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Abstract. We introduce and study the weakly nil-clean index associated to a

ring. We also give some simple properties of this index and show that rings with

the weakly nil-clean index 1 are precisely those rings that are abelian weakly

nil-clean, thus showing that they coincide with uniquely weakly nil-clean rings.

Next, we define certain types of nilpotent elements and weakly nil-clean de-

compositions by obtaining some results when the weakly nil-clean index is at

most 2 and, moreover, we somewhat characterize rings with weakly nil-clean

index 2. After that, we compute the weakly nil-clean index for T2(Zp), T3(Zp)

and M2(Z3), respectively, as well as we establish a result on the weakly nil-

clean index of Mn(R) whenever R is a ring. Our results considerably extend

and correct the corresponding ones from [Int. Electron. J. Algebra 15(2014),

145–156].
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1. Introduction and background

All rings R in this paper are associative with 1, but not necessarily commutative.

The symbols U(R), J(R), Id(R), and Nil(R) will stand for the group of units, the

Jacobson radical, the set of idempotents and the set of nilpotents of R, respectively.

Also, for e ∈ R, we define C(e) = {x ∈ R | ex = xe}. All other unexplained

explicitly below notion and notation are standard and follow essentially those from

[9]. For instance, Mn(R) denotes the full n× n matrix ring and Tn(R) denotes the

upper triangular n× n matrix ring.

In [8] a ring R is said to be nil-clean if each element a ∈ R can be represented

as a = b + e, where b ∈ Nil(R) and e ∈ Id(R); note that this is equivalent to the

presentation that, for every a ∈ R, we have a = b−e. If this presentation is unique,

the ring R is called uniquely nil-clean. This is tantamount to the requirement that

the existing idempotent e is unique (see, e.g., [5,8]).
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On the other vein, in [3] and [7] was stated the definition of a weakly nil-clean

ring as such a ring R for which any element a ∈ R is of the form a = b + e or

a = b − e, where b ∈ Nil(R) and e ∈ Id(R). Moreover, a ring R is said to be

uniquely weakly nil-clean if the existing idempotent e is unique.

This work is motivated by the notions of unique nil-cleanness and weak nil-

cleanness and we will combine them into a new concept. So, the aim of the current

paper is to explore some variations of unique weak nil-cleanness in order to enlarge

the principal known results on unique nil-cleanness from [5] and [6]. Although

weakly nil-clean rings were recently completely characterized independently in [6]

and [12], the full description of uniquely weakly nil-clean rings remains interesting

and worthy of exploration. For any a ∈ R, let E(a) = {e ∈ R | e2 = e, a−e ∈ U(R)}
and then the clean index of R, denoted as c(R), is defined in [10] by c(R) =

sup{|E(a)| : a ∈ R}. For any a ∈ R, set η(a) = {e ∈ R | e2 = e and a − e ∈
Nil(R)} and then the nil-clean index of R, denoted as Nin(R), is defined in [1] by

sup{|η(a)| : a ∈ R}. In this way, for a more comprehensive investigation of these

two notions and, especially, as a natural generalization of the nil-clean index, we

also define the concept of weakly nil-clean index of a ring. Thereby, as it will be

showed below, a ring is uniquely weakly nil-clean if and only if it is weakly nil-clean

of weakly nil-clean index 1.

The paper is organized as follows: In the first section, we already have given the

main definitions of the used concepts. In the second section, we set and explore

in details the weakly nil-clean index of rings and discuss the original notion of

uniquely weakly nil-clean rings stated in Problem 3 of [7]. We also investigate

here some other aspects of unique weak nil-cleanness which arise from its specific

definition. And we close the work in the final third section by stating certain open

problems of some interest and importance.

2. Weakly nil-clean index of rings

In [10] and [11] the clean index c(R) of a ring R was defined and studied. Im-

itating this, in [1] was introduced the nil-clean index Nin(R) of R and a detailed

study was given.

In parallel to these two notions, we proceed by stating the following concepts.

Definition 2.1. Let R be a ring and a ∈ R. We define the set

α(a) = {e ∈ R : e2 = e and a− e or a+ e is a nilpotent}.



182 ANDRADA CÎMPEAN AND PETER DANCHEV

Definition 2.2. For an element a ∈ R the weakly nil-clean index of a, abbreviated

as wnc(a), is defined to be the cardinality of the set α(a).

Definition 2.3. We define the weakly nil-clean index of a ring R as follows:

wnc(R) = sup{|α(a)| : a ∈ R}.

We foremost start with a series of elementary but useful basic properties of the

operator wnc(R) which extend the analogous ones in [1].

Lemma 2.4. For any ring R the inequality wnc(R) ≥ 1 holds. In addition, if R is

a ring which has at most n idempotents or at most n nilpotents, then wnc(R) ≤ n.

