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Abstract. Let H be a weak Hopf algebra and let A be an H-comodule al-

gebra with subalgebra of coinvariants AH . In this paper we introduce the

notion of H-Galois extension with normal basis and we prove that AH ↪→ A

is an H-Galois extension with normal basis if and only if AH ↪→ A is an

H-cleft extension which admits a convolution invertible total integral. As a

consequence, if H is cocommutative and A commutative, we obtain a bijective

correspondence between the second cohomology group H2
ϕAH

(H,AH) and the

set of isomorphism classes of H-Galois extensions with normal basis whose left

action over AH is ϕAH
.
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1. Introduction

It is a well-known fact in classical Galois theory that if B ⊂ A is a finite Galois

extension of fields with Galois group H, then A/B has a normal basis, i.e., there

exists a ∈ A such that the set {x.a ; x ∈ H} is a basis for A over B. Generalizing

finite Galois extension of fields, Kreimer and Takeuchi introduce in [13] the notion of

H-Galois extension with normal basis, associated to a Hopf algebra H in a category

of modules over a commutative ring, and in [10] Doi and Takeuchi show that there

exists an equivalence between the notion of H-Galois extension with normal basis

and the one of H-cleft extension for H. This result can be generalized to symmetric

closed categories [11] and in [7] we find a more general formulation in the context

of entwining structures that was extended to the weak setting in [2] by using the

notion of weak C-cleft extensions defined in [1]. On the other hand, being A an

algebra, C a coalgebra and ΓA
H : C ⊗ A→ A⊗ C a morphism in a strict monoidal

category with equalizers and coequalizers, such that (A,C,ΓA
H) is a weak entwining

structure, we have introduced in [2] the notion of weak C-Galois extension with
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normal basis and we proved that, if A ⊗ − preserves coequalizers, there exists an

equivalence between weak C-Galois extensions and weak C-cleft extensions. Taking

into account that every right comodule algebra over a weak Hopf algebra H induces

a weak entwining structure, the results obtained in [1] and [2] can be applied for

the study of Galois theory for weak Hopf algebras.

In [5] we introduce the notion of H-cleft extension for a weak Hopf algebra H

and we prove that this kind of extensions are examples of weak H-cleft extensions

like the ones introduced in [1] and satisfying the classical notion of cleftness when

particularizing to the Hopf setting. Assuming cocommutativity for H, we give in

[5] a bijective correspondence between the equivalence classes of H-cleft extensions

AH ↪→ B and the equivalence classes of crossed systems for H over AH where

AH denotes the subalgebra of coinvariants of the H-comodule algebra (A, ρA) in

the weak context. This result permits to generalize the ones proved by Doi [9]

about the characterization of equivalence classes of crossed systems as the second

Sweedler cohomology group in the cocommutative Hopf algebra setting. To obtain

this generalization we need the cohomology theory of algebras over cocommutative

weak Hopf algebras we developed in [4] and used in [5] in order to give the weak

Hopf version of Doi’s result, i.e., a bijection between the isomorphism classes of

H-cleft extensions AH ↪→ B, the equivalence classes of crossed systems for H over

AH and the second cohomology group H2
ϕZ(AH )

(H,Z(AH)), where Z(AH) is the

center of AH and ϕZ(AH) the corresponding associated action.

As we have pointed above, H-cleft extensions are a kind of weak H-cleft exten-

sions, and these are equivalent to weak H-Galois extensions with normal basis. This

leads naturally to the following question: Is there a special class of weak H-Galois

extensions with normal basis equivalent to H-cleft extensions? In order to give an

affirmative response to this question we introduce the notion of H-Galois extension

with normal basis like a special kind of weak H-Galois extension with normal ba-

sis and we prove that if A ⊗ − preserves coequalizers, the following assertions are

equivalent:

(i) AH ↪→ A is an H-cleft extension that admits a convolution invertible total

integral.

(ii) AH ↪→ A is an H-Galois extension with normal basis.

As a consequence, taking into account that, if H is cocommutative, every H-

cleft extension AH ↪→ A admits a convolution invertible total integral, we obtain

that AH ↪→ A is an H-cleft extension if and only if AH ↪→ A is an H-Galois

extension with normal basis. Therefore, if A is commutative, we obtain a bijective

correspondence between the second cohomology group H2
ϕAH

(H,AH) and the set
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of equivalence classes of H-Galois extensions with normal basis with associated left

action over the subalgebra of coinvariants ϕAH
.

2. Galois extensions with normal basis and Cleft extensions in a weak

setting

Throughout this paper C = (C,⊗,K, c) is a symmetric monoidal category with

equalizers and coequalizers, where ⊗ is the tensor product, K the base object and

cM,N : M ⊗ N → N ⊗M the natural isomorphism of symmetry. For any objects

A, B and C in C the natural isomorphism aA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

is called the associative constraint, and the natural isomorphisms lA : K ⊗ A→ A

and rA : A⊗K → A, are known as the left and right unit constraints, respectively.

Moreover, by Theorem XI.5.3 of [12] we know that every monoidal category is

monoidally equivalent to a strict one (i.e., a category such that the constraint

isomorphisms are identities), and then there is no loss of generality in assuming

that C is strict.

We assume that the reader is familiar with the notions of (co)algebra and

(co)module and morphisms between them in this monoidal setting (see [1], [2]).

