ÖZGÜN ARAŞTIRMA ORIGINAL RESEARCH

Med J SDU / SDÜ Tıp Fak Derg > 2023:30(2):179-184 doi: 10.17343/sdutfd.1216776

DIFFERENCES OF RIB FRACTURES IN BLUNT TRAUMA PATIENTS ACCORDING TO AGE AND GENDER: A COMPUTED TOMOGRAPHY STUDY

KÜNT TRAVMALI HASTALARDA KOSTA KIRIKLARININ YAŞ VE CİNSİYETE GÖRE FARKLILIĞI: BİLGİSAYARLI TOMOGRAFİ ÇALIŞMASI

Ebru TORUN¹, Yavuz YÜKSEL¹

¹ Alanya Alaaddin Keykubat Üniversitesi, Tıp Fakültesi, Radyoloji Ana Bilim Dalı, Isparta, TÜRKİYE

Cite this article as: Torun E, Yüksel Y. Differences of Rib Fractures in Blunt Trauma Patients According to Age and Gender: A Computed Tomography Study. Med J SDU 2023; 30(2): 179-184.

Öz

Amaç

Künt travmalı hastalarda kosta kırıklarının yaş ve cinsiyete göre farklılığını araştırmak.

Gereç ve Yöntem

Toraks BT incelemede akut torasik travmatik patoloji saptanan 18 yaş ve üzeri 411 erişkin hasta (214 erkek, 197 kadın) çalışma kapsamına dahil edildi ve geriye dönük olarak incelendi. BT incelemede hastalarda kırık (kosta, skapula, sternum, vertebra, klavikula), hemotoraks, pnömotoraks, pnömomediastinum, akciğer parankiminde posttravmatik patoloji (kontüzyon, laserasyon), diyafragmatik ve vasküler hasar varlığı kaydedildi. Hastalar yaş gruplarına göre 1. Grup: 18-44 yaş, 2. Grup: 45-69 yaş ve 3. Grup: 70 yaş ve üzeri olmak üzere 3 grupta sınıflandırıldı. Kosta kırıkları seviyesine göre 3 grupta (üst seviye: 1-4. kostalar, orta seviye: 5-8. kostalar ve alt seviye: 9-12. kostalar) sınıflandırıldı. Kosta kırıkları aksiyel plandaki lokalizasyonuna göre; ön, orta ve arka olmak üzere 3 gruba ayrıldı.

Bulgular

Kosta kırıkların erkeklerde (%69), kadınlara göre (%53) daha sık olduğu bulundu (p=0.002). Yaş arttıkça kırık sıklığının arttığı görüldü (p=0.001; r=615). Tüm yaş gruplarında kosta kırıkları en sık orta kostalarda (5.-8. kostalar) tespit edildi. İleri yaş grubunda (Grup 3) üst kostalarda kırık varlığı diğer yaş gruplarına göre belirgin düşüktü (p=0.002). Tüm yaş gruplarında en düşük sıklıkla kostaların anterior kesiminde kırık tespit edildi. Genç erişkinlerde (Grup 1) diğer yaş gruplarının aksine kosta kırığı lateral kesimde daha yüksek oranda izlendi (p=0.001). Kosta kırığı olmadan parankimal kontüzyon varlığı açısından yaş grupları arasında genç erişkinler (grup 1) lehine belirgin farklılık bulundu (p=0.014).

Sonuç

Künt toraks travma hastalarında kosta kırığı erkeklerde kadınlara göre daha yüksek oranda görülmüştür. İleri yaş grubunda üst kostalarda kırık olasılığı diğer yaş gruplarına göre daha azdı. Diğer gruplardan farklı olarak, gençlerde, kostaların lateral kesiminde daha yüksek oranda kırık saptanmıştır. Genç yaş grubunda kosta kırığı olmadan parankimal kontüzyon olasılığı açısından uyanık olunmalıdır.

