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ABSTRACT Many drawbacks in chaos-based applications emerge from the chaotic maps’ poor dynamic
properties. To address this problem, in this paper a chaotification model based on modulo operator and secant
functions to augment the dynamic properties of existing chaotic maps is proposed. It is demonstrated that by
selecting appropriate parameters, the resulting map can achieve a higher Lyapunov exponent than its seed
map. This chaotification method is applied to several well-known maps from the literature, and it produces
increased chaotic behavior in all cases, as evidenced by their bifurcation and Lyapunov exponent diagrams.
Furthermore, to illustrate that the proposed chaotification model can be considered in chaos-based encryption
and related applications, a voice signal encryption process is considered, and different tests are being used
with respect to attacks, like brute force, entropy, correlation, and histogram analysis.
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INTRODUCTION

Chaos theory, as a mathematical discipline aims to study the dy-
namic behavior of systems that are highly sensitive to the initial
conditions and parameter values (Grassi 2021). Chaos can be
found basically in almost all fields from natural and social sciences,
to engineering, and medicine, even economics (Nagashima et al.
2019). As a result chaos theory has evolved to a large attraction for
researchers, and the past decades is continuously being studied,
due to a number of appealing characteristics such as randomness,
and unpredictability, nonlinearity, and initial condition sensitivity,
which over the years led to many interesting and varying appli-
cations. Examples of chaos applicability can be found in robotics
(Petavratzis et al. 2022), weather forecast (Mammedov et al. 2022),
pandemic crisis management (Borah et al. 2022), information secu-
rity (Fadil et al. 2022), circuits (Xiu et al. 2022), and signal processing
(Abd et al. 2022).

Generally in chaos-based applications, and in particular cryp-
tography, better chaotic properties are imperative, since they imply
enhanced performance or security. However, many classic chaotic
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maps like the logistic map and the sine map exhibit weaknesses.
For instance, simple phase portraits which makes it easy to identify
their equilibrium points. This allows potential attackers to predict
the chaotic sequence and the parameter values just by analyzing
the equilibrium points (Shahi et al. 2022; Wang et al. 2022). Another
example is low chaos complexity, which in turn leads to degrada-
tion of the chaotic behavior (Liu et al. 2021). Furthermore, small
regions of chaos also constitutes a weakness, since within an inter-
val of the control parameter values, only a subset is admitted for
use, leading to limited applicability of the chaotic map (Zeraoulia
2012). Consequently, achieving strong chaos with enhanced perfor-
mance has the potential to vastly improve chaos theory research
into the development of related applications.

In this direction, optimization methods to increase Lyapunov
exponents of chaotic systems are developed, for example via dif-
ferential evolution and particle swarm optimization algorithms
(de la Fraga et al. 2012; Adeyemi et al. 2022). The reason for that
is because the Lyapunov exponent measures the sensitivity of the
initial conditions for a chaotic map to small changes (Bovy 2004).
Additionally, since positive Lyapunov exponent values indicate
chaos, the higher they are the more complex a chaotic system is
regarded.

Furthermore, as of recent, there is a movement to develop fami-
lies of chaotic systems, often called chaotification models (Moysis
et al. 2022a), that holistically improve the chaotic behavior for any
given existing chaotic map. To do so, the goal is to prove that a
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chaotification model can achieve higher Lyapunov exponent val-
ues than the existing chaotic maps, and verify that with numerical
experiments. Such examples are to combine any map with a cosine
function (Natiq et al. 2019), a sine function (Hua et al. 2018), a sine
and cosecant functions (Li et al. 2021), a cascade sine operation
(Wu 2021), an internal perturbation model (Dong et al. 2021), a
remainder operation addition (Moysis et al. 2022b), or the mod-
ulo operator, which has been shown to be effective in improving
chaotic behavior (Ablay 2022; Zhang et al. 2022).

Influenced by this, a chaotification model based on the modulo
operation and secant function to strengthen the complexity of ex-
isting chaotic maps is constructed. Its structure is comprised of the
secant function, which influences directly the output of existing
chaotic maps, acting as a chaotification agent, and the modulo
operator, which limits the set of possible output values. To assess
the model’s performance, a theoretical analysis based on the Lya-
punov exponent is conducted. Additionally, four one-dimensional
chaotic maps acting as seed maps are applied to the model, leading
to four new chaotic maps. The chaos complexity of these maps is
then evaluated through common tools for studying the dynamical
behavior of chaotic systems, namely phase, bifurcation, Lyapunov
exponent diagrams, and the fuzzy entropy.