Note that if C admits equalizers then every idempotent morphism in C splits, i.e.,

for every morphism q : Y → Y such that q = q ◦ q there exists an object Z (image

of q) and morphisms i : Z → Y and p : Y → Z such that q = i ◦ p and p ◦ i = idZ .

For each object M in C, we denote the identity morphism by idM : M →M and

for simplicity of notation, given objects M , N , P in C and a morphism f : M → N ,

we write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .

Let D = (D, εD, δD) be a coalgebra, with counit εD : D → K and coproduct

δD : D → D⊗D, and let A = (A, ηA, µA) be an algebra with unit ηA : K → A and

product µA : A ⊗ A → A. If f, g : D → A in C are morphisms in C, f ∗ g denotes

the usual convolution product in the category, that is, f ∗ g = µA ◦ (f ⊗ g) ◦ δD.

For an algebra A, the category of right (resp. left) A-modules will be denoted

by MA (resp. AM). Similarly, if D is a coalgebra we denote by MD (resp. DM)

the category of right (resp. left) D-comodules.

Definition 2.1. A weak bialgebra H in C is an algebra (H, ηH , µH) and a coalgebra

(H, εH , δH) satisfying:

(a1) δH ◦ µH = (µH ⊗ µH) ◦ (H ⊗ cH,H ⊗H) ◦ (δH ⊗ δH),

(a2) εH ◦ µH ◦ (µH ⊗H) = (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ δH ⊗H)

= (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ (cH,H ◦ δH)⊗H),

(a3) (δH ⊗H) ◦ δH ◦ ηH = (H ⊗ µH ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH)

= (H ⊗ (µH ◦ cH,H)⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH).
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If moreover,

(a4) there exists a morphism λH : H → H in C (called antipode of H) satisfying:

(a4-1) idH ∗ λH = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H),

(a4-2) λH ∗ idH = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

(a4-3) λH ∗ idH ∗ λH = λH .

we say that the weak bialgebra H is a weak Hopf algebra in the category C. Note that

in a strict monoidal category the associativity of the convolution product follows by

the associativity of the product µH and the coassociativity of the coproduct δH .

In a similar way to the Hopf algebra case, the antipode λH of a weak Hopf

algebra H is unique, antimultiplicative (λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H), anti-

comultiplicative (δH ◦λH = cH,H ◦ (λH ⊗λH) ◦ δH) and leaves the unit ηH and the

counit εH invariable (λH ◦ ηH = ηH , εH ◦ λH = εH).

Moreover, we can define the idempotent morphisms ΠL
H (target), ΠR

H (source),

Π
L

H and Π
R

H by

ΠL
H = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H);

ΠR
H = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH));

Π
L

H = (H ⊗ (εH ◦ µH)) ◦ ((δH ◦ ηH)⊗H);

Π
R

H = ((εH ◦ µH)⊗H) ◦ (H ⊗ (δH ◦ ηH));

which satisfy the equalities ΠL
H = idH∗λH , ΠR

H = λH∗idH and then ΠL
H∗ΠL

H = ΠL
H ,

ΠR
H ∗ΠR

H = ΠR
H . In what follows we denote by HL the image of the target morphism

and by pL and iL the morphisms such that iL ◦ pL = ΠL
H and pL ◦ iL = idHL

.

Finally, we have that (see [6]),

ΠL
H ◦Π

L

H = ΠL
H ; ΠL

H ◦Π
R

H = Π
R

H ; ΠR
H ◦Π

L

H = Π
L

H ; ΠR
H ◦Π

R

H = ΠR
H ; (1)

Π
L

H ◦ΠL
H = Π

L

H ; Π
L

H ◦ΠR
H = ΠR

H ; Π
R

H ◦ΠL
H = ΠL

H ; Π
R

H ◦ΠR
H = Π

R

H . (2)

Definition 2.2. Let H be a weak bialgebra and let A be an algebra with coaction

ρA : A → A ⊗ H such that (A, ρA) is a right H-comodule satisfying the equality

µA⊗H ◦(ρA⊗ρA) = ρA◦µA. The object (A, ρA) is called a right H-comodule algebra

if one of the following equivalent conditions holds (see [8], Proposition 4.10):

(b1) (ρA ⊗H) ◦ ρA ◦ ηA = (A⊗ (µH ◦ cH,H)⊗H) ◦ ((ρA ◦ ηA)⊗ (δH ◦ ηH)),

(b2) (ρA ⊗H) ◦ ρA ◦ ηA = (A⊗ µH ⊗H) ◦ ((ρA ◦ ηA)⊗ (δH ◦ ηH)),

(b3) (A⊗Π
R

H) ◦ ρA = (µA ⊗H) ◦ (A⊗ (ρA ◦ ηA)),

(b4) (A⊗ΠL
H) ◦ ρA = (µA ⊗H) ◦ (A⊗ cH,A) ◦ ((ρA ◦ ηA)⊗A),

(b5) (A⊗Π
R

H) ◦ ρA ◦ ηA = ρA ◦ ηA,
(b6) (A⊗ΠL

H) ◦ ρA ◦ ηA = ρA ◦ ηA.
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For a right H-comodule algebra A we define ΓH
A : H ⊗ A → A ⊗ H as ΓH

A =

(A⊗ µH) ◦ (cH,A ⊗H) ◦ (H ⊗ ρA). Then the triple (A,H,ΓH
A ) is a right-right weak

entwining structure (see [8], Theorem 4.14), i.e., it satisfies

ΓH
A ◦ (H ⊗ µA) = (µA ⊗H) ◦ (A⊗ ΓH

A ) ◦ (ΓH
A ⊗A), (3)