Proof. Straightforward. �

Example 2.5. A direct check shows that wnc(Z3) = 1.

Lemma 2.6. If R is a ring with a subring S, then wnc(R) ≥ wnc(S).

Proof. Follows in the same manner as [1, Lemma 2.2]. �

Lemma 2.7. If R is a ring with a nil ideal I, then wnc(R/I) ≤ wnc(R).

Proof. Letting a ∈ R be an arbitrary element, then for any idempotent b + I ∈
α(a+I), so b2− b ∈ I and there exists e ∈ Id(R) with b+I = e+I, one may derive

that (a+I)−(b+I) = (a−e)+I with (a−e)t ∈ I or that (a+I)+(b+I) = (a+e)+I

with (a+e)t ∈ I for some t ∈ N. Since I is nil, it follows that either a−e ∈ Nil(R) or

a+e ∈ Nil(R). Consequently, e ∈ α(a) and thus |α(a)| ≥ |α(a+I)|, as needed. �

Remark 2.8. In [1, Lemma 2.4 (1)] the condition “If idempotents lift modulo I” is

redundant, because I is a nil-ideal. Moreover, the inequality Nin(R/I) ≥ Nin(R)

is not true and the purported there proof is errorneous. This can be subsumed via

the following construction: set R = Zp and I = {(aij) ∈ Tn(R) : ∀aii = 0}. It

is readily seen that this is a nil-ideal of Tn(R) with the property that Tn(R)/I ∼=
R× · · · ×R, where the product is taken n times.

Next, choosing n = 2 = p, we detect that T2(Z2)/I ∼= Z2×Z2, whence with the aid

of [1, Lemma 2.3] we derive Nin(T2(Z2)/I) = Nin(Z2×Z2) = Nin(Z2)Nin(Z2) =

1 · 1 = 1. On the other hand, [8, Theorem 4.1] is a guarantor that T2(Z2) is

nil-clean, so that Nin(T2(Z2)) = wnc(T2(Z2)) = 2, owing to Example 2.23 listed

below. Thus this contradiction demonstrates Nin(R/I) < Nin(R).

If now we choose n = 3 = p, then the same trick successfully works to manifestly

illustrate with the help of Example 2.24 quoted below that wnc(R) > wnc(R/I).
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The next assertion improves [1, Lemma 2.8].

Lemma 2.9. For any ring R the inequalities c(R) ≥ wnc(R) ≥ Nin(R) hold.

Proof. Since the second inequality is trivial, we will deal only with the first one.

To that goal, for any a ∈ R, writing that a = q + e or a = q − e for some nilpotent

q and idempotent e, we deduce that a + 1 = (q + 1) + e with a unit q + 1 or that

a = (q− 1) + (1− e) with a unit q− 1, so that both a+ 1 and a are clean elements.

Since a+ 1 ∈ R, the further proof goes on as in [1, Lemma 2.8]. �

Remark 2.10. Note that if R is a nil-clean ring, then wnc(R) = Nin(R).

The next assertion extends [1, Theorem 3.2].

Proposition 2.11. Suppose R is a ring. Then wnc(R) = 1 if and only if R is

abelian.

Proof. First of all we will prove that wnc(R) = 1 if and only if R is abelian and for

any non-zero idempotent e ∈ R, the relation e 6= m+n holds for all m,n ∈ Nil(R).

Since with Lemma 2.9 at hand we have 1 = wnc(R) ≥ Nin(R) ≥ 1, it follows

that Nin(R) = 1 and by [1, Lemma 3.1] we get that R is abelian and for any

idempotent 0 6= e ∈ R, the ratio e 6= m+ n is valid for all m,n ∈ Nil(R).

Now let R be abelian and, for any idempotent e ∈ R \ {0}, the inequality

e 6= m+ n is true for all m,n ∈ Nil(R). Suppose, for concreteness, a ∈ R has two

weakly nil-clean decompositions. We have three possible cases:

(1) a = e1 + n1 = e2 + n2, with e1 and e2 idempotents and n1, n2 ∈ Nil(R).

In this case the decompositions are actually nil-clean, so this situation was

handled in [1, Lemma 3.1] and leaded to e1 = e2. It follows now that

wnc(R) = 1.

(2) a = −e1 +n1 = −e2 +n2, with e1 and e2 idempotents and n1, n2 ∈ Nil(R).

Then−e1(1−e1)+n1(1−e1) = −e2(1−e1)+n2(1−e1), so e2(1−e1) = n2(1−
e1)−n1(1−e1). Since R is abelian, the element e2(1−e1) is an idempotent

and both n2(1 − e1), n1(1 − e1) are nilpotents. So, by hypothesis, we get

e2(1−e1) = 0, that is e2 = e1e2. Consequently, n1−n2 = e1−e2 = e1(1−e2),

and hence by hypothesis we derive that e1(1− e2) = 0. Thus e1 = e1e2 and

e1 = e2. It again follows that wnc(R) = 1.

