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Introduction 

In 2014, the concept of conformable fractional 
derivative is firstly introduced by Khalil et al. (see [1]). 
Then, many researchers showed the basic properties of 
this new derivative in [2-5]. In 2017, Zhao and Luo gave a 
physical interpretation of this derivative (see [6]). The 
conformable fractional derivative has been seen in various 
fields such as diffusion transport, Newton mechanics and 
arbitrary time scale problems (see [7-9]). In [10], it has 
been understood that this derivative is necessary and 
useful for generating new types of fractional operators. 
Recently, important studies for various operators with 
conformable fractional derivatives have been published 
(see [11-15]). 

In 1981, Gasymov and Guseinov gave an integral 
representation of the solution of a diffusion operator and 
also showed the properties which provided by kernel 
functions (see [16]). This integral representation for the 
diffusion operator is so important that many researchers 
have made various spectral studies by using this 
representation. For example, in 2007, Koyunbakan and 
Panakhov gave the solution of the Half inverse problem in 
[17], and in 2010, Yang calculated the regularized trace in 
[18]. In current literature, there is no such integral 
representation for a diffusion operator with conformable 
fractional derivative and this study can be considered as 𝛼 
generalization of the representation in [16]. 

 

𝜶 −Integral Representation of the Solution 

We consider a diffusion operator with discrete 
boundary conditions that include conformable fractional 
derivatives of order 𝛼 (0 < 𝛼 ≤ 1) instead of the ordinary 

derivatives in a traditional diffusion operator. The 

operator 𝐿𝛼 = 𝐿𝛼(ℎ, 𝐻, 𝑝(𝑥), 𝑞(𝑥)) is called as 

conformable fractional diffusion operator (CFDO) and is 
the form 
 
ℓ𝛼𝑦 ≔ −𝑇𝑥

𝛼𝑇𝑥
𝛼𝑦 + [2𝜆𝑝(𝑥) + 𝑞(𝑥)]𝑦 = 𝜆2𝑦, 0 < 𝑥 < 𝜋   (1) 

 
𝑈𝛼(𝑦):= 𝑇𝑥

𝛼𝑦(0) − ℎ𝑦(0) = 0     (2) 
 
𝑉𝛼(𝑦): = 𝑇𝑥

𝛼𝑦(𝜋) + 𝐻𝑦(𝜋) = 0     (3) 
 
where 𝜆 is the spectral parameter, ℎ, 𝐻 ∈ ℝ, 𝑞(𝑥) ∈
𝑊2,𝛼

1 [0, 𝜋], 𝑝(𝑥) ∈ 𝑊2,𝛼
2 [0, 𝜋] are real valued functions, 

𝑝(𝑥) ≠constant and 𝑇𝑥
𝛼𝑦 is a conformable fractional 

derivative of order 𝛼 of 𝑦 at 𝑥, 𝛼 ∈ (0,1]. 
In this section, we obtain an integral representation 

for the solution of this operator and show the conditions 
provided by the kernel functions in this representation. 

Firstly, let’s remember some important concepts of 
conformable fractional calculus. We note that more 
detailed knowledge about conformable fractional calculus 
can be seen in [1], [2], and [19]. 
Definition 2.1 Let 𝑓: [0,∞) → ℝ be a given function. Then, 
the conformable fractional derivative of 𝑓 of order 𝛼 with 
respect to 𝑥 is defined by 
 

𝑇𝑥
𝛼𝑓(𝑥) = lim

ℎ→0

𝑓(𝑥 + ℎ𝑥1−𝛼) − 𝑓(𝑥)

ℎ
, 𝑇𝑥

𝛼𝑓(0) = lim
𝑥→0+

𝑇𝑥
𝛼𝑓(𝑥), 

 
for all 𝑥 > 0, 𝛼 ∈ (0,1]. If 𝑓 is differentiable that is 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
, then 𝑇𝑥

𝛼𝑓(𝑥) = 𝑥1−𝛼𝑓′(𝑥).  

http://xxx.cumhuriyet.edu.tr/
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Definition 2.2 The conformable fractional integral from 0 to 𝑥 of order 𝛼 is defined as follows  

 

𝐼𝛼𝑓(𝑥) = ∫
𝑥

0

𝑓(𝑡)𝑑𝛼𝑡 = ∫
𝑥

0

𝑡𝛼−1𝑓(𝑡)𝑑𝑡, for all 𝑥 > 0. 

 
Definition 2.3 (𝛼 −integration by parts) Let 𝑓, 𝑔: [𝑎, 𝑏] → ℝ be 𝛼 −differentiable functions. Then, 

 

∫
𝑏

𝑎

𝑓(𝑥)𝑇𝑥
𝛼𝑔(𝑥)𝑑𝛼𝑥 = 𝑓(𝑥)𝑔(𝑥)|𝑎

𝑏 −∫
𝑏

𝑎

𝑔(𝑥)𝑇𝑥
𝛼𝑓(𝑥)𝑑𝛼𝑥. 

 
Lemma 2.4 (𝛼 −Leibniz rule) Let 𝑓(𝑥, 𝑡) be a function such that 𝑡𝛼−1𝑓(𝑥, 𝑡) and 𝑡𝛼−1𝑓𝑥(𝑥, 𝑡) are continuous in 𝑡 and 𝑥 
in some regions of the (𝑥, 𝑡)-plane, including 𝑎(𝑥) ≤ 𝑡 ≤ 𝑏(𝑥), 𝑥0 ≤ 𝑥 ≤ 𝑥1. If 𝑎(𝑥)  and 𝑏(𝑥) are 𝛼 −differentiable 
functions for 𝑥0 ≤ 𝑥 ≤ 𝑥1, then, 

 

𝑇𝑥
𝛼 (∫

𝑏(𝑥)

𝑎(𝑥)

𝑓(𝑥, 𝑡)𝑑𝛼𝑡) = 𝑇𝑥
𝛼𝑏(𝑥)𝑓(𝑥, 𝑏(𝑥))𝑏𝛼−1(𝑥) − 𝑇𝑥

𝛼𝑎(𝑥)𝑓(𝑥, 𝑎(𝑥))𝑎𝛼−1(𝑥) + ∫
𝑏(𝑥)

𝑎(𝑥)

𝑇𝑥
𝛼𝑓(𝑥, 𝑡)𝑑𝛼𝑡. 