Moreover, to illustrate an application of the proposed chaotifica-
tion model, a voice signal encryption technique is designed based
on one of the new chaotic maps. This map is used to shuffle, and
modulate the signal to obtain the ciphered signal. This voice signal
encryption technique’s security is validated and tested using a
variety of tests and measures such as histogram, and key space
and sensitivity analysis, approximate entropy, spectral distortion,
log-likelihood, and signal to noise ratio.

The outline of the paper is as follows: Section 2 presents the
proposed chaotification model, and the theoretical analysis of its
performance. Section 3 introduces four new chaotic maps. In
Section 4 the dynamics of the new maps is discussed. Section 5
considers the application of voice encryption. In Section 6 the
encryption performance is discussed. Section 7 conclusions are
presented, along with a suggestion for future research based on
the shortcomings of the suggested model.

CHAOTIFICATION MODEL BASED ON MODULO OPERA-
TOR AND SECANT FUNCTIONS

In this section is introduced the proposed chaotification model
and are presented various examples of modified chaotic maps to
illustrate the model’s effectiveness.

Concept of the chaotification model

The proposed chaotification model uses a double nonlinear trans-
formation based on the modulo operator and secant function to
improve the chaotic properties and complexity of existing chaotic
maps as shown in Fig. 1.

Consider the modulo operator mod (·, N), and the secant
function sc(·) = 1

cos(·) , then the chaotic system is of the following
form:

xi+1 = mod(a · sc(b · F(xi)), N) (1)

where xi is the input, a, b ∈ R+ are the system’s parameters, F(xi)
the existing chaotic maps, and N ∈ N∗ the control parameter that
limits the map’s values in the interval [0, N].

The following aspect primarily reflects the augmentation of
the chaotic complexity of the resulting new maps. The chaotifica-
tion model expands the chaotic range of one dimensional chaotic

F(xi) a · sc(b · F(xi)) mod(a · sc(b · F(xi)), N)
xi xi+1

Figure 1 Structure of the chaotification model based on modulo
operator and secant functions.

maps. Meaning that the modified maps have larger control param-
eter range than before. This will be confirmed theoretically and
experimentally.

Lyapunov exponent analysis
One of the most well-known tools for studying the quantitative
behavior of chaotic systems is the Lyapunov exponent. The Lya-
punov exponent for a dynamical system of the form xi+1 = f (xi)
is defined as follows:

λ = lim
n→∞

1
n

n−1

∑
i=0

ln | ḟ (xi) | (2)

When λ > 0 implies existence of chaos. Furthermore, a greater
Lyapunov exponent is an indication of a more complex chaotic
behavior.

By the definition of Lyapunov exponent a chaos complexity
analysis of the proposed chaotification method can be derived.
The derivative in Eq. (2) is known that is the slope of the tangent
line at any given point (xi, f (xi)) of the chaotic system’s curve.
In addition, the modulo operator has an inherent property that
allows it to translate a curve’s part that is outside the phase space
inside of it without alterations.

Therefore, without loss of generality, the modulo operator can
be disregarded, and the chaotification model in (1) be regarded as

xi+1 = M(xi) = a · sc(b · F(xi)). (3)

Hence, the following theorem is proven.

Theorem 1. The proposed map (1) achieves a higher Lyapunov expo-
nent (LE) compared to its source map F(xi), for appropriate choice of
parameters a, b.

Proof. This proof is inspired by (Zhang et al. 2022; Li et al. 2021).
Consider two initial conditions y0 and x0, where x0 differs from y0
by a small number ϵ > 0. Then, after iterating once are obtained
y1 and x1. Their difference is computed as follows,

|y1 − x1| = |M(y0)−M(x0)|
= |a · sc(b · F(y0))− a · sc(b · F(x0))|

=

∣∣∣∣( a · sc(b · F(y0))− a · sc(b · F(x0))

F(y0)− F(x0)

)(
F(y0)− F(x0)

y0 − x0

)
(y0 − x0)

∣∣∣∣
=

∣∣∣∣( a · sc(b · F(y0))− a · sc(b · F(x0))

F(y0)− F(x0)

)∣∣∣∣ ∣∣∣∣( F(y0)− F(x0)

y0 − x0

)∣∣∣∣ |y0 − x0|.

