 104, 105 from left to right shown with the black 

contours while the red contours are the solution with PINNs 

 

 
Figure 4. Velocity and temperature profiles along 𝑦 = 0.5 and 𝑥 = 0.5 lines for different 𝑅𝑎 numbers. The first row shows the 

values obtained with the PINN, while the second row shows the values of high order discontinuous Galerkin solver. 
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Figure 5. Behavior of the total loss on the square cavity problem with 𝑅𝑎 = 103 with different types of neural network 

architectures 

 

For training the network, we sampled 30 points on the 

inlet and the outlet, 210 points on the adiabatic wall, a 

total of 40 points on the heated block, a total of 180 points 

on the bottom wall, and 1400 points inside the domain. 

We used 25000 iterations for the Adam optimizer with 

the learning rate of 5 × 10−4 and obtained the solution 

presented in Figure 7. PINN solution well predicts the 

Neumann boundary conditions on the top wall and the 

fully developed outlet, and the no-slip Dirichlet velocity 

conditions  

Multiple Heated Blocks 

 

In this section, we focus on a similar problem in which 

multiple blocks are present. The problem is time 

dependent, and it is solved for a final time of 8 seconds. 

The geometric representation of the case is presented in 

Figure 8. The geometric parameters are given such that 

𝐻 = 1, 𝐻/𝑤 = 2.5, 𝐿/𝑤 = 25, ℎ/𝑤 = 0.5, as presented 

in Wu and Perng (1999). 

 

 

 
Figure 6. Schematic of the partially blocked channel 
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Figure 7. Velocity and temperature profiles for the heated block case. The figure on the top shows the velocity profile and the figure 

on the bottom shows the temperature field predicted by the PINN. 

 

At time 𝑡 =  0, the initial condition is 𝑢 = 𝑣 = 𝜃 = 0 in 

the domain. There is a uniform inflow with 𝑢 = 1, 𝑣 = 0  

with the temperature of 𝜃 = 0. The upper and bottom 

walls have no-slip conditions as the velocity boundary 

condition and Neumann temperature boundary condition 

of 𝜕𝜃/𝜕𝑛 = 0. The blocks also have no-slip conditions 

and temperature boundary conditions of 𝜕𝜃/𝜕𝑛 = −1. 

Gravity is in the y direction, and flow parameters are 

given as 𝑅𝑒 = 400, 𝑃𝑟 = 0.7, and 𝐺𝑟/𝑅𝑒2 = 0.5. 

 

In the training phase, 50 points on the inlet and the outlet 

are generated uniformly. 40 points on each block, 500 

points on the top wall, and 450 points on the bottom wall 

are sampled. The problem is solved with a continuous 

time approach such that we treat time t as another 

variable as the spatial coordinates instead of approaching 

the time sequentially. Adam optimizer is used again to 

find the optimized hyperparameters with a learning rate 

of 5 × 10−4. The solution at the final time 𝑡 = 8s is 

shown in Figure 9. The horizontal velocity and the 

temperature fields are plotted, and it can be seen that the 

PINN solution represents the flowfield well physically 

inside the domain and also satisfy the Dirichlet and 

Neumann boundary conditions. 

 

 

 
Figure 8. Geometric representation of the channel with multiple blocks 

 

 

 
Figure 9. Velocity and temperature profiles for the multiple heated blocks case at time t = 8s. The figure on the top shows the 

velocity profile and the figure on the bottom shows the temperature field predicted by the PINN. 
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CONCLUSION 

 

In this work, we solve two dimensional incompressible 

thermal convection problems with PINNs. The PINN 

solutions predict the flow and temperature fields well 

compared to the solution of high order solvers and 

analytical solutions in various problems. We show that 

adding observations into the flow field increases the 

accuracy of the prediction and the framework is very 

sensitive to the weights of the individual loss terms. In 

addition, different types of networks can be used to solve 

thermal convection problems instead of fully connected 

networks. However, since these types of problems do not 

have multiscale behavior, it is not necessary to use 

Fourier mapping. Furthermore, we consider two different 

channel problems with a partial blockage that resemble 

power electronics applications. The model can be 

implemented into time dependent problems by adding 

time as a continuous input variable. For future work, the 

time dependent problems can be implemented with time 

marching approaches such as Recurrent Neural Networks 

or Gated Response Units. 
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