(A⊗ δH) ◦ ΓH
A = (ΓH

A ⊗H) ◦ (H ⊗ ΓH
A ) ◦ (δH ⊗A), (4)

ΓH
A ◦ (H ⊗ ηA) = (eA ⊗H) ◦ δH , (5)

(A⊗ εH) ◦ ΓH
A = µA ◦ (eA ⊗A), (6)

where

eA = (A⊗ εH) ◦ ΓH
A ◦ (H ⊗ ηA). (7)

Let A and H be fixed. We denote by MH
A (ΓH

A ) the category of right-right

weak entwined modules, i.e., the objects M in C together with two morphisms

φM : M ⊗ A→ A and ρM : M → M ⊗H such that (M,φM ) is a right A-module,

(M,ρM ) is a right H-comodule and the following equality

ρM ◦ φM = (φM ⊗H) ◦ (M ⊗ ΓH
A ) ◦ (ρM ⊗A) (8)

holds. Obviously, if (A, ρA) is a right H-comodule algebra, (A,µA, ρA) is an object

of MH
A (ΓH

A ).

Let (A, ρA) be a right H-comodule algebra. We define the subalgebra of coin-

variants of A by the equalizer:

- -
-AH A A⊗H

iA
ρA

ζA

where ζA = (µA ⊗H) ◦ (A ⊗ (ρA ◦ ηA)). Note that, by (b3), ζA = (A ⊗ Π
R

H) ◦ ρA
and also, by (1) and (2), (AH , iA) is the equalizer of ρA and (A⊗ΠL

H) ◦ ρA.

It is not difficult to see that (AH , ηAH
, µAH

) is an algebra, being ηAH
and µAH

the factorizations through the equalizer iA of the morphisms ηA and µA ◦ (iA⊗ iA),

respectively. As a consequence, ϕA = µA◦(iA⊗A) (respectively φA = µA◦(A⊗iA))

defines a left (right) AH -module structure for A.

Note that the weak Hopf algebra H is a right H-comodule algebra with comodule

structure giving by ρH = δH and subalgebra of coinvariants HH = HL. In this case

iH = iL.

The morphism ∆A⊗H = (µA⊗H)◦ (A⊗ΓH
A )◦ (A⊗H⊗ηA) : A⊗H → A⊗H is

an idempotent and, as a consequence, there exist an object A�H and morphisms

iA⊗H : A�H → A ⊗ H, pA⊗H : A ⊗ H → A�H such that ∆A⊗H = iA⊗H ◦
pA⊗H and idA�H = pA⊗H ◦ iA⊗H . Moreover A�H is a right A-module, where the

action is defined by φA�H = pA⊗H ◦ (µA ⊗ H) ◦ (A ⊗ ΓH
A ) ◦ (iA⊗H ⊗ A), and a
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right H-comodule, with coaction ρA�H = (pA⊗H ⊗ H) ◦ (A ⊗ δH) ◦ iA⊗H , and

(A�H,φA�H , ρA�H) is a weak entwined module and a left A-module with action

ϕA�H = pA⊗H ◦ (µA ⊗H) ◦ (A⊗ iA⊗H). On the other hand, the equality

∆A⊗H = (µA ⊗H) ◦ (A⊗ ((eA ⊗H) ◦ δH)), (9)

comes directly from (5).

The morphism (lifted canonical morphism) rA = pA⊗H ◦ (µA ⊗H) ◦ (A⊗ ρA) :

A⊗A→ A�H factorizes through the coequalizer morphism qA,A : A⊗A→ A⊗AH
A

of the morphisms θ1
A,A = A⊗ϕA and θ2

A,A = φA⊗A. As a consequence, there exists

a unique morphism, called the canonical morphism, γA : A ⊗AH
A → A�H such

that γA ◦qA,A = rA. Further, rA and γA are morphisms of right H-comodules being

ρA⊗A = A ⊗ ρA and ρA⊗AH
A the factorization of (qA,A ⊗ H) ◦ (A ⊗ ρA) through

the coequalizer qA,A. If the functor A⊗− preserves coequalizers, γA is a morphism

of left A-modules where ϕA⊗BA is the factorization of qA,A ◦ (µA ⊗A) through the

coequalizer A⊗ qA,A. Finally, γA is a morphism of right A-modules where φA⊗BA

is the factorization of qA,A ◦ (A⊗ µA) through the coequalizer qA,A ⊗A.

Definition 2.3. If the functor A⊗− preserves coequalizers, we say that AH ↪→ A

is a weak H-Galois extension if the canonical morphism γA is an isomorphism.

Note that, if C is a closed category, the functor A⊗− preserves coequalizers. Also,

if A is a finite object, i.e., there exists an object A∗ and an adjunction A ⊗ − a
A∗ ⊗−, we have that A⊗− preserves coequalizers.

Let H be a weak Hopf algebra and let (A, ρA) be a right H-comodule algebra. In

Definition 1.8 of [1] we introduce the set RegWR(H,A) as the one whose elements

are the morphisms h : H → A such that there exists h−1 : H → A, called the left

weak inverse of h, satisfying h−1 ∗ h = eA where eA is the morphism defined in (7)

for the right-right weak entwining structure ΓH
A associated to (A, ρA).