(4)

Because from hypothesis y0 → x0, consequently F(y0) → F(x0),
then

lim
y0→x0

∣∣∣∣( F(y0)− F(x0)

y0 − x0

)∣∣∣∣ ≈ dF
dx

|x0

lim
F(y0)→F(x0)

∣∣∣∣( a · sc(b · F(y0))− a · sc(b · F(x0))

F(y0)− F(x0)

)∣∣∣∣ ≈ dM
dx

|F(x0)

CHAOS Theory and Applications 275



Therefore,

|y1 − x1| ≈
∣∣∣∣ dMdx

|F(x0)

∣∣∣∣ ∣∣∣∣ dF
dx

|x0

∣∣∣∣ |y0 − x0|. (5)

In similar way, after iterating for a second time y2 and x2 are
obtained. Their difference is calculated as

|y2 − x2| = |M(y1)−M(x1)|
= |a · sc(b · F(y1))− a · sc(b · F(x1))|

=

∣∣∣∣( a · sc(b · F(y1))− a · sc(b · F(x1))

F(y1)− F(x1)

)(
F(y1)− F(x1)

y1 − x1

)
(y1 − x1)

∣∣∣∣
=

∣∣∣∣( a · sc(b · F(y1))− a · sc(b · F(x1))

F(y1)− F(x1)

)∣∣∣∣ ∣∣∣∣( F(y1)− F(x1)

y1 − x1

)∣∣∣∣ |y1 − x1|

≈
∣∣∣∣ dMdx

|F(x1)

∣∣∣∣ ∣∣∣∣ dF
dx

|x1

∣∣∣∣ ∣∣∣∣ dMdx
|F(x0)

∣∣∣∣ ∣∣∣∣ dF
dx

|x0

∣∣∣∣ |y0 − x0|. (6)

After iterating for the nth time and yn and xn are obtained, their
difference can be computed as

|yn − xn| = |M(xn−1)−M(xn−1)|

≈
n−1

∏
i=0

∣∣∣∣ dMdx
|F(xi)

dF
dx

|xi

∣∣∣∣ |y0 − x0|. (7)

The average divergence after n iterations will be denoted ∆M(x),
and is calculated as follows:

∆M(x) =

∣∣∣∣ yn − xn

y0 − x0

∣∣∣∣
1
n

=

(
n−1

∏
i=0

∣∣∣∣ dMdx
|F(xi)

dF
dx

|xi

∣∣∣∣
) 1

n
(8)

Hence, from equation (2) the Lyapunov exponent of λM(x) can be
obtained.

λM(x) = lim
n→∞

ln(∆M(x))

= lim
n→∞

1
n

ln

(
n−1

∏
i=0

∣∣∣∣ dMdx
|F(xi)

dF
dx

|xi

∣∣∣∣
)

= lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣ dMdx

|F(xi)
dF
dx

|xi

∣∣∣∣
= lim

n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣ abḞ(xi) sin(bF(xi))

cos2(bF(xi))

∣∣∣∣
= lim

n→∞

1
n

n−1

∑
i=0

(
ln
∣∣abḞ(xi) sin(bF(xi))

∣∣− ln
∣∣∣cos2(bF(xi))

∣∣∣)
= lim

n→∞

1
n

n−1

∑
i=0

(
ln
∣∣abḞ(xi) sin(bF(xi))

∣∣)
− lim

n→∞

1
n

n−1

∑
i=0

(
ln
∣∣∣cos2(bF(xi))

∣∣∣)
= λ + ln |a|+ lim

n→∞

1
n

n−1

∑
i=0

(ln |b sin(bF(xi))|)

− lim
n→∞

1
n

n−1

∑
i=0

(
ln
∣∣∣cos2(bF(xi))

∣∣∣)
= λ + ln | a | +λC(x) + γ (9)

where

λ = lim
n→∞

1
n

n−1

∑
i=0

ln |Ḟ(xi)|,

γ = − lim
n→∞

1
n

n−1

∑
i=0

(
ln
∣∣∣cos2(bF(xi))

∣∣∣) ,

and

λC(x) = lim
n→∞

1
n

n−1

∑
i=0

(ln |b sin(bF(xi))|)

Notice that since 0 ≤ cos2(b(F(xi))) ≤ 1 then γ ≥ 0, and ln |a| > 0
iff a > 1. Furthermore, it can be noticed that ln |b sin(bF(xi))| > 0

iff |b sin(bF(xi))| > 1 as such |b| > 1
|sin(bF(xi))|

, and because

b ∈ R+, b >
1

|sin(bF(xi))|
. Thus, λC(x) > 0 if and only if,

b >
1

|sin(bF(xi))|
. However, because b is depended on F(xi) it is

very difficult to identify a particular set of values for b from this
condition.

