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ABSTRACT. Let H be a weak Hopf algebra and let A be an H-comodule al-
gebra with subalgebra of coinvariants Ap. In this paper we introduce the
notion of H-Galois extension with normal basis and we prove that Ay — A
is an H-Galois extension with normal basis if and only if Ay — A is an
H-cleft extension which admits a convolution invertible total integral. As a
consequence, if H is cocommutative and A commutative, we obtain a bijective
correspondence between the second cohomology group H, ?p Ap (H, Ap) and the
set of isomorphism classes of H-Galois extensions with normal basis whose left

action over Ay is pa,, .
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1. Introduction

It is a well-known fact in classical Galois theory that if B C A is a finite Galois
extension of fields with Galois group H, then A/B has a normal basis, i.e., there
exists @ € A such that the set {z.a ; © € H} is a basis for A over B. Generalizing
finite Galois extension of fields, Kreimer and Takeuchi introduce in [13] the notion of
H-Galois extension with normal basis, associated to a Hopf algebra H in a category
of modules over a commutative ring, and in [10] Doi and Takeuchi show that there
exists an equivalence between the notion of H-Galois extension with normal basis
and the one of H-cleft extension for H. This result can be generalized to symmetric
closed categories [11] and in [7] we find a more general formulation in the context
of entwining structures that was extended to the weak setting in [2] by using the
notion of weak C-cleft extensions defined in [1]. On the other hand, being A an
algebra, C' a coalgebra and I'4 : C ® A — A ® C a morphism in a strict monoidal
category with equalizers and coequalizers, such that (A4, C,T'4) is a weak entwining

structure, we have introduced in [2] the notion of weak C-Galois extension with
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normal basis and we proved that, if A ® — preserves coequalizers, there exists an
equivalence between weak C-Galois extensions and weak C-cleft extensions. Taking
into account that every right comodule algebra over a weak Hopf algebra H induces
a weak entwining structure, the results obtained in [1] and [2] can be applied for
the study of Galois theory for weak Hopf algebras.

In [5] we introduce the notion of H-cleft extension for a weak Hopf algebra H
and we prove that this kind of extensions are examples of weak H-cleft extensions
like the ones introduced in [1] and satisfying the classical notion of cleftness when
particularizing to the Hopf setting. Assuming cocommutativity for H, we give in
[5] a bijective correspondence between the equivalence classes of H-cleft extensions
Ag < B and the equivalence classes of crossed systems for H over Ay where
Ap denotes the subalgebra of coinvariants of the H-comodule algebra (A, p4) in
the weak context. This result permits to generalize the ones proved by Doi [9]
about the characterization of equivalence classes of crossed systems as the second
Sweedler cohomology group in the cocommutative Hopf algebra setting. To obtain
this generalization we need the cohomology theory of algebras over cocommutative
weak Hopf algebras we developed in [4] and used in [5] in order to give the weak
Hopf version of Doi’s result, i.e., a bijection between the isomorphism classes of
H-cleft extensions Ay — B, the equivalence classes of crossed systems for H over
Apg and the second cohomology group HgZ(AH)(H,Z(AH)), where Z(Ap) is the
center of Ay and ¢z(4,,) the corresponding associated action.

As we have pointed above, H-cleft extensions are a kind of weak H-cleft exten-
sions, and these are equivalent to weak H-Galois extensions with normal basis. This
leads naturally to the following question: Is there a special class of weak H-Galois
extensions with normal basis equivalent to H-cleft extensions? In order to give an
affirmative response to this question we introduce the notion of H-Galois extension
with normal basis like a special kind of weak H-Galois extension with normal ba-
sis and we prove that if A ® — preserves coequalizers, the following assertions are

equivalent:

(i) Ag — Ais an H-cleft extension that admits a convolution invertible total
integral.

(ii) Ay — A is an H-Galois extension with normal basis.

As a consequence, taking into account that, if H is cocommutative, every H-
cleft extension Ay < A admits a convolution invertible total integral, we obtain
that Ay — A is an H-cleft extension if and only if Ay < A is an H-Galois
extension with normal basis. Therefore, if A is commutative, we obtain a bijective

correspondence between the second cohomology group H, i . (H, Ag) and the set
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of equivalence classes of H-Galois extensions with normal basis with associated left

action over the subalgebra of coinvariants @, .