(3) a = −e1 + n1 = e2 + n2, with e1 and e2 idempotents and n1, n2 ∈ Nil(R).

Then e2(1− e2) +n2(1− e2) = −e1(1− e2) +n1(1− e2) and so e1(1− e2) =

n1(1− e2)− n2(1− e2). Thus e1(1− e2) = 0, i.e., e1 = e1e2.
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Let nm1 = 0 and f = e1 + e2. Now lifting f + n2 = n1 to the m − th
power, we obtain that

∑m
k=0

(
m
k

)
fm−knk2 = 0. But fk = (e1 + e2)k =∑m

l=0

(
m
k

)
ek−l1 ek2 = e1+e2+e1e2(2k−2) = e1+e2+e1(2k−2) = (2k−1)e1+e2,

so
∑m

k=0

(
m
k

)
((2m−k− 1)e1 + e2)nk2 = 0, which gives e1

∑m
k=0

(
m
k

)
2m−knk2 +

(e2−e1)
∑m

k=0

(
m
k

)
nk2 = 0. This is equivalent to e1(2+n2)k +(e2−e1)(n2 +

1)k = 0. Hence e2(n2 + 1)k + e1((2 + n2)k − (1 + n2)k) = 0. Multiplying by

(1−e1) we get (1−e1)e2(n2+1)k = 0, but n2+1 is a unit, so e2 = e1e2 and

from e1 = e1e2 we have e1 = e2. It follows once again that wnc(R) = 1.

Knowing that wnc(R) = 1 if and only if R is abelian and for any non-zero idem-

potent e ∈ R, the relation e 6= m + n holds for all m,n ∈ Nil(R) and by Lemma

3.1 from [1], we infer that wnc(R) = 1 if and only if Nin(R) = 1 and now using

Theorem 3.2 from [1] we get the desired result. �

We will now consider the special case of rings having the weakly nil-clean index

one and shall completely characterize them. Notice once again that weakly nil-clean

rings are independently classified in [6] and [12], respectively. So, we come now to

one of our basic statements which does not follow directly by the cited result.

Theorem 2.12. The following are equivalent for a ring R:

(1) R is uniquely weakly nil-clean;

(2) R is abelian weakly nil-clean;

(3) R ∼= R1 ×R2, where R1 is either 0 or an abelian nil-clean ring with J(R1)

nil and R1/J(R1) ∼= B, where B is a Boolean ring, and R2 is either 0 or a

local weakly nil-clean ring such that J(R2) is nil and R2/J(R2) ∼= Z3.

Proof. (1) ⇔ (2) This is a direct consequence of Proposition 2.11.

(2) ⇔ (3) It follows directly from [3]. �

We recall from [5, Theorem 5.4] that a ring R is uniquely nil-clean if and only if R

is abelian nil-clean. So, with Theorem 2.12 at hand, one can deduce the following.

Corollary 2.13. A ring R is uniquely nil-clean if and only if R is uniquely weakly

nil-clean and 2 ∈ J(R).

As a connection to strongly π-regular rings, one may state the following strength-

ening of results on unique nil-cleanness of rings from [5] and [8].

Corollary 2.14. A ring R is uniquely weakly nil-clean if and only if R is abelian

strongly π-regular such that R/J(R) is isomorphic to either a Boolean ring, or to

Z3, or to the direct product of two such rings.
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Proof. It is well known that strongly π-regular rings R have nil J(R). We therefore

employ [3] and Theorem 2.12 to get what we asserted. �

Remark 2.15. We shall now explore two various notions of unique weak nil-

cleanness. At the beginning, if we use the “weak unicity” for a ring R, i.e., every

element r ∈ R can be written down in at most one way as a nil-clean element or

−r in at most one way as a nil-clean element, then we just obtain uniquely weakly

nil-clean rings and vice versa.

However, if we use the “strong unicity” for a ring R, i.e., every element r ∈ R
can be written down in a unique way as n + f , with n a nilpotent and f or −f
an idempotent, then such a ring is either uniquely nil-clean of characteristic 2

or uniquely weakly nil-clean but not nil-clean. This follows because we can write

−1 = 0 + (−1) = (−2) + 1, so if 2 6= 0 we have that 2 is not a nilpotent.

Remark 2.16. It is worthwhile noticing that indecomposable rings, and hence local

rings, always have weakly nil-clean index one.

Remark 2.17. For any ring R and any s ∈ R, we set Ps = es(1 − e) and P ′s =

(1− e)se.
Let now R be a ring and r ∈ R. We then have the following weakly nil-clean

decompositions for each idempotent e:

e = e+ 0 = (e− Pr) + Pr = (e− P ′r) + P ′r = (e+ Pr)− Pr = (e+ P ′r)− P ′r.