Anahtar Kelimeler: Akut künt toraks travması, Biyomekanikler, Bilgisayarlı tomografi, Kosta kırığı

Abstract

Objective

To investigate the difference between rib fractures according to age and sex in blunt trauma patients.

Sorumlu yazar ve iletişim adresi /Corresponding author and contact address: E.T. / ebru.torun@alanya.edu.tr Müracaat tarihi/Application Date: 27.12.2022• Kabul tarihi/Accepted Date: 10.04.2023 ORCID IDs of the authors: E.T: 0000-0003-0879-5285; Y.Y: 0000-0002-3805-4245

0

.

Material and Method

The patients were classified into 3 age groups: Group-1:18-44 years, Group-2:45-69 years, and Group-3:70 years or more. Rib fractures were classified into 3 groups based on their level on the coronal plane (upper (1st-4th ribs), medium (5th-8th ribs) and lower (9th-12th ribs)) and axial plane (anterior, lateral and posterior).

Results

Rib fractures were found to be more common in male (69%) to female (53%) (p=0.002). The incidence of fractures was seen to increase with age (p=0.001; r=615). Rib fractures were most commonly found in the middle ribs (5th-8th ribs) in all-age-groups. The incidence of fractures in the upper ribs was significantly lower in the advanced age than the other age groups (p=0.002). Fractures were least commonly found in the anterior part of the rib in all age groups. Rib fractures

were observed at a higher rate in the lateral part in young adults unlike the other age groups (p=0.001). A significant difference was found between the age groups in favor of young adults (group 1) in terms of the presence of parenchymal contusion without rib fracture (p=0.014).

Conclusion

Rib fracture was seen at a higher rate in male than female in blunt thoracic trauma patients. Fractures possibility of in the upper rib structures is lower in the advanced age group. Unlike other groups, in young people, a higher rate of fractures was detected in the lateral part of the costa. One should be aware of the possibility of parenchymal contusion without a rib fracture in the young age group.

Keywords: Acute blunt chest trauma; Biomechanics; Computed tomography; Rib fracture

Introduction

Chest traumas are divided into two type: blunt and penetrating. Penetrating injuries such as penetrating, cutting and firearm injuries are disruptive to tissue integrity. Blunt injuries can damage the organs and structures under the tissue without deterioration of tissue integrity. Falling from height, traffic accidents, and occupational accidents are the main mechanisms of blunt trauma (1).

Blunt chest traumas comprise 10–15% of all traumas and are the cause of death in 25% of all fatalities due to trauma (2). Blunt trauma may cause injuries in many anatomical structures such as the thoracic wall, pleura, lung parenchyma, tracheobronchial tree, vascular structures and diaphragm. The pathologies that may occur essentially depend on the trauma severity and the morphology of the anatomical structure exposed to the trauma (3).

The number of studies on the biomechanics of the human rib cage has increased recently (4-10). A recent CT study on 339 subjects conducted by Weaver et al. has reported age- and gender-related structural changes of the rib cage. They found an increase in the diameter of the rib cage in all three directions from birth to adolescence, together with a decrease in thoracic kyphosis, and inferior rotation of the ribs according to the sagittal plane of the vertebrae. They also reported an increase in thoracic kyphosis, superior rotation of the ribs at the sagittal plane, and an increase in the anterior-posterior diameter of the rib cage from young adulthood to advanced age that was especially pronounced in men. Studies investigating the biomechanics of the human rib cage have reported that age- and gender-related changes in the thoracic anatomical structures may have an effect on trauma-related damage (10). However, to our knowledge, there is no study in the literature investigating the relationship between age and gender and the presence and incidence of acute pathologies in patients with blunt thoracic trauma.

The aim of this study was to analyze the difference in acute traumatic pathologies (especially rib fractures) based on age and gender in patients with blunt thoracic trauma.