2. Galois extensions with normal basis and Cleft extensions in a weak

setting

Throughout this paper C = (C,®, K, ¢) is a symmetric monoidal category with
equalizers and coequalizers, where ® is the tensor product, K the base object and
cvuN M ®N — N ® M the natural isomorphism of symmetry. For any objects
A, B and C in C the natural isomorphism a4 p¢c: (A®B)®C - A® (B® ()
is called the associative constraint, and the natural isomorphisms [4 : K @ A — A
and vty : AQ K — A, are known as the left and right unit constraints, respectively.
Moreover, by Theorem XI.5.3 of [12] we know that every monoidal category is
monoidally equivalent to a strict one (i.e., a category such that the constraint
isomorphisms are identities), and then there is no loss of generality in assuming
that C is strict.

We assume that the reader is familiar with the notions of (co)algebra and
(co)module and morphisms between them in this monoidal setting (see [1], [2]).
Note that if C admits equalizers then every idempotent morphism in C splits, i.e.,
for every morphism ¢ : Y — Y such that ¢ = g o ¢ there exists an object Z (image
of ¢) and morphisms ¢ : Z — Y and p: Y — Z such that ¢ =iop and poi =idy.

For each object M in C, we denote the identity morphism by idy; : M — M and
for simplicity of notation, given objects M, N, P in C and a morphism f: M — N,
we write P ® f for idp ® f and f ® P for f ® idp.

Let D = (D,ep,dp) be a coalgebra, with counit ep : D — K and coproduct
0p:D —D®D,and let A= (A,na,ua) be an algebra with unit n4 : K — A and
product pyg : AQ A— A. If f,g: D — A in C are morphisms in C, f x g denotes
the usual convolution product in the category, that is, f* g = pa o (f ® g) 0o dp.

For an algebra A, the category of right (resp. left) A-modules will be denoted
by M4 (resp. aM). Similarly, if D is a coalgebra we denote by MP (resp. P M)
the category of right (resp. left) D-comodules.

Definition 2.1. A weak bialgebra H in C is an algebra (H,ng, pg) and a coalgebra
(H,en,dm) satisfying:

(al) dg opn = (pa @ pu)o (H @ cup @ H) o (6u ® 0n),

(a2) egopmo(ppg ® H) = (ep ®en) o (pg ® pu) o (H @ g ® H)
=(en®en)o (g ®pm)o (H® (cupodn)® H),

(a3) (dn @ H)odgony = (H @ pyg @ H) o (0p ® ) o (nu @)
=(H® (pupocun)®H)o (0g ®dy)o (nu @ nu).
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If moreover,

(ad) there exists a morphism Ay : H — H in C (called antipode of H ) satisfying:
(ad-1) idyg *x g = ((egopy) @ H)o (H®cum) o ((0g ony) ® H),
(ad-2) g xidy = (H® (egopn))o(cuu @ H)o(H® (g onu)),
(ad-3) Ay xidyg * Ag = Ay
we say that the weak bialgebra H is a weak Hopf algebra in the category C. Note that
in a strict monoidal category the associativity of the convolution product follows by

the associativity of the product pg and the coassociativity of the coproduct oy .

In a similar way to the Hopf algebra case, the antipode Ay of a weak Hopf
algebra H is unique, antimultiplicative (Ag o ug = pg o (Ag @ Ag) o ¢y m), anti-
comultiplicative (6 o Ay = ¢, g © (Agr @ Agr) 0 0r) and leaves the unit ng and the
counit ey invariable (Ag ong =Ny, eg oAy =€p).
Moreover, we can define the idempotent morphisms I1% (target), II% (source),
ﬁlLLI and ﬁf, by
f = ((emopn) @ H
E = (H® (egopun)
My = (H® (er o ) o (0 o) © H);
Mgy = (er o ) & H) o (H & (60 0 111));

which satisfy the equalities 1T = id g *Ag, [1E = Ay xidy and then ITE *11E = T1E,

HE XL = II£. In what follows we denote by Hy, the image of the target morphism

o(H®chm)o ((dmonm)®H);
o(egu@H)o(H® (6gonu));
(

~— — — —

and by pr, and iz, the morphisms such that ¢, o pr, = Hﬁ, and pr, oir =idpy, .
Finally, we have that (see [6]),