Similarly to (Li et al. 2021) in order to identify values for the
parameter b such that λC(x) > 0, design the chaotic map

xi+1 = − cos(bxi). (10)

with corresponding Lyapunov exponent

lim
n→∞

1
n

n−1

∑
i=0

(ln |b sin(bxi)|)

According to the bifurcation and Lyapunov exponent diagram
of Eq. (10) depicted in Fig. 2, the map exhibits chaotic behavior
with respect to parameter b for a variety of values. For example,
b = 1 or 20. Thus, it can be concluded that for the same value of
parameter b, λC(x) > 0.

Hence, the chaotic properties based on the above analysis can
be summarized as follows:

1. When λ > 0 and λM(x) > λ > 0. In this case, the generated
new map shows chaos and has larger Lyapunov exponent
than the seed map.

2. If λ < 0, and λ > −(λC(x) + γ + ln |a|). In this case also the
generated new map shows chaos.

3. When λ < 0, and λ ≤ −(λC(x) + γ + ln |a|). Then the gener-
ated new map does not have chaotic behavior.

Hence, it has been proved that the proposed chaotification
model can improve the complexity of the seed map and the modi-
fied map can obtain larger Lyapunov exponents.

EXAMPLES OF NEW CHAOTIC MAPS

To showcase our previous result, the logistic map, the sine map,
the sine sine map, and the cosine logistic map are used as seeds,
yielding four new chaotic maps of the form (1). It should be noted
that all initial conditions are set x0 = 0.1. Furthermore, the parame-
ter b when directly multiplied with a seed map’s control parameter
is set b = 1, if not then b can take any positive real number under
the condition that the value of b is within a chaotic region of the
map xi+1 = − cos(bxi).
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Figure 2 The bifurcation and Lyapunov exponent diagram of Eq.
(10) with respect to b.

Modified logistic map
Consider the Logistic map F(xi) = rxi(1 − xi) as a seed map to Eq.
(1), then the following map is obtained:

xi+1 = mod(a · sc(brxi(1 − xi)), N) (11)

Modified sine map
Let the Sine map F(xi) = η sin(πxi) be a seed map to Eq. (1), then
the following map is obtained:

xi+1 = mod(a · sc(bη sin(πxi)), N) (12)

Modified sine sine map
If the Sine Sine map F(xi) = sin(πη sin(πxi)) is considered as a
seed map to Eq. (1), then the following map is obtained:

xi+1 = mod(a · sc(b sin(πη sin(πxi))), N) (13)

Modified cosine logistic map
Consider the Cosine Logistic map F(xi) = k cos(rxi(1 − xi)) as a
seed map to Eq. (1), then a new modified map is obtained:

xi+1 = mod(a · sc(bk cos(rxi(1 − xi))), N) (14)

PERFORMANCE EVALUATION

To evaluate the behavior of the new chaotic maps the following
tools are used:

Phase diagrams
By projecting the inputs and outputs, phase diagrams can provide
a qualitative portray of the behavior of chaotic maps. Irregular-
ities in the phase diagram imply that the map’s behavior is less
predictable.

In Figs. 3, 4, 5, 6 the phase diagrams of the new chaotic maps
and the phase diagrams of their corresponding seed maps are
presented. It can be observed that while the shape of the seed
maps’ phase diagrams is distinguishable, the shape of the modified
chaotic maps’ phase diagram is indistinguishable. This means that
the fixed points of the modified maps can not be obvious, contrary
to the fixed points of the seed maps. As such, the task of predicting
the parameters and states becomes considerably more difficult.
Hence, the complexity of the new maps is higher.

Figure 3 On the left the phase diagram of the modified Logistic
map (11) is depicted, where r = 4, a = 2 · 106, b = 1 and N = 1.
On the right the phase diagram of the Logistic map, where r = 4.

Figure 4 On the left the phase diagram of the modified sine map
(12) is depicted, where η = 10, a = 2 · 106, b = 1 and N = 1. On
the right the phase diagram of the sine map, where η = 10.

Figure 5 On the left the phase diagram of the modified sine sine
map (13) is depicted, where η = 10, a = 2 · 106, b = 20 and N =
1. On the right the phase diagram of the sine sine map, where
η = 10.

Figure 6 On the left the phase diagram of the modified cosine
logistic map (14) is depicted, where k = 10, a = 2 · 106, b = 1,
r = 4 and N = 1. On the right the phase diagram of the cosine
logistic map, where k = 10 and r = 4.
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Bifurcation diagrams
By projecting the outputs with respect to the system’s parameters,
bifurcation diagrams shows the qualitative behavior of the system.
Provides an insight on when, and the conditions under which the
system enters or exits chaos.