 
Definition 2.5 Let 1 ≤ 𝑝 < ∞, 𝑎 > 0. We called the space 𝐿𝑝,𝛼(0, 𝑎) if for all functions 𝑓: [0, 𝑎] → ℝ satisfies  

 

(∫
𝑎

0

|𝑓(𝑥)|𝑝𝑑𝛼𝑥)

1/𝑝

< ∞. 

 
Lemma 2.6 The space 𝐿𝑝,𝛼(0, 𝑎) associated with the norm function  

 

‖𝑓‖𝑝,𝛼: = (∫
𝑎

0

|𝑓(𝑥)|𝑝𝑑𝛼𝑥)

1/𝑝

 

 
is a Banach space. Moreover if 𝑝 = 2 then 𝐿2,𝛼(0, 𝑎) associated with the inner product for 𝑓, 𝑔 ∈ 𝐿2,𝛼(0, 𝑎) 

 

⟨𝑓, 𝑔⟩:= ∫
𝑎

0

𝑓(𝑥)𝑔(𝑥)𝑑𝛼𝑥 

 
is a Hilbert space. 
Definition 2.7 Let 1 ≤ 𝑝 < ∞. We called the Sobolev space 𝑊𝑝,𝛼

1 [0, 𝑎] if for all functions on [0, 𝑎] such that 𝑓(𝑥) is 

absolutely continuous and 𝑇𝑥
𝛼𝑓(𝑥) ∈ 𝐿𝑝,𝛼(0, 𝑎).  

Now, let 𝜑(𝑥, 𝜆; 𝛼) be the solution of the equation (1) satisfying the initial conditions 
 
𝜑(0, 𝜆; 𝛼) = 1, 𝑇𝑥

𝛼𝜑(0, 𝜆; 𝛼) = ℎ.            (4) 
 

Theorem 2.8 There are the functions 𝐴 (𝑥,
𝑡𝛼

𝛼
) and 𝐵 (𝑥,

𝑡𝛼

𝛼
) whose second order partial derivatives are summable on 

[0, 𝜋] for each 𝑥 ∈ [0, 𝜋] and fixed 𝛼 such that the representation 
 

𝜑(𝑥, 𝜆; 𝛼) = cos (𝜆
𝑥𝛼

𝛼
− 𝜃(𝑥)) + ∫

𝑥

0

𝐴 (𝑥,
𝑡𝛼

𝛼
) cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 + ∫

𝑥

0

𝐵 (𝑥,
𝑡𝛼

𝛼
) sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡                                                 (5) 

       
 

is provided, where the functions 𝐴 (𝑥,
𝑡𝛼

𝛼
) and 𝐵 (𝑥,

𝑡𝛼

𝛼
) satisfy the following system of partial differential equations 

  

{
𝑇𝑥
𝛼𝑇𝑥

𝛼𝐴 (𝑥,
𝑡𝛼

𝛼
) − 𝑞(𝑥)𝐴 (𝑥,

𝑡𝛼

𝛼
) − 2𝑝(𝑥)𝑇𝑡

𝛼𝐵 (𝑥,
𝑡𝛼

𝛼
) = 𝑇𝑡

𝛼𝑇𝑡
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)

𝑇𝑥
𝛼𝑇𝑥

𝛼𝐵 (𝑥,
𝑡𝛼

𝛼
) − 𝑞(𝑥)𝐵 (𝑥,

𝑡𝛼

𝛼
) + 2𝑝(𝑥)𝑇𝑡

𝛼𝐴 (𝑥,
𝑡𝛼

𝛼
) = 𝑇𝑡

𝛼𝑇𝑡
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
) .

         (6) 

 
Moreover, the following relations 
   

𝐵(𝑥, 0) = 0,  𝑇𝑡
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=0

= 0,              (7) 



Koç, Çakmak / Cumhuriyet Sci. J., 44(1) (2023) 170-180 

172 

𝜃(𝑥) = ∫

𝑥

0

𝑝(𝑡)𝑑𝛼𝑡,                                                                                                                                                                                (8) 

 
𝐴(0,0) = ℎ,                (9) 

 

𝐴 (𝑥,
𝑥𝛼

𝛼
) cos𝜃(𝑥) + 𝐵 (𝑥,

𝑥𝛼

𝛼
) sin𝜃(𝑥) = ℎ +

1

2
∫

𝑥

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡,                                                                               (10) 

 

𝜃(𝑥) = 𝑝(0)
𝑥𝛼

𝛼
+ 2∫

𝑥

0

(𝐴 (𝑠,
𝑠𝛼

𝛼
) sin𝜃(𝑠) − 𝐵 (𝑠,

𝑠𝛼

𝛼
) cos𝜃(𝑠)) 𝑑𝛼𝑠                                                                                (11) 

  

are satisfied. Conversely, if the second order derivatives of functions 𝐴 (𝑥,
𝑡𝛼

𝛼
) and 𝐵 (𝑥,

𝑡𝛼

𝛼
) are summable on [0, 𝜋] for 

each 𝑥 ∈ [0, 𝜋], fixed 𝛼 and these functions satisfy the equalities (6) and relations (7)-(11), then 𝜑(𝑥, 𝜆; 𝛼) is a solution 
of equation (1) satifying the initial conditions (4).  
 
Proof. From (5) and 𝛼 −Leibniz rule, we get 
 

𝑇𝑥
𝛼𝜑(𝑥, 𝜆; 𝛼) = −(𝜆 − 𝑇𝑥

𝛼𝜃(𝑥))sin (𝜆
𝑥𝛼

𝛼
− 𝜃(𝑥)) + 𝐴 (𝑥,

𝑥𝛼

𝛼
) cos𝜆

𝑥𝛼

𝛼
+ 𝐵 (𝑥,

𝑥𝛼

𝛼
) sin𝜆

𝑥𝛼

𝛼

+∫

𝑥

0

(𝑇𝑥
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)) cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 + ∫

𝑥

0

(𝑇𝑥
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)) sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡

                                     (12) 

and 
 

𝑇𝑥
𝛼𝑇𝑥

𝛼𝜑(𝑥, 𝜆; 𝛼) = (𝑇𝑥
𝛼𝑇𝑥

𝛼𝜃(𝑥))sin (𝜆
𝑥𝛼

𝛼
− 𝜃(𝑥)) − (𝜆 − 𝑇𝑥

𝛼𝜃(𝑥))
2
cos (𝜆

𝑥𝛼

𝛼
− 𝜃(𝑥))