Lo, =11k Tk ol =Thy; HEoIy, =T; ORI, =18, (1)
Mol =T5; Tholf =nE; Tholll =1k Taollf =Tk (2)

Definition 2.2. Let H be a weak bialgebra and let A be an algebra with coaction
pa A — A® H such that (A,pa) is a right H-comodule satisfying the equality
Lagao(pa®pa) = paoua. The object (A, pa) is called a right H-comodule algebra
if one of the following equivalent conditions holds (see [8], Proposition 4.10):

(b1) (pa®@H)opaona=(A® (uuocun)®@H)o((paona)® (5uonm)),
(b2) (pa®@H)opaona= (A ug @ H)o((paona)® (0uonu)),

(b3) (A@TIy)opa = (na®H)o(A® (paona)),

(b4) (A®Ig)opa = (na® H)o (A cu.a)o ((paona) ® A),

(b5) (A®TIpy) 0 paona=paona,

(b6) (A@TIf)opaona=paona.
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For a right H-comodule algebra A we define T'{ : H® A - A® H as T =
(A® ppg)o(cya®H)o(H® pa). Then the triple (A, H,T'f) is a right-right weak

entwining structure (see [8], Theorem 4.14), i.e., it satisfies

T o (H®pa) = (pa® H)o (AaTH)o (T ® A), (3)
(A@dg)oTH =Tl @ H)o (HaTH)o (65 @ A), (4)
I o (H®@na) = (ea® H) o o, (5)
(A®em) ol = paoc(ea®A), (6)

where
ea=(A®eg)oTH o (Hon,). (7)

Let A and H be fixed. We denote by MI(TH) the category of right-right
weak entwined modules, i.e., the objects M in C together with two morphisms
o M®A— Aand py : M — M ® H such that (M, ¢y) is a right A-module,
(M, par) is a right H-comodule and the following equality

par o dnr = (dp @ H) o (M &TY) o (pys ® A) (8)

holds. Obviously, if (A, pa) is a right H-comodule algebra, (A, 14, pa) is an object
of MA(TH).

Let (A,pa) be a right H-comodule algebra. We define the subalgebra of coin-
variants of A by the equalizer:

PA
A . Ao H
Ca

where (4 = (pa @ H) o (A® (pa ona)). Note that, by (b3), (4 = (A ®ﬁ§) opa
and also, by (1) and (2), (Am,ia) is the equalizer of p4 and (A ®IT4) o0 pa.
It is not difficult to see that (Am,nay, A, ) is an algebra, being 74, and pa,,

1A

An

the factorizations through the equalizer i4 of the morphisms 74 and pg0(ig ®ia),
respectively. As a consequence, o4 = pao(ia®A) (respectively o4 = pa0(AR1i4))
defines a left (right) Ag-module structure for A.

Note that the weak Hopf algebra H is a right H-comodule algebra with comodule
structure giving by pg = dgy and subalgebra of coinvariants Hy = Hyp,. In this case
ig=1ip.

The morphism Augy = (A @ H)o (AQTH)o (A9 H®na): A9 H — A® H is
an idempotent and, as a consequence, there exist an object ALJH and morphisms
iaog @ AOH — AQ® H, pagy : A® H — AOH such that Aygy = iagy ©
Pasg and idang = PAagH © iasy- Moreover ALIH is a right A-module, where the
action is defined by ¢ = pagu © (pa @ H) o (A® TH) o (iagny ® A), and a
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right H-comodule, with coaction panpy = (pagy ® H) o (A ® dg) o iagn, and
(AOH, ¢ a0, pacy) is a weak entwined module and a left A-module with action

©anH = Pagn © (ha ® H) o (A®isgnm). On the other hand, the equality
Asgn = (pa @ H) o (A® ((ea ® H) 0 0p)), (9)

comes directly from (5).

The morphism (lifted canonical morphism) 74 = pagm o (pa @ H) o (A® pa) :
A®A — AUH factorizes through the coequalizer morphism g4 4 : A®A — AR 4, A
of the morphisms 9114,14 = A®pa and 0% 4 = 4@ A. As a consequence, there exists
a unique morphism, called the canonical morphism, v4 : A ®4, A — AOH such
that y40q4,4 = ra. Further, r4 and y4 are morphisms of right H-comodules being
paga = A® pa and PA®aA, A the factorization of (ga,4 ® H) o (A ® pa) through
the coequalizer g4, 4. If the functor A ® — preserves coequalizers, 74 is a morphism
of left A-modules where g, 4 is the factorization of ga 4 o (ua ® A) through the
coequalizer A ® g4 4. Finally, 74 is a morphism of right A-modules where ¢ ag ;4
is the factorization of g4 4 o (A ® pa) through the coequalizer g4 4 ® A.