From the comparison of the bifurcation diagrams in Figs. 7, 8,
9, 10 between the new maps and their classic counterparts, it can
be seen that the enhanced maps exhibit larger regions of chaotic
behavior, as well as the set of values is in the whole interval [−1, 1].
Therefore, it can be concluded that the modified maps exhibit more
complicated behavior than their seed maps.

Figure 7 On the left the bifurcation diagram of the modified logi-
stic map (11) with respect to r is depicted, where a = 2 · 106, b = 1
and N = 1. On the right the bifurcation diagram of the Logistic
map with respect to r.

Figure 8 On the left the bifurcation diagram of the modified sine
map (12) with respect to η is depicted, where a = 2 · 106, b = 1
and N = 1. On the right the bifurcation diagram of the Sine map
with respect to η.

Figure 9 One the left the bifurcation diagram of the modified
sine sine map (13) with respect to η is depicted, where a = 2 · 106,
b = 20 and N = 1. On the right the bifurcation diagram of the
Sine Sine map with respect to η.

Lyapunov exponent diagrams
The Lyapunov exponent describes the average divergence of trajec-
tories that begin from almost the same initial conditions. A positive
Lyapunov exponent suggests that two neighboring trajectories in a
dynamical system exponentially separate in each iteration, becom-
ing different trajectories as time approaches infinity. As such, a
positive Lyapunov exponent suggests chaos, and large Lyapunov
exponent values indicate high complexity.

In Fig. 12, it can be seen that there exists a small region where
the modified sine map (12) exhibits periodic behaviour. How-
ever, this is not visible to the corresponding bifurcation diagram

Figure 10 On the left the bifurcation diagram of the modified
cosine logistic map (14) with respect to k is depicted, where a =
2 · 106, b = 1, r = 4 and N = 1. On the right the bifurcation
diagram of the cosine cogistic map with respect to k.

8, because the size of the region is much smaller than the overall
interval in which the bifurcation diagram is plotted.

In addition, Figs. 11, 12, 13, 14 a comparison between the
Lyapunov exponent diagrams of the modified chaotic maps and
their original counterparts are presented. Immediately, from the
high Lyapunov exponent values of the modified maps becomes
apparent that they exhibit more complex behaviors than their seed
maps.

Furthermore, from a first glance it seems that the modified maps
mostly overcome chaos degradation, something very desirable in
chaos based encryption. However, next it will be shown that this
is not the case.

Figure 11 The Lyapunov exponent diagrams of the modified
Logistic map (11) (black) and the Logistic map (red).

Figure 12 The Lyapunov exponent diagrams of the modified
Sine map (12) (black) and the Sine map (red).
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Figure 13 The Lyapunov exponent diagrams of the modified
Sine Sine map (13) (black) and the Sine Sine map (red).

Figure 14 The Lyapunov exponent diagrams of the modified
cosine logistic map (14) (black) and the cosine logistic map (red).

Fuzzy entropy
Like approximate, and sample entropy, fuzzy entropy is another
measure to assess the complexity of a dynamical system based on
fuzzy logic. High values of fuzzy entropy indicate high complexity.
The reason for using fuzzy over sample entropy is because the
complexity estimate is computed via the Gaussian function (Chen
et al. 2009; Alawida et al. 2022; Dong et al. 2021),

Θ(wm
i,j, t) = exp{

−(wm
i,j)

2

t
} (15)

where m is the embedding dimension which is set to 2, t is the toler-
ance value set to be t = 0.15 ∗ std(x), where std(x) is the standard
deviation of the time-series, and w = max(i,j)∈(0,m−1) |x(i)− x(j)|
the maximum distance between two sequences of length m.

In Figs. 15,17,19,21 a comparison of the fuzzy entropy values
between the modified chaotic maps, and their classic counterparts
is presented. It can be seen that the modified maps indeed display
higher complexity than their counterparts. However, an undesir-
able effect in chaos cryptography that is not visible in the Lyapunov
exponent diagrams depicted in Figs. 11, 12, 13, 14 becomes ap-
parent, chaos degradation. This degradation in small periodic
windows making it impossible to identify them in the bifurcation
or Lyapunov exponent diagrams. Additionally, Fig. 17 verifies the
periodic behavior of the modified sine map (12) presented in Fig.
12.

Furthermore, to investigate further these small periodic win-
dows, and better understand the systems’ behavior, the fuzzy
entropy values were computed with respect to two parameters of

the modified maps depicted in Figs. 16, 18, 20, 22. Again these
diagrams verify that the modified chaotic maps exhibit a more
complex behavior than their counterparts. However, the periodic
windows, due to their size are not clearly visible in the diagrams.

Hence, despite the higher complexity of the new maps, a chal-
lenging problem is to modify the proposed chaotification technique
in such way that chaos degradation is limited or absent.