Definition 2.4. We say that AH ↪→ A is a weak H-cleft extension if there exists

a morphism h : H → A in RegWR(H,A) (called the cleaving morphism) of right

H-comodules such that

ΓH
A ◦ (H ⊗ h−1) ◦ δH = ζA ◦ (eA ∗ h−1). (10)

Also, by (2.9) of [5], we can assume without loss of generality that eA∗h−1 = h−1

and as a consequence (10) can be expressed as

ΓH
A ◦ (H ⊗ h−1) ◦ δH = ζA ◦ h−1. (11)

Then, if the extension AH ↪→ A is weak H-cleft, by Proposition 1.12 of [1], we

get that qA = µA ◦ (A ⊗ h−1) ◦ ρA : A → A factorizes through iA. Therefore,
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there exists a unique morphism pA : A → AH such that qA = iA ◦ pA. Then,

h ∗ h−1 = qA ◦ h and, as a consequence, h ∗ h−1 admits a factorization through iA.

Now we recall the definition of H-Galois extension with normal basis we formu-

late in [2].

Definition 2.5. A weak H-Galois extension AH ↪→ A has a normal basis if there

exists an idempotent morphism of left AH-modules and right H-comodules ΩAH⊗H :

AH⊗H → AH⊗H ( ϕAH⊗H = µAH
⊗H, ρAH⊗H = AH⊗δH) and an isomorphism

of left AH-modules and right H-comodules bA : A→ AH ×H, where AH ×H is the

image of ΩAH⊗H and ϕAH×H = pAH ,H ◦ϕAH⊗H ◦(AH⊗iAH ,H), ρAH×H = (pAH ,H⊗
H)◦ρAH⊗H ◦iAH ,H , being iAH ,H : AH×H → AH⊗H and pAH ,H : AH⊗H → AH×
H the morphisms such that iAH ,H ◦pAH ,H = ΩAH⊗H and pAH ,H ◦iAH ,H = idAH×H .

For a weak H-Galois extension with normal basis, if we define ωA = b−1
A ◦pAH ,H :

AH⊗H → A and ω′A = iAH ,H ◦bA : A→ AH⊗H, the morphism ω′A◦ωA = ΩAH⊗H ,

ωA ◦ ω′A = idA and m′A = µA ◦ (A ⊗ ((iA ⊗ εH) ◦ ω′A)) : A ⊗ A → A factorizes

through the coequalizer qA,A. Then there exists a unique morphism of left A-

modules mA : A⊗AH
A→ A such that

mA ◦ qA,A = µA ◦ (A⊗ ((iA ⊗ εH) ◦ ω′A)) (12)

(see Lemma 1.9 of [2]). Note that, in these conditions, we have that pAH ,H , iAH ,H ,

ωA and ω′A are also morphisms of left AH -modules and right H-comodules.

As we have showed in [1], there is a close connection between weak H-cleft

extensions and weak H-Galois extensions with normal basis. More precisely, the

main result in [1] establishes that, if A ⊗ − preserves coequalizers, AH ↪→ A is a

weak H-cleft extension if and only if AH ↪→ A is a weak H-Galois extension with

normal basis. For clarity we briefly review the proof:

Let AH ↪→ A be a weak H-Galois extension with normal basis. We define the

cleaving morphism hA = ωA ◦ (ηAH
⊗ H) : H → A and its left weak inverse is

h−1
A = mA ◦ γ−1

A ◦ pA⊗H ◦ (ηA⊗H) : H → A. Note that in this part of the proof we

obtain that mA ◦ γ−1
A ◦ pA⊗C ◦ ρA = ((iAC ⊗ εC) ◦ ω′A and

hA ∗ h−1
A = (iA ⊗ εH) ◦ ΩAH⊗H ◦ (ηAH

⊗H). (13)

Conversely, if AH ↪→ A is a weakH-cleft extension with cleaving morphism h, the

morphisms of left AH -modules and right H-comodules defined by ωA = µA◦(iA⊗h)

and ω′A = (pA⊗H) ◦ ρA satisfy the equality ωA ◦ω′A = idA. As a consequence, the

morphism ΩAH⊗H = ω′A ◦ ωA is idempotent and we have a commutative diagram
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-
Z
Z
Z
Z~ �

�
��

�
�
�
�3 Z

Z
Z~

AH ⊗H AH ⊗H

A

AH ×H

ωA ω′A

pAH ,H iAH ,H

ΩAH⊗H

where pAH ,H ◦ iAH ,H = idAH×H . Therefore, the morphism bA = pAH ,H ◦ ω′A is

an isomorphism of right H-comodules and left AH -modules with inverse b−1
A =

ωA ◦ iAH ,H . Moreover, the inverse of the canonical morphism γA is γ−1
A = qA,A ◦

(µA ⊗A) ◦ (A⊗ h−1
A ⊗ hA) ◦ (A⊗ δH) ◦ iA⊗H .

In the second section of [5], we introduce the notion of H-cleft extension for a

weak Hopf algebra H and we prove that this kind of extensions are examples of

weakH-cleft extensions. To defineH-cleft extensions we need convolution invertible

integrals. As in the Hopf setting, for a weak Hopf algebraH and a rightH-comodule

algebra (A, ρA), an integral is a morphism of right H-comodules f : H → A. If

moreover f ◦ ηH = ηA we will say that the integral is total.

An integral f : H → A is convolution invertible if there exists a morphism

f−1 : H → A (called the convolution inverse of f) such that

(c1) f−1 ∗ f = eA.