Definition 2.3. If the functor A ® — preserves coequalizers, we say that Ag — A

is a weak H-Galois extension if the canonical morphism 4 is an isomorphism.
Note that, if C is a closed category, the functor AQ— preserves coequalizers. Also,

if A is a finite object, i.e., there exists an object A* and an adjunction A @ —

A* ® —, we have that A ® — preserves coequalizers.

Let H be a weak Hopf algebra and let (A, p4) be a right H-comodule algebra. In
Definition 1.8 of [1] we introduce the set Reg"V?(H, A) as the one whose elements
are the morphisms h : H — A such that there exists h~! : H — A, called the left
weak inverse of h, satisfying h=! * h = e4 where e4 is the morphism defined in (7)

for the right-right weak entwining structure I'f{ associated to (4, pa).

Definition 2.4. We say that Ag — A is a weak H-cleft extension if there exists
a morphism h : H — A in RegWE(H, A) (called the cleaving morphism) of right

H -comodules such that
THo(H@h ) ody =Cao(eaxh™). (10)

Also, by (2.9) of [5], we can assume without loss of generality that eqxh~! = A~}

and as a consequence (10) can be expressed as
THo(Hoh ) ody =Caoh™h (11)

Then, if the extension Ay < A is weak H-cleft, by Proposition 1.12 of [1], we
get that g4 = pao(A®@h ) ops: A — A factorizes through is. Therefore,
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there exists a unique morphism ps4 : A — Apg such that g4 = i4 o pa. Then,
h*h™! = g4 oh and, as a consequence, h * h~! admits a factorization through i4.

Now we recall the definition of H-Galois extension with normal basis we formu-
late in [2].

Definition 2.5. A weak H-Galois extension Ay — A has a normal basis if there
exists an idempotent morphism of left Ap-modules and right H-comodules Q4 om :
Ag®H — Ag®H (papen = iy @H, pagen = Ag®dy ) and an isomorphism
of left Ag-modules and right H-comodules by : A — Ay x H, where Ay x H is the
image of Qa o and YAy xH = PAy HOPAyoHO(AH®iA, H), PArxH = (DAL HE
H)opa,emoia, m, beingia, m: AguxH — Ag®H andpa, o Ap®H — Ag X

H the morphisms such that ia, gopay g = QayeH and DAy HOMA, H = A xH-

For a weak H-Galois extension with normal basis, if we define wyq = b;l OPAy H*
Ap®H — Aand w'y =ia,, poba: A — Ag®H, the morphism wows = Qa,0H,
waow,y =idg and my = pao (A® ((ia@en)owy)) : A® A — A factorizes
through the coequalizer g4 4. Then there exists a unique morphism of left A-
modules m4 : A®4, A — A such that

maoqgaa=pac(A® ((ia®@ep)owly)) (12)

(see Lemma 1.9 of [2]). Note that, in these conditions, we have that pa, m, ¢4, a0,
w4 and w'y are also morphisms of left Ap-modules and right H-comodules.

As we have showed in [1], there is a close connection between weak H-cleft
extensions and weak H-Galois extensions with normal basis. More precisely, the
main result in [1] establishes that, if A ® — preserves coequalizers, Ay — A is a
weak H-cleft extension if and only if Ay < A is a weak H-Galois extension with
normal basis. For clarity we briefly review the proof:

Let Ag — A be a weak H-Galois extension with normal basis. We define the
cleaving morphism hy = wy o (Na, ® H) : H — A and its left weak inverse is
h;l =myo %Zl opagr ©(na® H) : H— A. Note that in this part of the proof we

obtain that ma oy, 0 pagc 0 pa = ((i& ® ec) 0w’y and
haxhy' = (ia®en) o Qayom o (Nay © H). (13)