+(𝑇𝑥
𝛼𝐴 (𝑥,

𝑥𝛼

𝛼
)) cos𝜆

𝑥𝛼

𝛼
− 𝜆𝐴 (𝑥,

𝑥𝛼

𝛼
) sin𝜆

𝑥𝛼

𝛼

+𝑇𝑥
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

cos𝜆
𝑥𝛼

𝛼
+ ∫

𝑥

0

(𝑇𝑥
𝛼𝑇𝑥

𝛼𝐴 (𝑥,
𝑡𝛼

𝛼
)) cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡

+(𝑇𝑥
𝛼𝐵 (𝑥,

𝑥𝛼

𝛼
)) sin𝜆

𝑥𝛼

𝛼
+ 𝜆𝐵 (𝑥,

𝑥𝛼

𝛼
) cos𝜆

𝑥𝛼

𝛼

+𝑇𝑥
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

sin𝜆
𝑥𝛼

𝛼
+ ∫

𝑥

0

(𝑇𝑥
𝛼𝑇𝑥

𝛼𝐵 (𝑥,
𝑡𝛼

𝛼
)) sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡.

                                             (13) 

 
On the other hand, using 𝛼 −integration by parts twice for the integrals at (5), we obtain 
 

𝜑(𝑥, 𝜆; 𝛼) = cos (𝜆
𝑥𝛼

𝛼
− 𝜃(𝑥)) +

1

𝜆
𝐴 (𝑥,

𝑥𝛼

𝛼
) sin𝜆

𝑥𝛼

𝛼
−
1

𝜆
𝐵 (𝑥,

𝑥𝛼

𝛼
) cos𝜆

𝑥𝛼

𝛼
+
1

𝜆
𝐵(𝑥, 0)

+
1

𝜆2
𝑇𝑡
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

cos𝜆
𝑥𝛼

𝛼
−
1

𝜆2
𝑇𝑡
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=0

−
1

𝜆2
∫

𝑥

0

(𝑇𝑡
𝛼𝑇𝑡

𝛼𝐴 (𝑥,
𝑡𝛼

𝛼
)) cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 +

1

𝜆2
𝑇𝑡
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

sin𝜆
𝑥𝛼

𝛼

−
1

𝜆2
∫

𝑥

0

(𝑇𝑡
𝛼𝑇𝑡

𝛼𝐵 (𝑥,
𝑡𝛼

𝛼
)) sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡.

                                            (14) 
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From the equalities (1), (5), (13), (14) and the following equalities 
 

2𝜆𝑝(𝑥)∫

𝑥

0

𝐴 (𝑥,
𝑡𝛼

𝛼
) cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 = 2𝑝(𝑥)𝐴 (𝑥,

𝑥𝛼

𝛼
) sin𝜆

𝑥𝛼

𝛼
− ∫

𝑥

0

2𝑝(𝑥) (𝑇𝑡
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)) sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡,  

  

2𝜆𝑝(𝑥)∫

𝑥

0

𝐵 (𝑥,
𝑡𝛼

𝛼
) sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 = −2𝑝(𝑥)𝐵 (𝑥,

𝑥𝛼

𝛼
) cos𝜆

𝑥𝛼

𝛼
+ 2𝑝(𝑥)𝐵(𝑥, 0) + ∫

𝑥

0

2𝑝(𝑥) (𝑇𝑡
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)) cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡, 

 
we get 

   

𝜆cos𝜆
𝑥𝛼

𝛼
(−2𝑇𝑥

𝛼𝜃(𝑥) + 2𝑝(𝑥))cos𝜃(𝑥) + 𝜆sin𝜆
𝑥𝛼

𝛼
(−2𝑇𝑥

𝛼𝜃(𝑥) + 2𝑝(𝑥))sin𝜃(𝑥)

+cos𝜆
𝑥𝛼

𝛼
{(𝑇𝑥

𝛼𝑇𝑥
𝛼𝜃(𝑥))sin𝜃(𝑥) + (𝑇𝑥

𝛼𝜃(𝑥))
2
cos𝜃(𝑥) − 𝑇𝑥

𝛼𝐴 (𝑥,
𝑥𝛼

𝛼
)

−𝑇𝑥
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

+ 𝑞(𝑥)cos𝜃(𝑥) − 𝑇𝑡
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

− 2𝑝(𝑥)𝐵 (𝑥,
𝑥𝛼

𝛼
)}

+sin𝜆
𝑥𝛼

𝛼
{−(𝑇𝑥

𝛼𝑇𝑥
𝛼𝜃(𝑥))cos𝜃(𝑥) + (𝑇𝑥

𝛼𝜃(𝑥))
2
sin𝜃(𝑥) − 𝑇𝑥

𝛼𝐵 (𝑥,
𝑥𝛼

𝛼
)

−𝑇𝑥
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

+ 𝑞(𝑥)sin𝜃(𝑥) − 𝑇𝑡
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

+ 2𝑝(𝑥)𝐴 (𝑥,
𝑥𝛼

𝛼
)}

−𝜆𝐵(𝑥, 0) + 𝑇𝑡
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=0

+ 2𝑝(𝑥)𝐵(𝑥, 0)

+∫

𝑥

0

[𝑇𝑡
𝛼𝑇𝑡

𝛼𝐴 (𝑥,
𝑡𝛼

𝛼
) − 𝑇𝑥

𝛼𝑇𝑥
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
) + 𝑞(𝑥)𝐴 (𝑥,

𝑡𝛼

𝛼
) + 2𝑝(𝑥)𝑇𝑡

𝛼𝐵 (𝑥,
𝑡𝛼

𝛼
)] cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡

+∫

𝑥

0

[𝑇𝑡
𝛼𝑇𝑡

𝛼𝐵 (𝑥,
𝑡𝛼

𝛼
) − 𝑇𝑥

𝛼𝑇𝑥
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
) + 𝑞(𝑥)𝐵 (𝑥,

𝑡𝛼

𝛼
) − 2𝑝(𝑥)𝑇𝑡

𝛼𝐴 (𝑥,
𝑡𝛼

𝛼
)] sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 = 0.

 

 

Since the set of {cos𝜆
𝑥𝛼

𝛼
, sin𝜆

𝑥𝛼

𝛼
} is entire system for each fixed 𝛼 and 𝑝(𝑥) ≠ 0, we immediately obtain equations 

(6) and (7). 