Material and Method

Study Design and Participant Characteristics

A total of 2346 patients who had undergone a thoracic CT examination due to blunt thoracic trauma between July 2018 and September 2022 were investigated retrospectively. In the end, 411 adult patients (214 males, 197 females) aged 18 years or more who were found to have acute thoracic traumatic pathology on CT examination were included in the study. Patients whose thorax CT images were not suitable for evaluation or who were not found to have acute traumatic pathology on thoracic CT were not included. The study protocol was approved by the Institutional Review Board of the Alanya Alaaddin Keykubat University Ethics

Committee (The registration number for the study is 10354421-2021/12-09). All methods were performed in accordance with the relevant guidelines and regulations. Informed consent was waived because all analyses were based on aggregated data which do not contain any identifying or sensitive information.

The patients were classified into 3 groups by age as Group 1: aged 18-44 years, Group 2: aged 45-69 years, and Group 3: aged 70 years or more.

Thoracic CT analyses were obtained in the supine position by using a 16-section CT device (Toshiba AlexionTM/Advance, Toshiba Medical Systems Corporation Nashu, Japan). Imaging parameters were section thickness 1 mm; 120 kVp; 140 mAs; 0.938 pitch; 0.5 sec rotation time; 4x1 collimation; matrix 512x512; and 250x300 mm field of view. The images were obtained after intravenous contrast material administration.

The images were evaluated at a workstation (Sectra Workstation IDS 7, Linköping, Sweden) using both the bone window and soft tissue window on axial, coronal, and sagittal plane and volume rendering 3D images. Evaluation was performed by two radiologists who were experts in Thorax CT, with a joint decision. Fracture (of the costa, scapula, sternum, vertebra, or clavicle), hemothorax, pneumothorax, pneumomediastinum, and posttraumatic pathology (contusion, laceration) and diaphragmatic or vascular damage in the lung parenchyma were recorded on the CT examination.

Figure:

Rib anatomy in volume rendering 3D CT image. Anterior: from the sternum to the anterior axillary line. Lateral: from the anterior axillary line to the posterior axillary line. Posterior: from the posterior axillary line to the capitis costa. Rib fractures were classified in 3 groups based on their level in the coronal plane as upper level: 1st-4th ribs, medium level: 5-8th ribs, and lower level: 9th-12th ribs. In addition, rib fractures were divided into 3 groups as anterior, lateral, and posterior, based on their location in the axial plane, similar to what Diaz and Azar reported with anterior denoting from the sternum to the anterior axillary line, lateral from the anterior axillary line to the posterior axillary line, and posterior from the posterior axillary line to the capitis costa (11) (Figure 1).

Statistical Analysis

Statistical analysis was performed by using the Statistical Package for the Social Sciences (SPSS 21.0). The relationship between the age groups of the patient and the level of rib fractures, the location, and the presence of traumatic pathologies was analyzed by using one-way ANOVA. The relationship between the gender of the patient and the level of rib fractures, the location, and the presence of traumatic pathologies was investigated by using Student's t test. The relationship between age groups and the fracture incidence was analyzed with the Spearman correlation test.

Results

A total of 411 patients consisting of 214 (52%) males and 197 (48%) females were included in the study. The mean age was 51.1 ± 19.2 years in the males and 54.15 ± 19.3 years in the females. No statistically significant difference was present between the patients in terms of age according to gender (p=0.704).

The incidence of the pathologies based on the age groups and gender of the patients is summarized in Table 1 and 2.

Table 1:

The incidence of the acute traumatic pathologies based on the gender.

Table 2:

The incidence of the acute traumatic pathologies based on the age.

Rib fracture was observed in 251 patients (61%). Analysis of the rib fracture incidence by age groups revealed a rib fracture in 73 Group 1 patients (48.650.6%) (n=150), 92 Group 2 patients (57.859.1%) (n=159), and 86 (84.385.2%) Group 3 patients (n=102). A positive correlation was present between the age groups and fracture incidence (p=0.001; r=615).