Conversely, if Ay — A is a weak H-cleft extension with cleaving morphism h, the
morphisms of left Ag-modules and right H-comodules defined by wa = pao(ia®h)
and wy = (pa ® H) o py satisfy the equality wa ow’y = id4. As a consequence, the

morphism Q4,¢x = w’y owy is idempotent and we have a commutative diagram
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DAy, H TAy,H
AH x H

where pa,, g 094, g = ida,xm. Therefore, the morphism by = pa, g ow'y is
an isomorphism of right H-comodules and left Ag-modules with inverse bzl =
wa ©ia, m. Moreover, the inverse of the canonical morphism 4 is 'ygl = gA,A0©
(a® A)o (AR h' @ ha)o (A®dy) ciagH.

In the second section of [5], we introduce the notion of H-cleft extension for a
weak Hopf algebra H and we prove that this kind of extensions are examples of
weak H-cleft extensions. To define H-cleft extensions we need convolution invertible
integrals. Asin the Hopf setting, for a weak Hopf algebra H and a right H-comodule
algebra (A4, p4), an integral is a morphism of right H-comodules f : H — A. If
moreover fong =na we will say that the integral is total.

An integral f : H — A is convolution invertible if there exists a morphism
f~': H — A (called the convolution inverse of f) such that

(cl) f~lx f=ea.

(€2) f+ft=(A® (e opn))o((paona)® H).

(€3) [ frft=F"

Trivially, the inverse is unique and we get that f* f =1 f = f (see Definition 2.4
of [5]). Note that, when f is a total integral, we can rewrite (c1) as f~1xf = follZ
and (c2) as fx f~1 = foﬁz.

Definition 2.6. We say that Ag — A is an H-cleft extension if there exists a
convolution invertible integral h : H — A such that the morphism hxh™! factorizes

through the equalizer i 4.

Obviously, Hy < H is a weak H-cleft extension with h = idg and h™! = \g.
By Proposition 2.2 of [5] we know that if H is a cocommutative weak Hopf algebra
and there exists a convolution invertible integral f : H — A then Ay <— A is an
H-cleft extension. Also, by Corollary 2.1 of [5], we have that an H-cleft extension
is also a weak H-cleft extension. Finally, Proposition 2.3 of [5] asserts that, if
the antipode of H is an isomorphism and Ay < A is an H-cleft extension with
convolution invertible integral f, then h = o (f® (f~*onz))) is a total integral.

Moreover, if H is cocommutative h is convolution invertible.



H-GALOIS EXTENSIONS WITH NORMAL BASIS FOR WEAK HOPF ALGEBRAS 31

In the following definition we introduce the notion of H-Galois extension with

normal basis.

Definition 2.7. Let H be a weak Hopf algebra and let (A, pa) be a right H-comodule
algebra such that A ® — preserves coequalizers. We say that a weak H-Galois
extension with normal basis Ay — A is an H-Galois extension with normal basis
if the following identities hold:

(d1) baona =pay.uoMay @nm).

(d2) ((ba©ia) ®2n) o Quyan © (May © H) = pay.m o (4, © ).

3. Galois and Cleft extensions and cohomology

In this section we give the main results of the paper and a cohomological inter-

pretation of Cleft extensions.

Lemma 3.1. Let H be a weak Hopf algebra and let (A, pa) be a right H-comodule
algebra such that AQ— preserves coequalizers. If Ag < A is an H-Galois extension

with normal basis the following equality holds:
(Ag ®em) o Qayen o (Ag @) = iday,. (14)

Proof. First of all, note that by the definition of the morphism ﬁILi and the prop-
erties of the (co)unit ny (eg), it is easy to see that ﬁfq onyg = nu. Now, by

composing (d2) of Definition 2.7 with 7y and using (d1) we have that

((baocia)@em)oQayomr o (Nay @NE) =Pay,HO (NAy @NE) =ba0na.
Therefore,
(la®en) o Qayon o (Nay ®nu) =14 (15)
holds and as a consequence we have:
1A
= a0 (ia ®n4)
=((pac(ta®ia) ®en) o (Au ® (Qayen © (Nay ®1m)))
=(ia®em)o (pa, ®H)o(Ay @ (Qayen o (Nay @nw)))
=(la®ep)oQa,eno (A @ny).
where the first equality follows by the properties of the unit 14, the second one by
(15), the third one by the properties of p4,,, the fourth one because Q4,gm is a
morphism of left Ap-modules.