Figure 15 Fuzzy entropy comparison between the modified lo-
gistic map (11) with a = 2 · 106, b = 1 and x0 = 0.1, and the classic
logistic map.

Figure 16 Fuzzy entropy of the modified logistic map (11) with
respect to two parameters r, a with initial conditions x0 = 0.1
and b = 1.

Figure 17 Fuzzy entropy comparison between the modified sine
map (12) with a = 2 · 106, b = 1 and x0 = 0.1, and the classic sine
map.
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Figure 18 Fuzzy entropy of the modified sine map (12) with
respect to two parameters η, a with initial conditions x0 = 0.1
and b = 1.

Figure 19 Fuzzy entropy comparison between the modified sine
sine map (13) with a = 2 · 106, b = 20 and x0 = 0.1, and the classic
sine sine map.

Figure 20 Fuzzy entropy of the modified sine sine map (13) with
respect to two parameters η, a with initial conditions x0 = 0.1
and b = 20.

ENCRYPTION OF SOUND SIGNAL

In this section the encryption of a sound signal is presented. The
encryption consists of two parts, a sample shuffling, and a modu-
lation of the source signal. The simulated signals are depicted in
Fig. 23. As a source signal was used the poem Three Things by Ella
Wheeler Wilcox. It can be downloaded by archive.org.

Step 1: A permutation to the source signal is performed. To
do that consider two chaotic sequences of the form (11) with pa-
rameters (x0, ax, bx, rx) and (y0, ay, by, ry) of same length as the
samples of the source signal n. Consider also a sequence z =
mod (x + y, 1) with length n. Then, consider a vector P of length
n, that takes its values in the interval [1, n], applying the following

Figure 21 Fuzzy entropy comparison between the modified co-
sine logistic map (14) with a = 2 · 106, b = 1, r = 4 and x0 = 0.1,
and the cosine logistic map with r = 4.

Figure 22 Fuzzy entropy of the modified cosine logistic map
(14) with respect to two parameters k, a with initial conditions
x0 = 0.1 and parameter values r = 4 and b = 1.

rule, pi = ⌈ mod (1012zi, n)⌉ for i = 1, . . . , n, where ⌈·⌉ is the
ceiling operator. If pi = pj for i, j = 1, . . . , n, then pj is rejected
until all locations in the vector are unique. Then P provides the
permutation order of the source signal. For example, let p1 = 200,
then the 1st element of the source signal will move to the 200th

position. This is process is repeated until all elements in the source
signal are repositioned and a new P̃ signal is obtained.

Step 2: Then a modulation to the permuted signal is performed
to obtain the final encrypted signal. To do that consider a chaotic
sequence of any of the forms (11), (12), (13), (14) of length n. In
this scenario it was chosen the chaotic map (11) with parameters
(q0, aq, bq, rq). Finally, the encrypted signal is obtained by,

E = P̃ + cos(πq).

Then the ciphered signal can be transmitted, and the receiver
can reconstruct the original signal by solving

P̃ = E − cos(πq)

and reversing step 1.

ENCRYPTION PERFORMANCE

A series of tests are run on the original, permuted, and encrypted
signals to evaluate the performance of the encryption algorithm.
Table 1 summarizes the results of the simulation performed in
Matlab R2019a. The encryption key values are x0 = 0.2, y0 =
0.8, q0 = 0.1, ax = 2 · 106, ay = 2 · 106, aq = 2 · 106, bx = 1, by =
1, bq = 1, rx = 3, ry = 4, rq = 5.
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Figure 23 Original voice signal, permuted signal, and encrypted
signal.

Histogram
The original, permuted, and encrypted signal histograms are de-
picted in Fig. 24. As it can be observed contrary to the normal-like
distributions of the original and permuted histograms, the en-
crypted signal exhibits a more complex histogram. As such, the
hidden information is successfully masked. It should be noted that
the original and permuted histograms are alike, since the values of
the original signal were not altered but only shuffled.

Structural Similarity Index
The structural similarity (Algarni et al. 2021) between two signals
is computed by,

SSIM =
(2µxµy + S1)(2cov(x, y) + S2)

(µ2
x + µ2

y + S1)(var2x + var2y + S2)
(16)

where µx, µy the mean of the original and encrypted (or permuted)
signals respectively, varx, vary their variances, and cov(x, y) their
cross-covariance. It should be noted that S1, S2 are set to small
values, in order to ensure stable results when the denominator is
close to zero.

Figure 24 Histograms of the Original, Permuted, and Encrypted
Signal.