(c2) f ∗ f−1 = (A⊗ (εH ◦ µH)) ◦ ((ρA ◦ ηA)⊗H).

(c3) f−1 ∗ f ∗ f−1 = f−1.

Trivially, the inverse is unique and we get that f ∗f−1 ∗f = f (see Definition 2.4

of [5]). Note that, when f is a total integral, we can rewrite (c1) as f−1∗f = f ◦ΠR
H

and (c2) as f ∗ f−1 = f ◦Π
L

H .

Definition 2.6. We say that AH ↪→ A is an H-cleft extension if there exists a

convolution invertible integral h : H → A such that the morphism h∗h−1 factorizes

through the equalizer iA.

Obviously, HL ↪→ H is a weak H-cleft extension with h = idH and h−1 = λH .

By Proposition 2.2 of [5] we know that if H is a cocommutative weak Hopf algebra

and there exists a convolution invertible integral f : H → A then AH ↪→ A is an

H-cleft extension. Also, by Corollary 2.1 of [5], we have that an H-cleft extension

is also a weak H-cleft extension. Finally, Proposition 2.3 of [5] asserts that, if

the antipode of H is an isomorphism and AH ↪→ A is an H-cleft extension with

convolution invertible integral f , then h = µA ◦ (f ⊗ (f−1 ◦ηH))) is a total integral.

Moreover, if H is cocommutative h is convolution invertible.
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In the following definition we introduce the notion of H-Galois extension with

normal basis.

Definition 2.7. Let H be a weak Hopf algebra and let (A, ρA) be a right H-comodule

algebra such that A ⊗ − preserves coequalizers. We say that a weak H-Galois

extension with normal basis AH ↪→ A is an H-Galois extension with normal basis

if the following identities hold:

(d1) bA ◦ ηA = pAH ,H ◦ (ηAH
⊗ ηH).

(d2) ((bA ◦ iA)⊗ εH) ◦ ΩAH⊗H ◦ (ηAH
⊗H) = pAH ,H ◦ (ηAH

⊗Π
L

H).

3. Galois and Cleft extensions and cohomology

In this section we give the main results of the paper and a cohomological inter-

pretation of Cleft extensions.

Lemma 3.1. Let H be a weak Hopf algebra and let (A, ρA) be a right H-comodule

algebra such that A⊗− preserves coequalizers. If AH ↪→ A is an H-Galois extension

with normal basis the following equality holds:

(AH ⊗ εH) ◦ ΩAH⊗H ◦ (AH ⊗ ηH) = idAH
. (14)

Proof. First of all, note that by the definition of the morphism Π
L

H and the prop-

erties of the (co)unit ηH (εH), it is easy to see that Π
L

H ◦ ηH = ηH . Now, by

composing (d2) of Definition 2.7 with ηH and using (d1) we have that

((bA ◦ iA)⊗ εH) ◦ ΩAH⊗H ◦ (ηAH
⊗ ηH) = pAH ,H ◦ (ηAH

⊗ ηH) = bA ◦ ηA.

Therefore,

(iA ⊗ εH) ◦ ΩAH⊗H ◦ (ηAH
⊗ ηH) = ηA (15)

holds and as a consequence we have:

iA

= µA ◦ (iA ⊗ ηA)

= ((µA ◦ (iA ⊗ iA)⊗ εH) ◦ (AH ⊗ (ΩAH⊗H ◦ (ηAH
⊗ ηH)))

= (iA ⊗ εH) ◦ (µAH
⊗H) ◦ (AH ⊗ (ΩAH⊗H ◦ (ηAH

⊗ ηH)))

= (iA ⊗ εH) ◦ ΩAH⊗H ◦ (AH ⊗ ηH).

where the first equality follows by the properties of the unit ηA, the second one by

(15), the third one by the properties of µAH
, the fourth one because ΩAH⊗H is a

morphism of left AH -modules.

Then, using that iA is a monomorphism we conclude the proof. �

Theorem 3.2. Let H be a weak Hopf algebra and let (A, ρA) be a right H-comodule

algebra such that A⊗− preserves coequalizers. The following are equivalent.
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(i) AH ↪→ A is an H-cleft extension that admits a convolution invertible total

integral.

(ii) AH ↪→ A is an H-Galois extension with normal basis.

Proof. (i) ⇒ (ii) By Corollary 2.1 of [5] we know that if AH ↪→ A is an H-cleft

extension with convolution invertible integral h then it is a weak H-cleft extension

with cleaving morphism h. Therefore, by Theorem 2.11 of [2], we obtain that

AH ↪→ A is a weak H-Galois extension with normal basis where ωA = µA ◦(iA⊗h),

ω′A = (pA ⊗H) ◦ ρA, ΩAH⊗H = ω′A ◦ ωA, bA = pAH ,H ◦ ω′A and b−1
A = ωA ◦ iAH ,H .