From the system {
(−2𝑇𝑥

𝛼𝜃(𝑥) + 2𝑝(𝑥))cos𝜃(𝑥) = 0

(−2𝑇𝑥
𝛼𝜃(𝑥) + 2𝑝(𝑥))sin𝜃(𝑥) = 0

, the equation 𝑇𝑥
𝛼𝜃(𝑥) − 𝑝(𝑥) = 0 and hence (8) is taken. 

From the equalities 𝑇𝑥
𝛼𝜃(𝑥) = 𝑝(𝑥), 𝑑𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
) = 𝑇𝑥

𝛼𝐴 (𝑥,
𝑡𝛼

𝛼
) 𝑑𝛼𝑥 + 𝑇𝑡

𝛼𝐴 (𝑥,
𝑡𝛼

𝛼
) 𝑑𝛼𝑡 and the following system 

 

{
 
 
 
 

 
 
 
 (𝑇𝑥

𝛼𝑇𝑥
𝛼𝜃(𝑥))sin𝜃(𝑥) + [(𝑇𝑥

𝛼𝜃(𝑥))
2
+ 𝑞(𝑥)] cos𝜃(𝑥) − 2𝑝(𝑥)𝐵 (𝑥,

𝑥𝛼

𝛼
)

−𝑇𝑥
𝛼𝐴 (𝑥,

𝑥𝛼

𝛼
) − 𝑇𝑥

𝛼𝐴 (𝑥,
𝑡𝛼

𝛼
)|
𝑡=𝑥

− 𝑇𝑡
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

= 0

−(𝑇𝑥
𝛼𝑇𝑥

𝛼𝜃(𝑥))cos𝜃(𝑥) + [(𝑇𝑥
𝛼𝜃(𝑥))

2
+ 𝑞(𝑥)] sin𝜃(𝑥) + 2𝑝(𝑥)𝐴 (𝑥,

𝑥𝛼

𝛼
)

−𝑇𝑥
𝛼𝐵 (𝑥,

𝑥𝛼

𝛼
) − 𝑇𝑥

𝛼𝐵 (𝑥,
𝑡𝛼

𝛼
)|
𝑡=𝑥

− 𝑇𝑡
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)|
𝑡=𝑥

= 0

 

 
we get 
 

{
𝑇𝑥
𝛼𝐴 (𝑥,

𝑥𝛼

𝛼
) + 𝑝(𝑥)𝐵 (𝑥,

𝑥𝛼

𝛼
) −

1

2
(𝑇𝑥

𝛼𝑝(𝑥))sin𝜃(𝑥) −
1

2
(𝑞(𝑥) + 𝑝2(𝑥))cos𝜃(𝑥) = 0

𝑇𝑥
𝛼𝐵 (𝑥,

𝑥𝛼

𝛼
) − 𝑝(𝑥)𝐴 (𝑥,

𝑥𝛼

𝛼
) +

1

2
(𝑇𝑥

𝛼𝑝(𝑥))cos𝜃(𝑥) −
1

2
(𝑞(𝑥) + 𝑝2(𝑥))sin𝜃(𝑥) = 0

. 

 
In the above system, if the first equation is multiplied by cos𝜃(𝑥) and the second equation by sin𝜃(𝑥) and added 

side by side, we obtain 
 

𝑇𝑥
𝛼 [𝐴 (𝑥,

𝑥𝛼

𝛼
) cos𝜃(𝑥) + 𝐵 (𝑥,

𝑥𝛼

𝛼
) sin𝜃(𝑥)] =

1

2
(𝑞(𝑥) + 𝑝2(𝑥)) 
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or  
 

𝐴 (𝑥,
𝑥𝛼

𝛼
) cos𝜃(𝑥) + 𝐵 (𝑥,

𝑥𝛼

𝛼
) sin𝜃(𝑥) − 𝐴(0,0) =

1

2
∫

𝑥

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡. 

 
Moreover, from equalities (4), (12), (7) and (8), we have that 
 

𝑇𝑥
𝛼𝜑(0, 𝜆; 𝛼) = 𝐴(0,0) = ℎ. 

 
Thus, equations (9) and (10) are obtained. 

On the other hand, if the first equation is multiplied by sin𝜃(𝑥) and the second equation by (−cos𝜃(𝑥)) and added 

side by side, we obtain 
 

𝑇𝑥
𝛼 [𝐴 (𝑥,

𝑥𝛼

𝛼
) sin𝜃(𝑥) − 𝐵 (𝑥,

𝑥𝛼

𝛼
) cos𝜃(𝑥)] =

1

2
𝑇𝑥
𝛼𝑝(𝑥) 

 
or  

 

𝐴 (𝑥,
𝑥𝛼

𝛼
) sin𝜃(𝑥) − 𝐵 (𝑥,

𝑥𝛼

𝛼
) cos𝜃(𝑥) + 𝐵(0,0) =

1

2
(𝑝(𝑥) − 𝑝(0)). 

 
From equality (7), we have that 
 

𝐵(0,0) = 0. 
 

Thus, equation (11) is obtained.  
 

Basic Properties of the Operator 𝑳𝜶 
In this section, we investigate some spectral properties of the operator 𝐿𝛼 by supposing that the function 𝑞(𝑥) 

satisfies the additional condition 
 

∫ [|𝑇𝑥
𝛼𝑦(𝑥)|2 + 𝑞(𝑥)|𝑦(𝑥)|2]𝑑𝛼𝑥

𝜋

0

> 0                                                                                                                                         (15) 

 
for all 𝑦(𝑥) ∈ 𝑊2,𝛼

2 [0, 𝜋] such that 𝑦(𝑥) ≠ 0 and  

 

(𝑇𝑥
𝛼𝑦(0))𝑦(0) − (𝑇𝑥

𝛼𝑦(𝜋))𝑦(𝜋) = 0.           (16) 

 
Let the functions 𝜑:= 𝜑(𝑥, 𝜆; 𝛼) and 𝜓:= 𝜓(𝑥, 𝜆; 𝛼) be the solutions of the equation (1) satisfying the initial 

conditions (4) and  
 
𝜓(𝜋, 𝜆; 𝛼) = 1, 𝑇𝑥

𝛼𝜓(𝜋, 𝜆; 𝛼) = −𝐻           (17) 
 
respectively. It is clear that  

 
𝑈𝛼(𝜑) = 0, 𝑉𝛼(𝜓) = 0. 