The structural similarity index value is in the interval [−1, 1],
with 1 implying matched signals, and 0 when the signals have
no similarity. Therefore, if the value is closing to zero, then the
encryption is better. The structural similarity index between the
original and the permuted signal is equal to 0.1253, and between
the original and the encrypted signal is equal to 0.0019. Hence,
since these values are close to zero, it can be concluded that the
encryption is good.

Log-Likelihood Ratio

The Log-Likelihood Ratio estimates the encryption reliability
(Elshamy et al. 2015). It assumes the segment can be depicted
by a pth order all-pole linear predictive coding model,

xi =
p

∑
m=1

amxi−m + Gxui (17)

CHAOS Theory and Applications 281



where xi is the ith signal sample, am, m = 1, ..., p the coefficients
of the all-pole filter, Gx is the filter gain, and ui is an appropriate
signal excitation input. Then the Log-Likelihood Ration is given
by,

LLR =

∣∣∣∣∣log

(
axRyaT

x

ayRzaT
y

)∣∣∣∣∣ (18)

where ax, ay the vectors of the Linear Prediction Coefficients of
the form [1 a1 a2 . . . am] of the original signal, and the encrypted,
or permuted signal respectively, and Ry the autocorrelation matrix
of the encrypted or permuted signal. High Log-Likelihood Ratio
values suggest a successful encryption. In order to short the com-
putational time because the original signal is comprised by about
2.4 million samples, the original and encrypted (or permuted) sig-
nals were split to several segments, then the Log-Likelihood Ratio
was computed as the mean value of the Log-Likelihood Ratio val-
ues of those segments. As such, the Log-Likelihood Ratio among
the original and permuted signals is computed 2.5940 with vari-
ance 1.3347 and standard deviation 1.1553. Between the original
and encrypted signals the Log-Likelihood Ration is 2.5930 with
variance 1.3419 and standard deviation 1.1584. Since the values
are both high, it can be concluded that the encryption is successful.

Signal to Noise Ration
The signal-to-noise ratio is another metric used to assess the quality
of an encryption (Mosa et al. 2011). The signal-to-noise ratio is
given by,

SNR = 10 log10
∑N

i=1 x2
i

∑N
i=1(xi − yi)2

(19)

where x, y are the original and encrypted (or permuted, decrypted)
signals respectively. High positive signal-to-noise ratio value indi-
cate strong relation between the two signals, while low negative
signal-to-noise ratio value imply mismatch between the signals.
The signal-to-noise ratio among the original and the decrypted
signals is 306.8672. Therefore, indicating that the decryption is
successful. The signal-to-noise ratio between the original and per-
muted signals is −3.0148, and among the original and encrypted
signals is −21.6418. Hence, also from this measure it can be de-
duced that the encryption is good.

Correlation Coefficient
The correlation coefficient (Renza et al. 2019; Algarni et al. 2021)
among two signals is given by,

rxy =
cov(x, y)√

var(x)
√

var(y)
(20)

where cov(x, y) is the covariance of the two signals and
var(x), var(y) their variances. The correlation coefficient takes
its values in the interval [0, 1]. When the value is close to zero
means that the two signals are uncorrelated. The correlation coef-
ficient between the original and the permuted signal is −0.0010,
between the original and the encrypted signal is −0.00047, in both
of these cases is implied uncorrelated signals, while the correlation
coefficient between the original and the decrypted signal is 1, and
that is because they are identical, as it should.

Spectral Distortion
The spectral distortion is the measure to quantify the mismatch
between two signals (Renza et al. 2019). Therefore, spectral distor-
tion can be used to compare the original sound with the permuted,

encrypted, and the decrypted sounds. It is given by,

SD =
1
N

N−1

∑
i=0

|Vx,i − Vy,i| (21)

where Vx,i, Vy,i are the spectrum of the signals in decibels at any
given point in time i. When the spectral distortion value is high,
a higher difference between the two signals is implied, and when
the spectral distortion value is equal to zero the two signals are
matched. As such, large values of spectral distortion are indicative
of a good encryption, and zero or close to zero value implies suc-
cessful decryption. The spectral distortion among the original and
permuted signals is 29.3021, between the original and encrypted
signals is 36.7113, and among the original and decrypted signals is
3.7596 · 10−12 ≈ 0. Hence, it can be deduced that the encryption is
good as well that the decryption is successful.