Then, using that i 4 is a monomorphism we conclude the proof. (I

Theorem 3.2. Let H be a weak Hopf algebra and let (A, pa) be a right H-comodule

algebra such that A ® — preserves coequalizers. The following are equivalent.
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(i) Ag — A is an H-cleft extension that admits a convolution invertible total
integral.

(ii) Ag — A is an H-Galois extension with normal basis.

Proof. (i) = (ii) By Corollary 2.1 of [5] we know that if Ay < A is an H-cleft
extension with convolution invertible integral A then it is a weak H-cleft extension
with cleaving morphism h. Therefore, by Theorem 2.11 of [2], we obtain that
Apg — Ais a weak H-Galois extension with normal basis where wa = pa0(is ®h),
wh=pPa®@H)opa, Qaen =wyowa, ba =pa, mow, and b;l =wWAOiA, H-
Moreover, for Q4,, g we have the following identity:

Qayen = ((paopac(ia®h)@H)o (Ay ®dn). (16)
Indeed:
QapoH
pa®@H)opagm o ((pacia)®@ (paoh))

(
(pa®@ H) o pagn o ((Ca0ia)®(paoch))
(paopa)®H)o(ia® (pagn ©((paona) @ (paoh))))
(

(

(paopa)®@H)o(ia® (paoh))
(pacopa)®H)o(ia® ((h®H)odn))
= ((pag o (Au @ (pach))) ® H) o (Ax ®dn),
where the first equality follows by the structure of right H-comodule algebra of A,

the second one by the definition of A, the third one by the associativity of p 4, the
fourth one by the structure of right H-comodule algebra of A and the properties of
the unity n4. In the fifth equality we used that h is a right H-comodule morphism
and finally, the last one follows by (el) of Lemma 3.11 of [3].
Then,
tag,HOobaoNA
=Qaueno(Pa®H)opaona
= ((paopao(ia®h))®H)o(pa®du)opacna
= ((paopac(ga®h)opa)®H)opaona
= (pa® H)opaona,
where the first equality follows by the definition of b4, the second one by (16), the
third one by the properties of p4, the fourth one by the equality (d2) of Lemma 3.9
of [3],i.e. wao(ga®h)opa =idas. On the other hand, using (16), the properties
of n4, and the condition of total integral for h we have
Ay, H O PAyH O (Nay @NH)

= QAH®HO(77AH ®77H)
=(pa®H)opasohony
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=(pa®H)opaona.
Therefore, we get (d1), because i4,, g is a monomorphism. Moreover,

((baocia)®en)oQayeno(Na, @ H)
=baoisopaoh
=bgoqgaoh
:bAO(h*h_l)
:bthoﬁi]
—I

=baowao (na, ®1ly)

, —I
=pay,Howyowao (na, @1y)

—I
= PAy,HO® QAH®H © (WAH ®HH)
—r

:pAH,H o (nAH ®HH)7

33

and (d2) holds. Note that in the first equality we used (16), in the fourth one we

applied that & is total and in the fifth one we use that wa o (na,, ® H) = h.

Therefore, Ay — A is an H-Galois extension with normal basis.

(ii) = (i) Conversely, assume that Ay — A is an H-Galois extension with

normal basis. Then, Ay <— A is a weak H-Galois extension with normal basis

and by Theorem 2.11 of [2] is a weak H-cleft extension with cleaving morphism

h=waso(ma®H)and h™* =maov; opagno(na®H). Therefore h™' xh = e4.

Also h * h~! factorizes through the equalizer i4.
By (13) and (d2) of Definition 2.7,

hxh~1
= (ia®en) o Qayen o (Nay @ H)
- —I
= bAl OPAy,H © (77AH ® HH)
—L
=wao (na, ®1g)
= hoﬁé.

On the other hand, using that by and Q4,gn are morphisms of right H-

comodules and (d1) of Definition 2.7 we have:

A®(egopm))o((paona)® H)
(ba' 0ba) @ (e o p)) o ((pacna) ® H)
ba' @ (em o pm)) o ((payxm obaona) @ H)

_ —L
= b3 opay.m o (nay, ©)
—L
=wa o (na, ®1ly)
= hoﬁf{,

where the third equality uses the definitions of Q4 ,em and pa, -

(b2 opay.r) @ (emopnn))o((Ax @dm)oQa,emo (Nay, @nm)) @ H)



34 ALONSO ALVAREZ, FERNANDEZ VILABOA AND GONZALEZ RODRIGUEZ

Therefore, hx h™! = (A® (e o pp)) o ((paona) @ H) and hxh™! =h oﬁf{.