 
We denote  

Δ𝛼(𝜆) = 𝑊𝛼[𝜓, 𝜑] = |
𝜓 𝜑

𝑇𝑥
𝛼𝜓 𝑇𝑥

𝛼𝜑
| = 𝜓𝑇𝑥

𝛼𝜑 − 𝜑𝑇𝑥
𝛼𝜓.         (18) 

 
The function Δ𝛼(𝜆) is called the characteristic function for the operator 𝐿𝛼, where 𝑊𝛼[𝜓, 𝜑] is the fractional 

Wronskian of the functions 𝜓 and 𝜑. Obviously, the function Δ𝛼(𝜆) is entire function in 𝜆. 
Lemma 3.1 For each fixed 𝛼, Δ𝛼(𝜆) does not depend on 𝑥 and can be written as 
 
Δ𝛼(𝜆) = 𝑉𝛼(𝜑) = −𝑈𝛼(𝜓).             (19) 
 
Proof. It is clear from (18) that  
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𝑇𝑥
𝛼Δ𝛼(𝜆) = 𝑇𝑥

𝛼(𝜓𝑇𝑥
𝛼𝜑 − 𝜑𝑇𝑥

𝛼𝜓) = 𝜓𝑇𝑥
𝛼𝑇𝑥

𝛼𝜑 − 𝜑𝑇𝑥
𝛼𝑇𝑥

𝛼𝜓.        (20) 
   

On the other hand, since the functions 𝜑 and 𝜓 are the solutions of equation (1), the following equations are 
obtained 

 
 𝑇𝑥

𝛼𝑇𝑥
𝛼𝜑 = (2𝜆𝑝(𝑥) + 𝑞(𝑥) − 𝜆2)𝜑, 

 
 𝑇𝑥

𝛼𝑇𝑥
𝛼𝜓 = (2𝜆𝑝(𝑥) + 𝑞(𝑥) − 𝜆2)𝜓. 

 
If these equations are substituted in (20) 
  

𝑇𝑥
𝛼Δ𝛼(𝜆) = 0 

 
is obtained. Thus, the function Δ𝛼(𝜆) is a constant with respect to 𝑥 in [0, 𝜋]. 

Moreover, if 𝑥 = 0 and 𝑥 = 𝜋 are substituted in equation (18) and conditions (4) and (17) are taken into account, 
then (19) is immediately taken.  
Lemma 3.2 The zeros {𝜆𝑛} of the function Δ𝛼(𝜆) coincide with the eigenvalues of the operator 𝐿𝛼 and for eigenfunctions 
𝜓𝑛: = 𝜓(𝑥, 𝜆𝑛; 𝛼) and 𝜑𝑛: = 𝜑(𝑥, 𝜆𝑛; 𝛼) there exists a sequence {𝛽𝑛}, such that the following relations are satisfied for 
each fixed 𝛼 
  
𝜓𝑛 = 𝛽𝑛𝜑𝑛, 𝛽𝑛 ≠ 0.             (21) 
 
Proof. Let 𝜆0 be an eigenvalue of the operator 𝐿𝛼, we show that Δ𝛼(𝜆0) = 0. We suppose that Δ𝛼(𝜆0) ≠ 0. Then the 
functions 𝜑(𝑥, 𝜆0; 𝛼) and 𝜓(𝑥, 𝜆0; 𝛼) are linearly independent. Thus  
 
𝑦(𝑥, 𝜆0; 𝛼) = 𝑐1𝜓(𝑥, 𝜆0; 𝛼) + 𝑐2𝜑(𝑥, 𝜆0; 𝛼) 
 
is a general solution of the operator 𝐿𝛼 corresponding to 𝜆 = 𝜆0 for constants 𝑐1 and 𝑐2. Hence, the above equation can 
written for 𝑐1 ≠ 0 as  

   

𝜓(𝑥, 𝜆0; 𝛼) =
1

𝑐1
𝑦(𝑥, 𝜆0; 𝛼) −

𝑐2
𝑐1
𝜑(𝑥, 𝜆0; 𝛼). 

Thus, we get 
  

Δ𝛼(𝜆0) = 𝑊𝛼[𝜓(𝑥, 𝜆0; 𝛼), 𝜑(𝑥, 𝜆0; 𝛼)] =
1

𝑐1
𝑊𝛼[𝑦(𝑥, 𝜆0; 𝛼), 𝜑(𝑥, 𝜆0; 𝛼)]. 

 
If the initial conditions (4) and especially 𝑥 = 0 are taken into account in this equation, Δ𝛼(𝜆0) = 0 contradiction is 

obtained for each fixed 𝛼. 
On the other hand, let 𝜆0 be a zero of the function Δ𝛼(𝜆). Then Δ𝛼(𝜆0) = 0. So, we get 𝜓(𝑥, 𝜆0; 𝛼) = 𝛽0𝜑(𝑥, 𝜆0; 𝛼) 

for 𝛽0 ≠ 0. Furthermore, the functions 𝜑(𝑥, 𝜆0; 𝛼) and 𝜓(𝑥, 𝜆0; 𝛼) satisfy the initial conditions (4) and (17), respectively. 
So, the functions 𝜑(𝑥, 𝜆0; 𝛼) and 𝜓(𝑥, 𝜆0; 𝛼) are eigenfunctions related to 𝜆0. 

Since the eigenfunctions corresponding to each eigenvalue differ from each other by a multiplicative constant, there 
is a sequence {𝛽𝑛} such that the equality (21) is satisfied for each 𝑛 ∈ ℕ and fixed 𝛼.  
Lemma 3.3 The eigenvalues of the operator 𝐿𝛼 are real and nonzero for each fixed 𝛼.  
 
Proof. This lemma can be proved similarly as in [20]. 

Denote a linear operator 𝐿𝛼,0 with the following differential expression  

  
ℓ𝛼,0𝑦(𝑥): = −𝑇𝑥

𝛼𝑇𝑥
𝛼𝑦(𝑥) + 𝑞(𝑥)𝑦(𝑥) 

 
and boundary conditions (2) and (3), where 𝑦(𝑥) ∈ 𝑊2,𝛼

2 [0, 𝜋]. 

Using 𝛼 −integration by part and the condition (15), we get 
  

⟨ℓ𝛼,0𝑦, 𝑦⟩ = ∫

𝜋

0

(ℓ𝛼,0𝑦)𝑦𝑑𝛼𝑥 = ∫

𝜋

0

[|𝑇𝑥
𝛼𝑦(𝑥)|2 + 𝑞(𝑥)|𝑦(𝑥)|2]𝑑𝛼𝑥 > 0. 
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Let 𝜆0 be an eigenvalue of the operator 𝐿𝛼 and 𝑦0 = 𝑦(𝑥, 𝜆0; 𝛼) an eigenfunction corresponding to this eigenvalue 
and normalized by ⟨𝑦0, 𝑦0⟩ = 1. 