Proposition 2.18. Let R be a ring with wnc(R) ≤ 2. Then, for any s ∈ R and

for any e ∈ Id(R), we have 2es(1− e) = 0.

Proof. Let e ∈ R be an idempotent and let s ∈ R.
If e is central, then R = C(e), so for every s ∈ R we obtain es = se = ese

and, therefore, es(1− e) = 0, hence 2es(1− e) = 0. If e is not central, then there is

s /∈ C(e) and so Ps 6= 0 or P ′s 6= 0. We have e = e+0 = (e−Ps)+Ps = (e−P2s)+P2s

and by wnc(R) ≤ 2 and Ps 6= 0 we get P2s = 0 or P2s = Ps. If P2s = Ps, it follows

e2s(1 − e) = es(1 − e) and thus es(1 − e) = 0, which is a contradiction because

Ps 6= 0. Consequently, P2s = 0, so 2es(1− e) = 0. �

Remark 2.19. Another proof for Proposition 2.18 is as follows:

Let e be an idempotent. We have

e = e+ 0 = (e+ er(1− e))− er(1− e) = (e− er(1− e)) + er(1− e),
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thus we get three weakly nil-clean decompositions of e. Therefore,

e = e± er(1− e) or e+ er(1− e) = e− er(1− e),

which is equivalent to

er(1− e) = 0 or 2er(1− e) = 0.

Corollary 2.20. Let R be a ring with wnc(R) ≤ 2. Then, for any s ∈ R and for

any e ∈ Id(R), we have 2(es− se) = 0.

Proof. Utilizing Ps as in Proposition 2.18, we obtain that 2es(1 − e) = 0. Now,

considering P ′s, we have 2(1 − e)se = 0 and, therefore, 2es = 2ese = 2se, so

2(es− se) = 0. �

Proposition 2.21. Let R be a ring with wnc(R) ≤ 2 and e ∈ Id(R). Then

|R/C(e)| ≤ 2.

Proof. If we assume the contrary, |R/C(e)| > 2, then there are two different

elements, say s, t /∈ C(e), such that s − t /∈ C(e). By using Remark 2.19 and

wnc(R) ≤ 2, we differ the following cases:

• Ps = Pt and P ′s = P ′t , then es(1− e) = et(1− e) and (1− e)se = (1− e)te,
hence e(s − t) = e(s − t)e and (s − t)e = e(s − t)e, so e(s − t) = (s − t)e,
which is a contradiction.

• Ps = 0 and P ′s = 0, then es = ese and ese = se, so es = se, which is a

contradiction.

• Ps = 0 and P ′t = 0, then since s and t are not in C(e), it follows P ′s 6= 0

and Pt 6= 0 and P ′s = Pt and by this we get e(1 − e)se = eet(1 − e), so

et(1− e) = 0, which is a contradiction.

• Ps = Pt and P ′s = 0, then P ′t 6= 0, so Ps = Pt = P ′t , which is a contradiction.

�

Proposition 2.22. Let R be a ring and e ∈ Id(R). Then

|R/A(e)| ≤ |α(e)|,

where A(e) = {r ∈ R | er(1− e) = 0}.

Proof. Letting n+ 1 ≤ |R/A(e)|, then we can find an inclusion

{A(e), r1 +A(e), . . . , rn +A(e)} ⊆ R/A(e).

So, for any ri, rj such that i, j ∈ {1, 2, . . . , n}, we have ri + A(e) 6= rj + A(e) and,

therefore, ri − rj /∈ A(e). It follows that Pri−rj 6= 0. Thus Pri 6= Prj . Also, for any
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ri, we have ri /∈ A(e). Hence Pri 6= 0. So the set {0} ∪ {Pri |i ∈ {1, 2, . . . , n}} has

n+1 elements and since for an idempotent e we get e = e+0 = (e−Pri)+Pri for any

i ∈ {1, 2, . . . , n}, the desired inequality |R/A(e)| ≤ |α(e)| follows, as asserted. �

We will now compute wnc(R) for some concrete rings R. Specifically, we will

show that the following equalities hold.

Example 2.23. wnc(T2(Zp)) = p, where p is a prime number.

Proof. It is a well-known fact that a matrix in T2(Zp) is a nilpotent if and only

if it has a zero principal diagonal. We are looking now for idempotents. In fact,(
x1 a

0 x2

)(
x1 a

0 x2

)
=

(
x21 a(x1 + x2)

0 x22

)
, hence(

x1 a

0 x2

)
=

(
x21 a(x1 + x2)

0 x22

)
, and thus x1, x2 ∈ {0, 1} and

a(x1 + x2 − 1) = 0. Each pair (x1, x2) will give a set of solutions for the problem

of idempotent matrices.