As a consequence,

—L
hong =hollyony = (A® (e opu))o ((paona) @ nu) = na,

and h is a total integral.
To finish the proof it only remains to show that h=! x h x h~! = h~1. First we
proceed by showing the identity

—L
ma = pao(ma® (holly))opagy,, a- (17)
Indeed, composing with the coequalizer g4, 4 we have that

=L
pao (ma® (holly))opaga, a©qaa

=pao(A®ia)o (AR ((ay ®en) o (An @ Qagen o (Nay @ H)))owy))
=pa0(A® ((ia®en) o Qayem owy))

= pao(A® ((ia®en)ow)))

=1MMA©CqAaA,

and then (17) holds. In the last equalities, the first one follows by the definition of

— pao((maogan)® (hoTly))o(A® pa)
= pao(pa®A) o (A ((ia®ey ® (hollg)) o (W) ® H) o pa))
:uAo(w@A)o<A®((u@<eH®<hoﬁZ>oaH>>owf4>>
= pao(pa®A) o (A® ((ia® (hoTlg)) 0wy))
=pao(pa®@A)o(A® ((ia® ((ia®en)oQaygon o (Na, ® H)))owly))
( (
(
(

PA® .4, A, the second one by (12) and in the third one we used that w/; is a morphism
of right H-comodules. The fourth equality follows by the properties of the counit
and the fifth one by the identity

=L .
ho 1_[H = (ZA ®€H) © QAH®H © (UAH ® H)v (18)

obtained in the proof that hxh=1 = hoﬁz. The sixth one relies on the definition of
A, in the seventh one we applied that 4, ¢m is a morphism of left Ax-modules
and in the eighth one we used that Q4, gy = wy cows and wa ow’y =ida. Finally,
the last one follows by (12).

Therefore,
h~lsxhxh!
= pao(h '@ (holly))ody
= pta o ((maovz o pasm) ® (holly)) o (A® 8x) 0 Asgs o (na ® H)
:MAo((on'yjl)Q@(hOﬁZ)) 0 paDH © PagH © (Na ® H)
= pao (ma® (hoTly)) o pag,, 4075 0 pagm o (na® H)

=mao0v,' opagm o (na® H)
:h717
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where the first equality follows using that hxh~! = h oﬁqu, the second one because
A sgp is a morphism of right H-comodules, the third one by the definition of psgqy
and in the fourth one we applied that 'yzl is a morphism of right H-comodules.
Finally, the fifth equality follows by (17) and the last one by the definition of
h—t. O

As a consequence, by Propositions 2.2 and 2.3 of [5], we have the following

corollary.

Corollary 3.3. Let H be a cocommutative weak Hopf algebra and let (A,pa) be a
right H-comodule algebra such that A® — preserves coequalizers. The following are

equivalent.

(i) Ag — A is an H-cleft extension.

(i) Ag < A is an H-Galois extension with normal basis.

To finish this paper, we will give a cohomological interpretation of Cleft exten-
sions. For clarity, we briefly describe the construction of the cohomology groups in
the weak setting. The interested reader can find the details in [4]. Assume that H
is a cocommutative weak Hopf algebra and let (A, v 4) be a commutative weak left
H-module algebra. Let H° be the unit object of C and for n > 1 denote by H™ the
n-fold tensor power H®---®H. If n > 2, m}; denotes the morphism mY, : H" — H
defined by m?%, = py and by m3; = m%o(H®puy), -+ ,mhy = m}fl_l o(H" 2@ )
for k > 2. Analogously, with dg» we denote the coproduct defined for the coalgebra
H™. Finally, ¢ will be the morphism ¢ : H" ® A — A defined as ¢!y = ¢4 and
O = @ao(H®@% ). For brevity, we denote the morphisms ¢4 o (m ®n4) and
vao(H®na) by u, and uy, respectively.