Approximate Entropy
The approximate entropy proposed in (Pincus 1991) provides an
indication for the complexity of a time series. The higher the
approximate entropy of a time series, the more complex it is con-
sidered (Liu et al. 2021). As a result, the approximate entropy value
of the encrypted signal must be greater than that of the original.
The approximate entropy of the original signal is 0.6235, 1.9402
after the permutation is performed, and 1.9696 for the encrypted
one, indicating that the encrypted signal has the highest approxi-
mate entropy. It should be noted that the original, permuted, and
encrypted signals were divided into several sub-signals for compu-
tational reasons, and their approximate entropy is computed as the
mean approximate entropy of those sub-signals. The variance for
each signal is 0.2453, 0.0561, and 0.0011, and the standard deviation
is 0.4953, 0.2369, and 0.0342 respectively.

Key space and Sensitivity
Every encryption system must be robust to brute force attacks.
This requires that the key space be higher than 2100 (Alvarez and
Li 2006). Three chaotic maps (11) are used in the proposed en-
cryption system, with parameters (x0, ax, bx, rx), (y0, ay, by, ry) and
(q0, aq, bq, rq), given that for this map the parameter b is set to be
always 1. As a result, the system has 9 parameters. For a precision
of 16 digits, the upper bound for the key space is computed as
109·16 = 10144 = (103)48 ≈ (210)48 = 2480. Note, that since the
map (11) exhibits periodic windows in very small regions with
respect to its control parameters the actual key space is less than
2480. However, the requirement to resist brute force attacks is still
met.

Moreover, since this encryption system is chaos-based, any
minor change in the parameter values will result in a flawed de-
cryption process. As a result, any encrypted signal can only be
decrypted by the receiver only as long as the given keys are pre-
cisely known.
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■ Table 1 Performance of the encryption scheme

Signals Original Sound Permuted Sound Encrypted Sound Decrypted Sound

Structural Similarity Index - 0.1253 0.0019 1

Log-Likelihood Ratio - 2.5940 2.5930 -

Signal Noise Ratio - −3.0148 −21.6418 306.8672

Correlation Coefficient - −0.0010 −0.00047 1

Spectral Distortion 0 29.3021 36.7113 3.7596 · 10−12

Approximate Entropy 0.6235 1.9402 1.9696 0.6235

CONCLUSION

In this work, a new chaotification method is proposed by using a
double nonlinear transformation based on the modulo operator
and secant function to enhance the chaotic behavior and complex-
ity of existing chaotic maps. The theoretical analysis based on
the Lyapunov exponent revealed that for a given seed map ap-
plied on the proposed chaotification model, the modified map
can achieve higher Lyapunov exponent values than the original
map. As a result, the proposed chaotification technique can en-
large the chaotic region of a one-dimensional chaotic map while
also improving its dynamic properties. To validate this theoretical
result, numerical experiments were applied using as seed maps,
the logistic, sine, sine sine, and the cosine logistic maps, through
well-known tools for studying the dynamical behavior of chaotic
systems, namely the phase diagrams, bifurcation diagrams, Lya-
punov exponent diagrams, and the fuzzy entropy. From these
experiments it was shown that indeed the modified maps exhibit
larger chaotic regions, higher lyapunov exponents, indistinguish-
able phase diagrams. Therefore, the chaotification technique im-
proves the dynamic properties of the seed maps. However, the
fuzzy entropy showed chaos degradation in the new maps which
is in the form of small periodic windows. These periodic windows
are not a desirable property, especially in chaos based encryption.
As such, a modification of the chaotification technique must be
considered. A possible modification which will be studied is as
follows:

xi+1 = mod (a · 1
(b cos(F(xi)) + c)

, N)

where parameter c is small in order to guarantee consistent perfor-
mance when the denominator is close to zero.

Moreover, to illustrate a practical application of the proposed
chaotification model, a voice encryption scheme was designed.
The system is based on a permutation, and a modulation process
both derived by the modified logistic map 11. A variety of tests
and measures were used to showcase that the resulting encrypted
signal is both random and secure.

Furthermore, for future research the implementation of this
proposed encryption scheme on digital hardware, such as ARM
processors, FPGA, and microcontrollers will be considered. When
it comes to digital implementation of chaos-based cryptography
techniques, the problem of chaotic map reproducibility from one
device to another arises. Given the nonlinear nature of the maps,
computational accuracy is of the utmost importance. One round-
off error in the least significant digits can lead to completely differ-

ent trajectories throughout various devices even with exact initial
conditions and control parameter values (Teh et al. 2020; Sayed et al.
2020). Therefore, the output replication problem across different
devices becomes apparent. In addition, an investigation of the
increased computational effort by the modulo operator and the
secant function in comparison to the classic maps is of interest.

Finally, it is intended to extent our results to multidimensional
chaotic maps, and construct new hyperchaotic systems.
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