• case I : x1 = 0, x2 = 0, then S1 = {

(
0 0

0 0

)
};

• case II : x1 = 0, x2 = 1, then S2 = {

(
0 α

0 1

)
, α ∈ Zp};

• case III : x1 = 0, x2 = 1, then S3 = {

(
1 α

0 0

)
, α ∈ Zp};

• case IV : x1 = 1, x2 = 1, then S4 = {

(
1 0

0 1

)
}.

Let A ∈ T2(Zp). Letting A− E be a nilpotent, where E is an idempotent, then

A has the main diagonal of the form of an idempotent diagonal (so it has 0 and/or

1 ). If A+E is a nilpotent, with E an idempotent, then A has in the main diagonal

an element from {0,−1}. Therefore, except for A with main zero diagonal, only

one of the following can hold: A+E or A−E is a nilpotent, with E an idempotent.

Let A be with 0 or −1 in the main diagonal. We look for m as big as possible

such that A + E1, · · · , A + Em are nilpotents. Thus E1, · · · , Em share the same

main diagonal, that is, they are in the same Si. Hence the problem is reduced to

finding the maximum cardinality of Si, i ∈ {1, 2, 3, 4}. Also, trying to find out the

maximum r such that A−E1, · · · , A−Er are nilpotents, with A having 0 and 1 in

the main diagonal and E1, · · · , Er being idempotents leads to the same problem,

finding the maximum cardinality of Si, i ∈ {1, 2, 3, 4}. We finally conclude that
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|S1| = |S4| = 1 and |S2| = |S3| = p, because the free variable α can take exactly

the p values 0, 1, . . . , p− 1. So, wnc(T2(Zp)) = p, as promised. �

Example 2.24. wnc(T3(Zp)) = p2, where p is a prime number.

Proof. It is a well-known fact that a matrix in T3(Zp) is a nilpotent if and

only if it has a zero main diagonal. We are looking now for idempotents. In

fact,


x1 a b

0 x2 c

0 0 x3




x1 a b

0 x2 c

0 0 x3

=


x1 a b

0 x2 c

0 0 x3

 , which is equivalent

to


x21 a(x1 + x2) b(x1 + x3) + ac

0 x22 c(x2 + x3)

0 0 x23

=


x1 a b

0 x2 c

0 0 x3

 , which is equivalent

to 

x1 ∈ {0, 1}

x2 ∈ {0, 1}

x3 ∈ {0, 1}

a(x1 + x2 − 1) = 0

b(x1 + x3 − 1) = −ac

c(x2 + x3 − 1) = 0

For x1 = 0, x2 = 0, x3 = 0, we have S1 = {O3}.

For x1 = 0, x2 = 0, x3 = 1, we have S2 = {


0 0 α

0 0 γ

0 0 1

 | α, γ ∈ Zp}.

For x1 = 0, x2 = 1, x3 = 0, we have S3 = {


0 α αγ

0 1 γ

0 0 0

 | α, γ ∈ Zp}.

For x1 = 0, x2 = 1, x3 = 1, we have S4 = {


0 α β

0 1 0

0 0 1

 | α, β ∈ Zp}.

For x1 = 1, x2 = 0, x3 = 0, we have S5 = {


0 α β

0 0 0

0 0 0

 | α, β ∈ Zp}.

For x1 = 1, x2 = 0, x3 = 1, we have S6 = {


1 α −αγ
0 0 γ

0 0 1

 | α, γ ∈ Zp}.



UNIQUELY WEAKLY NIL-CLEAN RINGS 189

For x1 = 1, x2 = 1, x3 = 0, we have S7 = {


1 0 α

0 1 γ

0 0 0

 | α, γ ∈ Zp}.

For x1 = 1, x2 = 1, x3 = 1, we have S8 = {I3}. Following the same argument

as in Example 2.23, we derive that wnc(T3(Z3)) is the maximum cardinality of Si,

i ∈ {1, 2, . . . , 8}. Since |S1| = |S8| = 1 and |S2| = |S3| = . . . = |S7| = p2 (2 free

variables and |Zp| = p), it finally follows that wnc(T3(Zp)) = p2, as stated. �

Remark 2.25. When studying weakly nil-clean matrices, it is not enough to study

companion matrices which are (or are not) blocks of other companion matrices. In

fact, note that not all matrices are similar to a companion matrix (see the proof of

the main result in [2] or [4]).

Example 2.26. wnc(M2(Z3)) = 5.

Proof. Let A =

(
a b

c d

)
∈ M2(Z3). Then A2 =

(
a2 + bc b(a+ d)

c(a+ d) d2 + bc

)
. We

claim A2 = A in order to find idempotents. They are the following:(
0 s

0 1

)
,

(
1 0

s 0

)
,

(
1 0

s 1

)
,

(
0 0

s 1

)
,

where s ∈ Z3 and also (
2 2

2 2

)
,

(
2 1

1 2

)
.