Moreover, for ΩAH⊗H we have the following identity:

ΩAH⊗H = ((pA ◦ µA ◦ (iA ⊗ h))⊗H) ◦ (AH ⊗ δH). (16)

Indeed:

ΩAH⊗H

= (pA ⊗H) ◦ µA⊗H ◦ ((ρA ◦ iA)⊗ (ρA ◦ h))

= (pA ⊗H) ◦ µA⊗H ◦ ((ζA ◦ iA)⊗ (ρA ◦ h))

= ((pA ◦ µA)⊗H) ◦ (iA ⊗ (µA⊗H ◦ ((ρA ◦ ηA)⊗ (ρA ◦ h))))

= ((pA ◦ µA)⊗H) ◦ (iA ⊗ (ρA ◦ h))

= ((pA ◦ µA)⊗H) ◦ (iA ⊗ ((h⊗H) ◦ δH))

= ((µAH
◦ (AH ⊗ (pA ◦ h)))⊗H) ◦ (AH ⊗ δH),

where the first equality follows by the structure of right H-comodule algebra of A,

the second one by the definition of AH , the third one by the associativity of µA, the

fourth one by the structure of right H-comodule algebra of A and the properties of

the unity ηA. In the fifth equality we used that h is a right H-comodule morphism

and finally, the last one follows by (e1) of Lemma 3.11 of [3].

Then,

iAH ,H ◦ bA ◦ ηA
= ΩAH⊗H ◦ (pA ⊗H) ◦ ρA ◦ ηA
= ((pA ◦ µA ◦ (iA ⊗ h))⊗H) ◦ (pA ⊗ δH) ◦ ρA ◦ ηA
= ((pA ◦ µA ◦ (qA ⊗ h) ◦ ρA)⊗H) ◦ ρA ◦ ηA
= (pA ⊗H) ◦ ρA ◦ ηA,

where the first equality follows by the definition of bA, the second one by (16), the

third one by the properties of ρA, the fourth one by the equality (d2) of Lemma 3.9

of [3], i.e. µA ◦ (qA ⊗ h) ◦ ρA = idA. On the other hand, using (16), the properties

of ηAH
and the condition of total integral for h we have

iAH ,H ◦ pAH ,H ◦ (ηAH
⊗ ηH)

= ΩAH⊗H ◦ (ηAH
⊗ ηH)

= (pA ⊗H) ◦ ρA ◦ h ◦ ηH
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= (pA ⊗H) ◦ ρA ◦ ηA.

Therefore, we get (d1), because iAH ,H is a monomorphism. Moreover,

((bA ◦ iA)⊗ εH) ◦ ΩAH⊗H ◦ (ηAH
⊗H)

= bA ◦ iA ◦ pA ◦ h
= bA ◦ qA ◦ h
= bA ◦ (h ∗ h−1)

= bA ◦ h ◦Π
L

H

= bA ◦ ωA ◦ (ηAH
⊗Π

L

H)

= pAH ,H ◦ ω′A ◦ ωA ◦ (ηAH
⊗Π

L

H)

= pAH ,H ◦ ΩAH⊗H ◦ (ηAH
⊗Π

L

H)

= pAH ,H ◦ (ηAH
⊗Π

L

H),

and (d2) holds. Note that in the first equality we used (16), in the fourth one we

applied that h is total and in the fifth one we use that ωA ◦ (ηAH
⊗H) = h.

Therefore, AH ↪→ A is an H-Galois extension with normal basis.

(ii) ⇒ (i) Conversely, assume that AH ↪→ A is an H-Galois extension with

normal basis. Then, AH ↪→ A is a weak H-Galois extension with normal basis

and by Theorem 2.11 of [2] is a weak H-cleft extension with cleaving morphism

h = ωA ◦ (ηA⊗H) and h−1 = mA ◦γ−1
A ◦pA⊗H ◦ (ηA⊗H). Therefore h−1 ∗h = eA.

Also h ∗ h−1 factorizes through the equalizer iA.

By (13) and (d2) of Definition 2.7,

h ∗ h−1

= (iA ⊗ εH) ◦ ΩAH⊗H ◦ (ηAH
⊗H)

= b−1
A ◦ pAH ,H ◦ (ηAH

⊗Π
L

H)

= ωA ◦ (ηAH
⊗Π

L

H)

= h ◦Π
L

H .

On the other hand, using that bA and ΩAH⊗H are morphisms of right H-

comodules and (d1) of Definition 2.7 we have:

(A⊗ (εH ◦ µH)) ◦ ((ρA ◦ ηA)⊗H)

= ((b−1
A ◦ bA)⊗ (εH ◦ µH)) ◦ ((ρA ◦ ηA)⊗H)

= (b−1
A ⊗ (εH ◦ µH)) ◦ ((ρAH×H ◦ bA ◦ ηA)⊗H)

= ((b−1
A ◦ pAH ,H)⊗ (εH ◦ µH)) ◦ (((AH ⊗ δH) ◦ΩAH⊗H ◦ (ηAH

⊗ ηH))⊗H)

= b−1
A ◦ pAH ,H ◦ (ηAH

⊗Π
L

H)

= ωA ◦ (ηAH
⊗Π

L

H)

= h ◦Π
L

H ,

where the third equality uses the definitions of ΩAH⊗H and ρAH×H .
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Therefore, h ∗ h−1 = (A ⊗ (εH ◦ µH)) ◦ ((ρA ◦ ηA) ⊗H) and h ∗ h−1 = h ◦ Π
L

H .

As a consequence,

h ◦ ηH = h ◦Π
L

H ◦ ηH = (A⊗ (εH ◦ µH)) ◦ ((ρA ◦ ηA)⊗ ηH) = ηA,

and h is a total integral.