When the patients were analyzed based on the level of the fractures at the coronal plane, a total of 471 fractures at various levels were found in the 251 patients (n=108 upper level, n=195 middle level, and

n=168 lower level). The distribution of the fracture level based on age groups is presented in Table 3 and there were 138 fractures at various levels in Group 1, 186 in Group 2, and 147 in Group 3 (Table 3).

Fractures were more common at the middle level (5th-8th ribs) in all age groups and in both genders. The incidence of fractures in the upper ribs was lower at advanced age (Group 3), that an increase in the incidence of fractures in the lower ribs was also found compared to other age groups (Table 3). The incidence of upper rib fractures was significantly lower in Group 3 (p=0.002).

Analysis of the location of the fractures on the axial plane revealed the following distribution for the 516 fractures in 251 patients: n=90 for anterior, n=216 for lateral, and n=210 for posterior. The distribution of fracture location based on age groups is presented in Table 4. There were 153 fractures in Group 1, 192 in Group 2, and 171 in Group 3 (Table 4). The rib location with the lowest fracture incidence was the anterior section in all age groups (Table 4). However, rib fractures were observed at a higher rate in the lateral part in Group 1, unlike the other groups (p=0.001).

Analysis of the relationship between gender and the presence of rib fractures revealed a higher incidence in male (n=147, 69%) than in female (n=104, 53%)

Table 3

The distribution of rib fracture level in the coronal plane based on age group.

Rib Fracture Level	Age Groups		
	Group 1 (n=138)	Group 2 (n=186)	Group 3 (n=147)
Upper (n=108)	39 (28.2%)	54 (29.1%)	15 (10.2%)
Middle (n=195)	54 (39.1%)	72 (38.7%)	69 (46.9%)
Lower (n=168)	45 (32.6%)	60 (32.2%)	63 (42.8%)

Table 4

The distribution of rib fracture location in the axial plane based on age group.

Rib Fracture Location	Age Groups		
	Group 1 (n=153)	Group 2 (n=192)	Group 3 (n= 171)
Anterior (n= 90)	24 (15.7%)	33 (17.2%)	33 (19.3%)
Lateral (n= 216)	78 (50.9%)	75 (39%)	63 (36.9%)
Posterior (n= 210)	51 (33.4%)	84 (43.8%)	75 (43.8%)

(p=0.002). A positive correlation was found between the presence of a rib fracture and the detection of a pneumothorax or hemothorax (p=0.001, r=0.752; p=0.001, r=0.614, respectively). No relationship was encountered between the presence of a rib fracture and the other traumatic pathologies. Parenchymal contusion was detected in 81 patients (54%) in Group 1 (n=150), 81 (50.9%) in Group 2 (n=159), and 45 (44.1%) in Group 3 (n=102). No relationship was found between the presence of a rib fracture and parenchymal contusion. On the other hand, parenchymal contusion was observed in 42 Group 1 patients (n=75) and 21 Group 2 patients (n=75) but none of the Group 3 patients (n=15) without rib fracture. A significant difference was present between the age groups in terms of the presence of parenchymal contusion without rib fracture (p=0.014).

Discussion

We found age and gender to be determinants of the pathologies that may occur due to chest trauma (especially rib fractures) in this study where we investigated the acute pathological findings in patients with blunt thoracic trauma according to their demographic data (12).

The gradual increase in the aging population has created the need for a more detailed analysis of elderly individuals. Therefore, there has been increased interest in studies investigating the age- and gender-related changes in the thoracic structure in recent years (4-10).

Kent et al. have found age to be an important factor regarding the costal angles measured in the sagittal plane in their study on 161 males aged 18-89 years. They found the ribs to become more perpendicular to the spine with increasing age (5). Gayznik et al. found morphological changes such as an increase in the thoracic kyphosis and the anterior-posterior diameter of the rib cage to develop with increased age (7). Campbell and Lefrak have similarly reported increased chest wall stiffness, decreased lung capacity, and decreased chest wall muscle strength with increasing age (8).