It is clear that  
   

−𝑇𝑥
𝛼𝑇𝑥

𝛼𝑦0 + (2𝜆0𝑝(𝑥) + 𝑞(𝑥))𝑦0 = 𝜆0
2𝑦0 

 
or  

   
𝜆0
2𝑦0 − 2𝜆0𝑝(𝑥)𝑦0 − ℓ𝛼,0𝑦0 = 0.            (22) 

 
If we take the inner product of both sides of the equation (22) by 𝑦0, we obtain 
   

𝜆0
2 − 2𝜆0⟨𝑝(𝑥)𝑦0, 𝑦0⟩ − ⟨ℓ𝛼,0𝑦0 , 𝑦0⟩ = 0. 

 
Hence 
  

𝜆0 = ⟨𝑝(𝑥)𝑦0 , 𝑦0⟩ − √⟨𝑝(𝑥)𝑦0 , 𝑦0⟩
2 + ⟨ℓ𝛼,0𝑦0 , 𝑦0⟩. 

 

Since 𝑝(𝑥) is real and ⟨ℓ𝛼,0𝑦, 𝑦⟩ > 0, the proof is completed from the last relation.  

Lemma 3.4 The eigenfunctions 𝑦𝑛: = 𝑦(𝑥, 𝜆𝑛; 𝛼) and 𝑦𝑘: = 𝑦(𝑥, 𝜆𝑘; 𝛼) corresponding to the eigenvalues 𝜆𝑛 and 𝜆𝑘  
(𝜆𝑛 ≠ 𝜆𝑘) of the operator 𝐿𝛼 are orthogonal in the sense of  

 

(𝜆𝑛 + 𝜆𝑘)∫

𝜋

0

𝑦𝑛𝑦𝑘𝑑𝛼𝑥 − 2∫

𝜋

0

𝑝(𝑥)𝑦𝑛𝑦𝑘𝑑𝛼𝑥 = 0.                                                                                                                      (23) 

        
Proof. Take into our account that the operator 𝐿𝛼,0 is symmetric and 

 
ℓ𝛼,0𝑦(𝑥): = −𝑇𝑥

𝛼𝑇𝑥
𝛼𝑦(𝑥) + 𝑞(𝑥)𝑦(𝑥) = 𝜆2𝑦(𝑥) − 2𝜆𝑝(𝑥)𝑦(𝑥). 

 
We have that 

 

⟨ℓ𝛼,0𝑦𝑛 , 𝑦𝑘⟩ = ⟨𝑦𝑛, ℓ𝛼,0𝑦𝑘⟩, 

∫

𝜋

0

(𝜆𝑛
2𝑦𝑛 − 2𝜆𝑛𝑝(𝑥)𝑦𝑛)𝑦𝑘𝑑𝛼𝑥 = ∫

𝜋

0

𝑦𝑛(𝜆𝑘
2𝑦𝑘 − 2𝜆𝑘𝑝(𝑥)𝑦𝑘)𝑑𝛼𝑥, 

 

(𝜆𝑛
2 − 𝜆𝑘

2)∫

𝜋

0

𝑦𝑛𝑦𝑘𝑑𝛼𝑥 − 2(𝜆𝑛 − 𝜆𝑘)∫

𝜋

0

𝑝(𝑥)𝑦𝑛𝑦𝑘𝑑𝛼𝑥 = 0. 

By virtue of 𝜆𝑛 ≠ 𝜆𝑘  the equality (23) is obtained.  
Definition 3.5 Let 𝜑𝑛 be the eigenfunction of the operator 𝐿𝛼 corresponding to the eigenvalues 𝜆𝑛 . The numbers 
 

𝛼𝑛 = ∫

𝜋

0

𝜑𝑛
2𝑑𝛼𝑥 −

1

𝜆𝑛
∫

𝜋

0

𝑝(𝑥)𝜑𝑛
2𝑑𝛼𝑥                                                                                                                                               (24) 

 
are called the normalizing numbers of the operator 𝐿𝛼 and the data {𝜆𝑛 , 𝛼𝑛} are also called the spectral data of the 
operator 𝐿𝛼.  

Lemma 3.6 The equality Δ
.

𝛼(𝜆𝑛) = −2𝜆𝑛𝛽𝑛𝛼𝑛 is valid and the eigenvalues of the operator 𝐿𝛼 are simple, i.e., Δ
.

𝛼(𝜆𝑛) ≠

0, where Δ
.

𝛼(𝜆) =
d

d𝜆
Δ𝛼(𝜆).  

 
Proof. Since 𝜓 and 𝜑𝑛 are the solutions of the equation (1), the following equalities 

 

−𝑇𝑥
𝛼𝑇𝑥

𝛼𝜓 + (2𝜆𝑝(𝑥) + 𝑞(𝑥))𝜓 = 𝜆2𝜓, 

 

−𝑇𝑥
𝛼𝑇𝑥

𝛼𝜑𝑛 + (2𝜆𝑛𝑝(𝑥) + 𝑞(𝑥))𝜑𝑛 = 𝜆𝑛
2𝜑𝑛 
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are held. 
If the first equation is multiplied by 𝜑𝑛, the second equation is multiplied by 𝜓 and substracting them side by side, 

then the equality 
 

𝑇𝑥
𝛼𝑊𝛼[𝜓, 𝜑𝑛] = (𝜆2 − 𝜆𝑛

2 )𝜑𝑛𝜓 − 2(𝜆 − 𝜆𝑛)𝑝(𝑥)𝜑𝑛𝜓 
 
is obtained. By conformable fractional integrating above equation over [0, 𝜋] and taking into account (17) and (19), we 
get 

   

(𝜆2 − 𝜆𝑛
2 )∫

𝜋

0

𝜑𝑛𝜓𝑑𝛼𝑥 − 2(𝜆 − 𝜆𝑛)∫

𝜋

0

𝑝(𝑥)𝜑𝑛𝜓𝑑𝛼𝑥 = 𝑊𝛼[𝜓, 𝜑𝑛]|0
𝜋 = −Δ𝛼(𝜆). 