To finish the proof it only remains to show that h−1 ∗ h ∗ h−1 = h−1. First we

proceed by showing the identity

mA = µA ◦ (mA ⊗ (h ◦Π
L

H)) ◦ ρA⊗AH
A. (17)

Indeed, composing with the coequalizer qA,A we have that

µA ◦ (mA ⊗ (h ◦Π
L

H)) ◦ ρA⊗AH
A ◦ qA,A

= µA ◦ ((mA ◦ qA,A)⊗ (h ◦Π
L

H)) ◦ (A⊗ ρA)

= µA ◦ (µA ⊗A) ◦ (A⊗ ((iA ⊗ εH ⊗ (h ◦Π
L

H)) ◦ (ω′A ⊗H) ◦ ρA))

= µA ◦ (µA ⊗A) ◦ (A⊗ ((iA ⊗ (εH ⊗ (h ◦Π
L

H) ◦ δH)) ◦ ω′A))

= µA ◦ (µA ⊗A) ◦ (A⊗ ((iA ⊗ (h ◦Π
L

H)) ◦ ω′A))

= µA ◦ (µA ⊗A) ◦ (A⊗ ((iA ⊗ ((iA ⊗ εH) ◦ ΩAH⊗H ◦ (ηAH
⊗H))) ◦ ω′A))

= µA ◦ (A⊗ iA) ◦ (A⊗ ((µAH
⊗ εH) ◦ (AH ⊗ (ΩAH⊗H ◦ (ηAH

⊗H))) ◦ ω′A))

= µA ◦ (A⊗ ((iA ⊗ εH) ◦ ΩAH⊗H ◦ ω′A))

= µA ◦ (A⊗ ((iA ⊗ εH) ◦ ω′A))

= mA ◦ qA,A,

and then (17) holds. In the last equalities, the first one follows by the definition of

ρA⊗AH
A, the second one by (12) and in the third one we used that ω′A is a morphism

of right H-comodules. The fourth equality follows by the properties of the counit

and the fifth one by the identity

h ◦Π
L

H = (iA ⊗ εH) ◦ ΩAH⊗H ◦ (ηAH
⊗H), (18)

obtained in the proof that h∗h−1 = h◦ΠL

H . The sixth one relies on the definition of

µAH
, in the seventh one we applied that ΩAH⊗H is a morphism of left AH -modules

and in the eighth one we used that ΩAH⊗H = ω′A ◦ωA and ωA ◦ω′A = idA. Finally,

the last one follows by (12).

Therefore,

h−1 ∗ h ∗ h−1

= µA ◦ (h−1 ⊗ (h ◦Π
L

H)) ◦ δH
= µA ◦ ((mA ◦ γ−1

A ◦ pA⊗H)⊗ (h ◦Π
L

H)) ◦ (A⊗ δH) ◦∆A⊗H ◦ (ηA ⊗H)

= µA ◦ ((mA ◦ γ−1
A )⊗ (h ◦Π

L

H)) ◦ ρA�H ◦ pA⊗H ◦ (ηA ⊗H)

= µA ◦ (mA ⊗ (h ◦Π
L

H)) ◦ ρA⊗AH
A ◦ γ−1

A ◦ pA⊗H ◦ (ηA ⊗H)

= mA ◦ γ−1
A ◦ pA⊗H ◦ (ηA ⊗H)

= h−1,



H-GALOIS EXTENSIONS WITH NORMAL BASIS FOR WEAK HOPF ALGEBRAS 35

where the first equality follows using that h∗h−1 = h◦Π
L

H , the second one because

∆A⊗H is a morphism of right H-comodules, the third one by the definition of ρA�H

and in the fourth one we applied that γ−1
A is a morphism of right H-comodules.

Finally, the fifth equality follows by (17) and the last one by the definition of

h−1. �

As a consequence, by Propositions 2.2 and 2.3 of [5], we have the following

corollary.

Corollary 3.3. Let H be a cocommutative weak Hopf algebra and let (A, ρA) be a

right H-comodule algebra such that A⊗− preserves coequalizers. The following are

equivalent.

(i) AH ↪→ A is an H-cleft extension.

(ii) AH ↪→ A is an H-Galois extension with normal basis.

To finish this paper, we will give a cohomological interpretation of Cleft exten-

sions. For clarity, we briefly describe the construction of the cohomology groups in

the weak setting. The interested reader can find the details in [4]. Assume that H

is a cocommutative weak Hopf algebra and let (A,ϕA) be a commutative weak left

H-module algebra. Let H0 be the unit object of C and for n ≥ 1 denote by Hn the

n-fold tensor power H⊗· · ·⊗H. If n ≥ 2, mn
H denotes the morphism mn

H : Hn → H

defined by m2
H = µH and by m3

H = m2
H ◦(H⊗µH), · · · ,mn

H = mn−1
H ◦(Hn−2⊗µH)

for k > 2. Analogously, with δHn we denote the coproduct defined for the coalgebra

Hn. Finally, ϕn
A will be the morphism ϕn

A : Hn ⊗ A→ A defined as ϕ1
A = ϕA and

ϕn
A = ϕA ◦ (H ⊗ϕn−1

A ). For brevity, we denote the morphisms ϕA ◦ (mn
H ⊗ ηA) and

ϕA ◦ (H ⊗ ηA) by un and u1, respectively.

For n ≥ 1, let RegϕA
(Hn, A) be the set of morphisms σ : Hn → A such that

there exists a morphism σ−1 : Hn → A (the convolution inverse of σ) satisfying the

following equalities:

(c1) σ ∧ σ−1 = σ−1 ∧ σ = un.

(c2) σ ∧ σ−1 ∧ σ = σ.