For n > 1, let Reg,,(H", A) be the set of morphisms ¢ : H" — A such that
there exists a morphism o~! : H" — A (the convolution inverse of o) satisfying the
following equalities:

(cl) ohot =0 Ao = u,.

(c2) o Ao tAo =0.

(e3) c7tAoc Aot =071,
and Reg, , (Hp,, A) will be the set of morphisms g : Hr, — A such that there exists
a morphism g~!: Hy — A satisfying

gAg ' =g " Ag=up, gAgT ANg=g, g AgAgT =g"

where ug = u1 oir.
The sets Reg, , (Hr, A), Reg,, (H™, A) are abelian groups with neutral elements

ug and wu,, respectively. Moreover, we can define a cosimplicial complex of abelian
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groups with coface operators defined by
Ooi : Regy, (Hr,A) — Reg,,(H,A), ie{0,1}

80,0(9) = pao (H® (goprollf))ody, do1(g)=gopr,
516_171:RegwA(kal,A)%Regg,A(Hk,A), k>2 1€{0,1,---  k}
pao(H®o), i=0

Oh—1,i(0) =% oco(H '@uge@ H1), ic{l,--- k—1}

oo(H"?® (umo (H®1g))), i=k,
and codegeneracy operators defined by sy : Reg,,(H,A) — Reg,,(Hr, A),

Sl’o(h) :hOiL,
and sgy1 : Regy, (H*T1, A) — Reg,, (H*, A), k>1, i€ {0,1,--- ,k}
ski1,i(0) =00 (H @ng @ H* ™).

Let DZZA = Oko N\ 8,;1 A A 8,2;:3?1 be the coboundary morphisms of the
cochain complex
D2>A i’A 2 DiA
Reg,,(Hr,A) — Reg,,(H,A) — Reg,,(H*,A) — ---
by P e g P8
-+ =4 Regy,(H", A) =3 Reg,,(H*"', A) = -
associated to the cosimplicial complex Reg, ,(H®, A).
Then, (Reg,,(H®,A),Dg,) gives the Sweedler cohomology of H in (A, pa).
Therefore, the kth group will be defined by
k
H* (H,A) = Ker(Dg,)
YA ! k—1
Im(DsDA )
for k> 1 and Ker(DY,) for k = 0.

Remark 3.4. Let H be a weak Hopf algebra. Two H-cleft extensions Ag — A
and By — B are equivalent if Ay = By and there exists a morphism of right
H-comodule algebras T such that T oiq = ig. Under these conditions T is an
isomorphism (see Definition 2.13 of [5]). If H is cocommutative and h is a con-
volution invertible total integral for an H-cleft extension Ay — A, by Proposition
2.18 of [5], we know that (Am,pa, =paopac(h®iga)) is a left H-module algebra
and, if o4, =pacpao(h@h), the pair (pay,,oa,) is a crossed system for H over
Ap (see Definition 3.2 and Theorem 3.2 of [5]). If we denote by Cleft(Am, vay)
the set of equivalence classes of H-cleft extensions with a fized structure ¢, , by

Corollary 3.3 of [5], we obtain that there exists a bijective correspondence between
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Cleft(Am,pa,) and the set of equivalence classes of crossed systems for H over
Apg with a common action @4, . Therefore, if A is commutative, there exists a
bijective correspondence between the second cohomology group HiAH (H,Ag), de-
fined in [4], and Cleft(Am,pa,) (see Theorem 4.1 of [5]). As a consequence, by
Corollary 3.3, there exists a bijection between HZAH (H, Ag) and the set of equiva-
lence classes of H-Galois extensions with normal basis Ag < A such that for their
associated convolution invertible total integrals h we have 4, =paopso(h®i,)
(the equivalence relation between H-Galois extensions with normal basis is the one
induced by the equivalence relation between H-cleft extensions).

For example, if H is cocommutative, Hy, is commutative and (Hp,pn, = pr, ©
pro(H®ir)) is a left H-module algebra. Therefore, there exists a bijection between
Hf,HL (H, Hy,) and the set of equivalence classes of H-Galois extensions with normal
basis H, — A such that ¢p, = paopuao (h®ia). In the Hopf algebra setting,
if H is a finite Hopf algebra, the last bijection is the isomorphism between the
second cohomology group H?(H, K), introduced by Sweedler [14], and the group of

isomorphism classes of Galois H-objects with normal basis.
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