Next, we claim A2 = O2 to find out nilpotents. They are the following:(
1 1

2 2

)
,

(
2 1

2 1

)
,

(
2 2

1 1

)
,

(
1 2

1 2

)
and also (

0 s

0 0

)
,

(
0 0

s 0

)
,

where s ∈ Z3.

If A + E, with E an idempotent, is nilpotent, then tr(A + E) = 0, whence

trA = −trE. If A − E, with E an idempotent, is nilpotent, then tr(A − E) = 0,

whence trA = trE.

For an idempotent E, we deduce:

• trE = 1 if and only if E 6= O2, E 6= I2;

• trE = 2 if and only if E = I2;

• trE = 0 if and only if E = O2.
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Let A =

(
0 y

1 0

)
. Then, for an idempotent E, if A + E is a nilpotent, then

tr(E) = 0, and thus E = O2. Also, if A − E is a nilpotent, then tr(E) = 0 and

hence E = O2. Therefore, if A =

(
0 y

1 0

)
, we have α(A) = {O2}, and it follows

that

wnc(

(
0 y

1 0

)
) ≤ 1

such that wnc(

(
0 0

1 0

)
) = 1 and wnc(

(
0 1

1 0

)
) = wnc(

(
0 2

1 0

)
) = 0.

Let A =

(
0 y

1 1

)
. Furthermore, for an idempotent E, if A+E is a nilpotent,

then tr(E) = 2, and so E = I2. But

(
0 y

1 1

)
+

(
1 0

0 1

)
=

(
1 y

1 2

)
is a

nilpotent if and only if y = 2. Also, if A − E is a nilpotent, then tr(E) = 1 and

hence E 6= O2, I2.

We infer that

•

(
0 y

1 1

)
−

(
0 s

0 1

)
=

(
0 y − s
1 0

)
is a nilpotent if and only if s = y;

•

(
0 y

1 1

)
−

(
1 0

s 0

)
=

(
2 y

1− s 1

)
is a nilpotent if and only if (y = 2

and s = 0) or (y = 1 and s = 2);

•

(
0 y

1 1

)
−

(
1 s

0 0

)
=

(
1 y − s
1 1

)
, which is not a nilpotent;

•

(
0 y

1 1

)
−

(
0 0

s 1

)
=

(
0 y

1− s 1

)
, is a nilpotent if and only if (y = 0

and s ∈ Z3) or (y ∈ Z3 and s = 1);

•

(
0 y

1 1

)
−

(
2 2

2 2

)
=

(
1 y − 2

2 2

)
, which is a nilpotent if and only

if y = 0;

•

(
0 y

1 1

)
−

(
2 1

1 2

)
=

(
2 y − 1

0 2

)
, which is not a nilpotent.

By virtue of the above results, we get the following:

ForA =

(
0 0

1 1

)
we have E1 =

(
0 s

0 1

)
, E2 =

(
0 0

0 1

)
, E3 =

(
0 0

1 1

)
,

E4 =

(
0 0

2 1

)
, E5 =

(
2 2

2 2

)
such that A−Ei is a nilpotent (i ∈ {1, 2, 3, 4, 5})
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and there are no idempotents E such that A+ E is a nilpotent. So

wnc (

(
0 0

1 1

)
) = 5.

ForA =

(
0 1

1 1

)
we obtain the idempotents E1 =

(
0 1

0 1

)
, E2 =

(
1 0

2 0

)
,

E3 =

(
0 0

1 1

)
such that A−Ei is a nilpotent, i ∈ {1, 2, 3} and there are no idem-

potents E such that A+ E is a nilpotent. So

wnc (

(
0 1

1 1

)
) = 3.

ForA =

(
0 2

1 1

)
we obtain the idempotents E1 =

(
0 2

0 1

)
, E2 =

(
1 0

0 0

)
,

E3 =

(
0 0

1 1

)
such that A−Ei is a nilpotent, i ∈ {1, 2, 3} and there is one idem-

potent, namely E = I2 such that A+ E is a nilpotent. So

wnc (

(
0 1

1 1

)
) = 4.

Let A =

(
0 y

1 2

)
. Furthermore, for an idempotent E, if A+E is a nilpotent,

then tr(E) = 1, and thus E 6= I2, O2. Also, if A−E is a nilpotent, then tr(E) = 2

and hence E = I2.