Hence 
  

(𝜆 + 𝜆𝑛)∫

𝜋

0

𝜑𝑛𝜓𝑑𝛼𝑥 − 2∫

𝜋

0

𝑝(𝑥)𝜑𝑛𝜓𝑑𝛼𝑥 = −
Δ𝛼(𝜆)

𝜆 − 𝜆𝑛
. 

 
Passing to the limit as 𝜆 → 𝜆𝑛 in the last equation, it yields 
 

2𝜆𝑛∫

𝜋

0

𝜑𝑛𝜓𝑛𝑑𝛼𝑥 − 2∫

𝜋

0

𝑝(𝑥)𝜑𝑛𝜓𝑛𝑑𝛼𝑥 = − lim
𝜆→𝜆𝑛

Δ𝛼(𝜆)

𝜆 − 𝜆𝑛
= −Δ

.

𝛼(𝜆𝑛). 

 
From (21) and (24), we have that 

 

Δ
.

𝛼(𝜆𝑛) = −2𝜆𝑛𝛽𝑛𝛼𝑛 .             (25) 
 

It is obvious from (25) that Δ
.

(𝜆𝑛) ≠ 0 for 𝜆𝑛 ≠ 0, that is, the eigenvalues are simple. Therefore, the proof is 
completed.  
Theorem 3.7 The operator 𝐿𝛼 has a countable set of eigenvalues {𝜆𝑛} and the following estimate holds: 
 

𝜆𝑛 =
𝑛𝛼

𝜋𝛼−1
+ 𝑐𝛼,0 +

𝑐𝛼,1
𝑛
+ 𝑜 (

1

𝑛
) , |𝑛| → ∞,                                                                                                                                 (26) 

  
 
where 

𝑐𝛼,0 =
𝛼

𝜋𝛼
∫

𝜋

0

𝑝(𝑥)𝑑𝛼𝑥,     𝑐𝛼,1 =
1

𝜋
[ℎ + 𝐻 +

1

2
∫

𝜋

0

(𝑞(𝑥) + 𝑝2(𝑥))𝑑𝛼𝑥]. 

 
Proof. According to (19) the relation Δ𝛼(𝜆), with the help of (5) and (12), as 
 

Δ𝛼(𝜆) = −(𝜆 − 𝑝(𝜋))sin (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋)) + 𝐴 (𝜋,

𝜋𝛼

𝛼
) cos𝜆

𝜋𝛼

𝛼

+𝐵 (𝜋,
𝜋𝛼

𝛼
) sin𝜆

𝜋𝛼

𝛼
+ 𝐻cos (𝜆

𝜋𝛼

𝛼
− 𝜃(𝜋))

+∫

𝜋

0

𝑇𝑥
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑥=𝜋

cos𝜆
𝑡𝛼

𝛼
𝑑𝛼𝑡 + ∫

𝜋

0

𝑇𝑥
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)|
𝑥=𝜋

sin𝜆
𝑡𝛼

𝛼
𝑑𝛼𝑡                                                                                     (27)

+𝐻∫

𝜋

0

𝐴 (𝜋,
𝑡𝛼

𝛼
) cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 + 𝐻∫

𝜋

0

𝐵 (𝜋,
𝑡𝛼

𝛼
) sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡

 

 
is written. 

It follows from (10) and (11)          
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{
 

 𝐴 (𝜋,
𝜋𝛼

𝛼
) cos𝜃(𝜋) + 𝐵 (𝜋,

𝜋𝛼

𝛼
) sin𝜃(𝜋) = ℎ +

1

2
∫ (𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡
𝜋

0

𝐴 (𝜋,
𝜋𝛼

𝛼
) sin𝜃(𝜋) − 𝐵 (𝜋,

𝜋𝛼

𝛼
) cos𝜃(𝜋) =

𝑝(𝜋) − 𝑝(0)

2

 

 
which implies that 
  

{
 
 

 
 𝐴 (𝜋,

𝜋𝛼

𝛼
) =

𝑝(𝜋) − 𝑝(0)

2
sin𝜃(𝜋) + [ℎ +

1

2
∫ (𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡
𝜋

0

] cos𝜃(𝜋)

𝐵 (𝜋,
𝜋𝛼

𝛼
) =

𝑝(0) − 𝑝(π)

2
cos𝜃(𝜋) + [ℎ +

1

2
∫ (𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡
𝜋

0

] sin𝜃(𝜋)

 

 
and hence 

  

𝐴 (𝜋,
𝜋𝛼

𝛼
) cos𝜆

𝜋𝛼

𝛼
+ 𝐵 (𝜋,

𝜋𝛼

𝛼
) sin𝜆

𝜋𝛼

𝛼
=
𝑝(0) − 𝑝(𝜋)

2
sin (𝜆

𝜋𝛼

𝛼
− 𝜃(𝜋))

+ [ℎ +
1

2
∫

𝜋

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡] cos (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋)) .

                                                                      (28) 

      
Take into account (28) in (27), we obtain 
  

Δ𝛼(𝜆) = −(𝜆 − 𝑝(𝜋))sin (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋)) +

𝑝(0) − 𝑝(𝜋)

2
sin (𝜆

𝜋𝛼

𝛼
− 𝜃(𝜋))

+ [ℎ + 𝐻 +
1

2
∫

𝜋

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡] cos (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋))

+∫

𝜋

0

𝑇𝑥
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑥=𝜋

cos𝜆
𝑡𝛼

𝛼
𝑑𝛼𝑡 + ∫

𝜋

0

𝑇𝑥
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)|
𝑥=𝜋

sin𝜆
𝑡𝛼

𝛼
𝑑𝛼𝑡

+𝐻 [∫

𝜋

0

𝐴 (𝜋,
𝑡𝛼

𝛼
) cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 + ∫

𝜋

0

𝐵 (𝜋,
𝑡𝛼

𝛼
) sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡] .

                                                               (29) 

Thus, for 𝜆 ≠ 𝑝(𝜋) the equation Δ𝛼(𝜆) = 0 as 

sin (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋)) +

𝑝(𝜋) − 𝑝(0)

2

1

𝜆 − 𝑝(𝜋)
sin (𝜆

𝜋𝛼

𝛼
− 𝜃(𝜋)) 

−
1

𝜆 − 𝑝(𝜋)
[ℎ + 𝐻 +

1

2
∫

𝜋

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡] cos (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋)) −

Δ𝛼,1(𝜆)

𝜆 − 𝑝(𝜋)
= 0 

 
is taken, where 

 

Δ𝛼,1(𝜆) = ∫

𝜋

0

[𝑇𝑥
𝛼𝐴 (𝑥,

𝑡𝛼

𝛼
)|
𝑥=𝜋

+ 𝐻𝐴 (𝜋,
𝑡𝛼

𝛼
)] cos𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 

+∫

𝜋

0

[𝑇𝑥
𝛼𝐵 (𝑥,

𝑡𝛼

𝛼
)|
𝑥=𝜋

+ 𝐻𝐵 (𝜋,
𝑡𝛼

𝛼
)] sin𝜆

𝑡𝛼

𝛼
𝑑𝛼𝑡 = 𝑜 (𝑒

| Im 𝜆|
𝜋𝛼

𝛼 ). 