(c3) σ−1 ∧ σ ∧ σ−1 = σ−1,

and RegϕA
(HL, A) will be the set of morphisms g : HL → A such that there exists

a morphism g−1 : HL → A satisfying

g ∧ g−1 = g−1 ∧ g = u0, g ∧ g−1 ∧ g = g, g−1 ∧ g ∧ g−1 = g−1

where u0 = u1 ◦ iL.

The sets RegϕA
(HL, A), RegϕA

(Hn, A) are abelian groups with neutral elements

u0 and un respectively. Moreover, we can define a cosimplicial complex of abelian
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groups with coface operators defined by

∂0,i : RegϕA
(HL, A)→ RegϕA

(H,A), i ∈ {0, 1}

∂0,0(g) = ϕA ◦ (H ⊗ (g ◦ pL ◦ΠR
H)) ◦ δH , ∂0,1(g) = g ◦ pL,

∂k−1,i : RegϕA
(Hk−1, A)→ RegϕA

(Hk, A), k ≥ 2, i ∈ {0, 1, · · · , k}

∂k−1,i(σ) =



ϕA ◦ (H ⊗ σ), i = 0

σ ◦ (Hi−1 ⊗ µH ⊗Hk−i−1), i ∈ {1, · · · , k − 1}

σ ◦ (Hk−2 ⊗ (µH ◦ (H ⊗ΠL
H))), i = k,

and codegeneracy operators defined by s1,0 : RegϕA
(H,A)→ RegϕA

(HL, A),

s1,0(h) = h ◦ iL,

and sk+1,i : RegϕA
(Hk+1, A)→ RegϕA

(Hk, A), k ≥ 1, i ∈ {0, 1, · · · , k}

sk+1,i(σ) = σ ◦ (Hi ⊗ ηH ⊗Hk−i).

Let Dk
ϕA

= ∂k,0 ∧ ∂−1
k,1 ∧ · · · ∧ ∂

(−1)k+1

k,k+1 be the coboundary morphisms of the

cochain complex

RegϕA
(HL, A)

D0
ϕA−→ RegϕA

(H,A)
D1

ϕA−→ RegϕA
(H2, A)

D2
ϕA−→ · · ·

· · ·
Dk−1

ϕA−→ RegϕA
(Hk, A)

Dk
ϕA−→ RegϕA

(Hk+1, A)
Dk+1

ϕA−→ · · ·

associated to the cosimplicial complex RegϕA
(H•, A).

Then, (RegϕA
(H•, A), D•ϕA

) gives the Sweedler cohomology of H in (A,ϕA).

Therefore, the kth group will be defined by

Hk
ϕA

(H,A) =
Ker(Dk

ϕA
)

Im(Dk−1
ϕA )

for k ≥ 1 and Ker(D0
ϕA

) for k = 0.

Remark 3.4. Let H be a weak Hopf algebra. Two H-cleft extensions AH ↪→ A

and BH ↪→ B are equivalent if AH = BH and there exists a morphism of right

H-comodule algebras T such that T ◦ iA = iB. Under these conditions T is an

isomorphism (see Definition 2.13 of [5]). If H is cocommutative and h is a con-

volution invertible total integral for an H-cleft extension AH ↪→ A, by Proposition

2.18 of [5], we know that (AH , ϕAH
= pA ◦µA ◦ (h⊗ iA)) is a left H-module algebra

and, if σAH
= pA ◦µA ◦ (h⊗h), the pair (ϕAH

, σAH
) is a crossed system for H over

AH (see Definition 3.2 and Theorem 3.2 of [5]). If we denote by Cleft(AH , ϕAH
)

the set of equivalence classes of H-cleft extensions with a fixed structure ϕAH
, by

Corollary 3.3 of [5], we obtain that there exists a bijective correspondence between
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Cleft(AH , ϕAH
) and the set of equivalence classes of crossed systems for H over

AH with a common action ϕAH
. Therefore, if A is commutative, there exists a

bijective correspondence between the second cohomology group H2
ϕAH

(H,AH), de-

fined in [4], and Cleft(AH , ϕAH
) (see Theorem 4.1 of [5]). As a consequence, by

Corollary 3.3, there exists a bijection between H2
ϕAH

(H,AH) and the set of equiva-

lence classes of H-Galois extensions with normal basis AH ↪→ A such that for their

associated convolution invertible total integrals h we have ϕAH
= pA ◦µA ◦ (h⊗ iA)

(the equivalence relation between H-Galois extensions with normal basis is the one

induced by the equivalence relation between H-cleft extensions).

For example, if H is cocommutative, HL is commutative and (HL, ϕHL
= pL ◦

µH ◦(H⊗iL)) is a left H-module algebra. Therefore, there exists a bijection between

H2
ϕHL

(H,HL) and the set of equivalence classes of H-Galois extensions with normal

basis HL ↪→ A such that ϕHL
= pA ◦ µA ◦ (h ⊗ iA). In the Hopf algebra setting,

if H is a finite Hopf algebra, the last bijection is the isomorphism between the

second cohomology group H2(H,K), introduced by Sweedler [14], and the group of

isomorphism classes of Galois H-objects with normal basis.
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[2] J. N. Alonso Álvarez, J. M. Fernández Vilaboa, R. González Rodŕıguez and A.
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Cohomology of algebras over weak Hopf algebras, Homology Homotopy Appl.,

16(1) (2014), 341-369.
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