We derive(
0 y

1 2

)
−

(
1 0

0 1

)
=

(
2 y

1 1

)
, which is a nilpotent if and only if y = 2

• Let A =

(
0 0

1 2

)
. Then

(
0 0

1 2

)
+

(
0 s

0 1

)
=

(
0 s

1 0

)
is a nilpo-

tent if and only if s = 0;

•

(
0 1

1 2

)
+

(
1 0

s 0

)
=

(
1 0

1 + s 2

)
, which is not a nilpotent;

•

(
0 0

1 2

)
+

(
1 s

0 0

)
=

(
1 s

1 2

)
, which is a nilpotent if and only if

s = 2;

•

(
0 0

1 2

)
+

(
0 0

s 1

)
=

(
0 0

1 + s 0

)
, is a nilpotent;
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•

(
0 0

1 2

)
+

(
2 2

2 2

)
=

(
2 2

0 1

)
, which is not a nilpotent;

•

(
0 0

1 2

)
+

(
2 1

1 2

)
=

(
2 1

2 1

)
, which is a nilpotent.

For A =

(
0 0

1 2

)
we have the idempotents E1 =

(
0 0

0 1

)
, E2 =

(
1 2

0 0

)
,

E3 =

(
0 0

s 1

)
, E4 =

(
2 1

1 2

)
such that A + Ei is a nilpotent, i ∈ {1, 2, 3, 4}

and there are no idempotents E such that A− E is a nilpotent. So

wnc (

(
0 0

1 2

)
) = 4.

Let A =

(
0 1

1 2

)
.

•

(
0 1

1 2

)
+

(
0 s

0 1

)
=

(
0 s+ 1

1 0

)
is a nilpotent if and only if s = 2;

•

(
0 1

1 2

)
+

(
1 0

s 0

)
=

(
1 1

1 + s 2

)
, which is a nilpotent if and only

if s = 1;

•

(
0 1

1 2

)
+

(
1 s

0 0

)
=

(
1 s+ 1

1 2

)
, which is a nilpotent if and only

if s = 1;

•

(
0 1

1 2

)
+

(
0 1

s+ 1 1

)
=

(
0 1

1 + s 0

)
, is a nilpotent if and only if

s = 2;

•

(
0 1

1 2

)
+

(
2 2

2 2

)
=

(
2 0

0 1

)
, which is not a nilpotent;

•

(
0 1

1 2

)
+

(
2 1

1 2

)
=

(
2 2

2 1

)
, which is not a nilpotent.

ForA =

(
0 1

1 2

)
we obtain the idempotents E1 =

(
0 2

0 1

)
, E2 =

(
1 0

1 0

)
,

E3 =

(
1 1

0 0

)
, E4 =

(
0 0

2 1

)
such that A + Ei is a nilpotent, i ∈ {1, 2, 3, 4}

and there are no idempotents E such that A− E is a nilpotent. So

wnc (

(
0 1

1 2

)
) = 4.
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Let A =

(
0 2

1 2

)
. We have

•

(
0 2

1 2

)
+

(
0 s

0 1

)
=

(
0 s+ 2

1 0

)
is a nilpotent if and only if s = 1;

•

(
0 2

1 2

)
+

(
1 0

s 0

)
=

(
1 2

1 + s 2

)
, which is a nilpotent if and only

if s = 1.

•

(
0 2

1 2

)
+

(
1 s

0 0

)
=

(
1 s+ 2

1 2

)
, which is a nilpotent if and only

if s = 0;

•

(
0 2

1 2

)
+

(
0 1

s+ 1 1

)
=

(
0 2

1 + s 0

)
, is a nilpotent if and only if

s = 2;

•

(
0 2

1 2

)
+

(
2 2

2 2

)
=

(
2 1

0 1

)
, which is not a nilpotent;

•

(
0 2

1 2

)
+

(
2 1

1 2

)
=

(
2 0

2 1

)
, which is not a nilpotent.

ForA =

(
0 2

1 2

)
we obtain the idempotents E1 =

(
0 1

0 1

)
, E2 =

(
1 0

0 1

)
,

E3 =

(
1 0

0 0

)
, E4 =

(
0 0

2 2

)
such that A + Ei is a nilpotent, i ∈ {1, 2, 3, 4}

and there is one idempotent E = I2 such that A− E is a nilpotent. So

wnc (

(
0 1

1 2

)
) = 5.

In conclusion, wnc(M2(Z3)) = 5, as expected. �

For rings A and B and for a bimodule AMB , we denote by

(
A M

0 B

)
the

formal triangular matrix ring.

The next statement strengthens [1, Theorem 4.1].

Proposition 2.27. Let R be a ring. The following statements are equivalent:

(1) wnc(R)=2;

(2) R =

(
A M

0 B

)
, where A and B are abelian rings, and AMB is a bimodule

with |M | = 2.
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Proof. (1) ⇒ (2):

If wnc(R) = 2, since wnc(R) ≥ Nin(R), then Nin(R) = 1 or Nin(R) = 2.

• If Nin(R) = 1, then R is abelian and so wnc(R) = 1, which is a contradic-

tion.