 

Taking Taylor’s expansion formula for the  
1

𝜆−𝑝(𝜋)
=

1

𝜆
+

𝑝(𝜋)

𝜆2
+ 𝑜 (

1

𝜆2
), |𝜆| → ∞ into account, we get 

 

sin (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋)) +

𝑝(𝜋) − 𝑝(0)

2𝜆
sin (𝜆

𝜋𝛼

𝛼
− 𝜃(𝜋)) −

1

𝜆
[ℎ + 𝐻 +

1

2
∫

𝜋

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡] cos(𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋)) 

+𝑜 (
1

𝜆
𝑒
| Im 𝜆|

𝜋𝛼

𝛼 ) = 0                                                                                                                                                                                                  (30) 
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We take a circle Γ𝑛 = {𝜆|  |𝜆 − 𝑐𝛼,0| ≤
𝛼

𝜋𝛼−1
(𝑛 +

1

2
) , 𝑛 = 0,1,2, … } in the 𝜆 −plane and define Δ𝛼(𝜆) = 𝑓(𝜆; 𝛼) +

𝑔(𝜆; 𝛼), where 
 

𝑓(𝜆; 𝛼) = sin (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋))  

 
and  

 

𝑔(𝜆; 𝛼) =
𝑝(𝜋) − 𝑝(0)

2𝜆
sin (𝜆

𝜋𝛼

𝛼
− 𝜃(𝜋)) −

1

𝜆
[ℎ + 𝐻 +

1

2
∫

𝜋

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡] cos (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋)) + 𝑜 (

1

𝜆
𝑒| Im 𝜆|

𝜋𝛼

𝛼 ) 

. 
For sufficiently large 𝑛 and each fixed 𝛼, the number of zeros of the function Δ𝛼(𝜆) = 𝑓(𝜆; 𝛼) + 𝑔(𝜆; 𝛼) in the region 

Γ𝑛 is the same as the number of zeros of the function 𝑓(𝜆; 𝛼) from Rouche’s theorem (see, e.g., [21]). 

Thus, if sin (𝜆
𝜋𝛼

𝛼
− 𝜃(𝜋)) = 0, then 𝜆𝑛 =

𝑛𝛼

𝜋𝛼−1
+ 𝑐𝛼,0, 𝑛 ∈ ℤ\{0} is taken, where 𝑐𝛼,0 =

𝛼

𝜋𝛼
𝜃(𝜋) =

𝛼

𝜋𝛼
∫
𝜋

0
𝑝(𝑥)𝑑𝛼𝑥. 

We conclude that 𝜆𝑛 =
𝑛𝛼

𝜋𝛼−1
+ 𝑐𝛼,0 + 𝜀𝑛,  𝜀𝑛 = 𝑜 (

1

𝑛
) as |𝑛| → ∞. By substituting this into (30), we obtain 

 

sin (𝑛𝜋 + 𝜀𝑛
𝜋𝛼

𝛼
) +

𝑝(𝜋) − 𝑝(0)

2

1
𝑛𝛼
𝜋𝛼−1

+ 𝑐𝛼,0 + 𝜀𝑛
sin (𝑛𝜋 + 𝜀𝑛

𝜋𝛼

𝛼
) 

−
1

𝑛𝛼
𝜋𝛼−1

+ 𝑐𝛼,0 + 𝜀𝑛
[ℎ + 𝐻 +

1

2
∫

𝜋

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡] cos (𝑛𝜋 + 𝜀𝑛
𝜋𝛼

𝛼
) + 𝑜 (

1

𝑛
) = 0. 

 
This implies that 

 

sin (𝜀𝑛
𝜋𝛼

𝛼
) +

𝑝(𝜋) − 𝑝(0)

2

1
𝑛𝛼
𝜋𝛼−1

+ 𝑐𝛼,0 + 𝜀𝑛
sin (𝜀𝑛

𝜋𝛼

𝛼
) − 

1
𝑛𝛼
𝜋𝛼−1

+ 𝑐𝛼,0 + 𝜀𝑛
[ℎ + 𝐻 +

1

2
∫

𝜋

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡] cos (𝜀𝑛
𝜋𝛼

𝛼
) + 𝑜 (

1

𝑛
) = 0. 

 
From the following asymptotics 

 

cos (𝜀𝑛
𝜋𝛼

𝛼
) = 1 + 𝑜 (

1

𝑛2
) , sin (𝜀𝑛

𝜋𝛼

𝛼
) = 𝜀𝑛

𝜋𝛼

𝛼
+ 𝑜 (

1

𝑛3
) ,

1
𝑛𝛼
𝜋𝛼−1

+ 𝑐𝛼,0 + 𝜀𝑛
=
𝜋𝛼−1

𝑛𝛼
+ 𝑜 (

1

𝑛2
) 

 
and the above last equation, we get 

  

𝜀𝑛 =
𝑐𝛼,1
𝑛
+ 𝑜 (

1

𝑛
),  

 
where 

𝑐𝛼,1 =
1

𝜋
[ℎ + 𝐻 +

1

2
∫

𝜋

0

(𝑞(𝑡) + 𝑝2(𝑡))𝑑𝛼𝑡]. 

 
Thus, (26) is valid, i.e., the proof is completed.  

 
Lemma 3.8 The normalizing numbers 𝛼𝑛 of the operator 𝐿𝛼 holds the following asymptotic formula 
 

𝛼𝑛 =
𝜋𝛼

2𝛼
+
𝑑𝛼,0
𝑛
+ 𝑜 (

1

𝑛
) , |𝑛| → ∞,                                                                                                                                         (31) 

  
where 

𝑑𝛼,0 = −
𝜋𝛼

2𝛼
𝑝(0). 

Proof. The formula (31) obtains from (24) by using the asymptotic formula (26) for 𝜆𝑛.  
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