• If Nin(R) = 2, then by Theorem 4.1 in [1] we get the desired form of R.

(2) ⇒ (1):

Nilpotent elements in R are

(
nA w

0 nB

)
, where nA is a nilpotent in A, nB is a

nilpotent in B and w is any element in M = {0, x}.

Idempotent elements in R are

(
eA w

0 eB

)
, where eA is an idempotent in A, eB

is an idempotent in B and w ∈ M which satisfies the condition eAw + weB = w.

Since wnc(A) = wnc(B) = 1 and x = x + 0 = 0 + x = x − 0 = 0 − x are the

only decompositions of x, we have at most four weakly nil clean decompositions for(
a x

0 b

)
as follows:

(
a w

0 b

)
=

(
nA x

0 nB

)
+

(
eA 0

0 eB

)
;

(
a x

0 b

)
=

(
nA 0

0 nB

)
+

(
eA x

0 eB

)
with eAx+ xeB = 0;

(
a x

0 b

)
=

(
n′A x

0 n′B

)
−

(
eA 0

0 eB

)
;

(
a x

0 b

)
=

(
n′A 0

0 n′B

)
−

(
eA x

0 eB

)
with eAx+ xeB = x.

Hence we get at most two idempotents in α(

(
a x

0 b

)
).

Since wnc(A) = wnc(B) = 1 and 0 = 0 + 0 = x + x = 0 − 0 = x − x are the

only decompositions of x, we have at most four weakly nil clean decompositions for(
a 0

0 b

)
as follows:

(
a 0

0 b

)
=

(
nA 0

0 nB

)
+

(
eA 0

0 eB

)
;
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(
a 0

0 b

)
=

(
nA x

0 nB

)
+

(
eA x

0 eB

)
with eAx+ xeB = x;

(
a 0

0 b

)
=

(
n′A 0

0 n′B

)
−

(
eA 0

0 eB

)
;

(
a 0

0 b

)
=

(
n′A x

0 n′B

)
−

(
eA x

0 eB

)
with eAx+ xeB = x.

Hence we got at most 2 idempotents in α(

(
a 0

0 b

)
).

Therefore, wnc(R) ≤ 2, and so if we find q in R such that we can get two

idempotents in α(q), then wnc(R) = 2. Thus q is

(
0 0

0 1B

)
and the idempotents

are

(
0 0

0 1B

)
and

(
0 x

0 1B

)
. �

We continue by showing that the next assertion is not an analogue of [1, Propo-

sition 4.2].

Example 2.28. If R =

(
A M

0 B

)
, where wnc(A) = wnc(B) = 1 and AMB is a

bimodule with |M | = 3, then wnc(R) = 3 cannot be happen in general. In fact, in

accordance with Example 2.26, R =

(
Z3 Z3

Z3 Z3

)
=

(
Z3 Z3

0 Z3

)
+

(
0 0

Z3 0

)
is a ring with wnc(R) = 5 > 3.

Note that if P =

(
Z3 Z3

0 Z3

)
, then P/J(P ) ∼= Z3 × Z3.

We now proceed by extending [1, Proposition 4.4] in the following manner.

Proposition 2.29. Let R be a ring and let n ≥ 1 be an integer. Then

(i) wnc(Mn(R)) ≥ 3, provided n ≥ 2.

(ii) wnc(Mn(R)) = 3 if and only if n = 2 and R ∼= Z2.

Proof. (i) Applying Lemma 2.9, it follows that wnc(Mn(R)) ≥ Nin(Mn(R)). Fur-

thermore, [1, Proposition 4.4 (1)] applies to get the wanted inequality.

(ii) Referring again to Lemma 2.9, Nin(Mn(R)) ≤ wnc(Mn(R)) so that either

Nin(Mn(R)) = 1, or Nin(Mn(R)) = 2, or Nin(Mn(R)) = 3. The first two cases

are impossible appealing to [1, Theorem 3.2] or to [1, Theorem 4.1], respectively.

The third case is handled in [1, Proposition 4.4 (2)], which gives our claim. �
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Remark 2.30. It is noteworthy that by virtue of [2] the ring M2(R) ∼= M2(Z2) is

nil-clean and consequently wnc(M2(Z2)) = Nin(M2(Z2)).

3. Open questions

We finish the paper with a series of left-answered problems:

Problem 1. For a ring R find a criterion when the equality c(R) = wnc(R) holds.

Problem 2. For a ring R find a criterion when the equality c(R) = Nin(R) holds.

Problem 3. For a ring R find a criterion when the equality wnc(R) = Nin(R)

holds.

Problem 4. If R = S×T is a direct decomposition of a ring R, does it follow that

wnc(R) = Nin(S)wnc(T ) = wnc(S)Nin(T )?

In that direction, this is related to the existence of such rings R satisfying the

inequality wnc(R) > Nin(R).
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