The most common finding in thoracic trauma is rib fractures. Fractures of the first three ribs may damage the brachial plexus and subclavian vascular structures. Fractures of the lower three ribs may be associated with liver, spleen, and kidney injuries, and less commonly lung injury. Rib fractures can lead to restricted respiratory movements and an increased

incidence of atelectasis, which can cause subsequent pneumonia and increased mortality and morbidity (13). We mainly investigated rib fractures in this study. Rib fractures have been reported to occur most commonly between the 4th and 9th ribs after blunt thoracic trauma in the literature (14). Our study revealed this finding to be valid for all the age groups and both genders.

In contribution to the literature, we found that the upper ribs were injured at a lower rate in the advanced age group compared to the other age groups in our study (p=0.002). In addition, we found the lateral part of the ribs to be more fragile in the young age group than the other age groups (p=0.001). This finding may be related to the fact that age-related alterations in the rib angles lead to a deviation in the force that occurs during trauma. We also think that the reason for this difference may depend on the cause of the trauma. In addition to our study, we think that future studies to be carried out by considering the cause of trauma will be useful in terms of this issue.

The chest wall resists injury during blunt chest trauma. If a rib fracture develops due to the kinetic energy generated during trauma, the energy transferred to the lung parenchyma decreases, whereas if rib fracture does not develop, the energy is transmitted directly to the lung. In the latter case, the alveoli are stretched and torn due to positive pressure, and blood passes into the interstitium and alveolar space (15, 16). We showed in our study that rib fractures are less common in the younger age group compared to the advanced age group while parenchymal contusion may occur more commonly in the younger age group, consistent with the pathophysiology of trauma.

It is extremely important to detect traumatic pathologies quickly and to start treatment during the diagnosis and treatment phase of thoracic traumas as they have high mortality and morbidity rates. Our results reveal that age and gender are determinants for traumatic pathologies, and we believe that these criteria must be considered during the evaluation of patients with thoracic trauma.

Conclusion

Rib fractures in blunt thoracic trauma patients are more common in males than females. The possibility of fractures in the upper rib structures is lower in the advanced age group than in other age groups. Fractures in the lateral part of the ribs are more common in young patients than in the other age groups and one should also be aware of the possibility of parenchymal contusion without a rib fracture in this group.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Ethical Approval

Ethics committee approval was provided by the Institutional Review Board of the Alanya Alaaddin Keykubat University Ethics Committee (The registration number for the study is 10354421-2021/12-09).

Consent to Participate and Publish

Written informed consent to participate and publish was not obtained due to retrospective design of the study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors.

Availability of Data and Materials

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Authors Contributions

Concept - E.T.; Design - E.T., Y.Y.; Superivison - Y.Y.; Materials - E.T.; Data Collection and/or Processing -E.T, Y.Y.; Analysis and/or Interpretation - E.T, Y.Y.; Literature Review - E.T.; Writing - E.T.; Critical Review - Y.Y.

References

- Dogrul BN, Kiliccalan I, Asci ES, Peker SC. Blunt trauma related chest wall and pulmonary injuries: An overview. Chin J Traumatol. 2020;23:125-138.
- Sirmali M, Turut H, Topcu S, et al. A comprehensive analysis of traumatic rib fractures: morbidity, mortality and management. Eur J Cardiothorac Surg. 2003;24:133-138
- Ozerdemoglu AR, Aydınlı U. Çocuklarda Torakolomber Vertebra Kırıkları. SDU Tıp Fakültesi Dergisi. 1995; 2:19-22
- Holcombe SA, Wang SC, Grotberg JB. Age-related changes in thoracic skeletal geometry of elderly females. Traffic Inj Prev. 2017;29;122-128.
- Kent R, Lee SH, Darvish K, Wang S, Poster CS, Lange AW, Brede C, Lange D, Matsuoka F. Structural and material changes in the aging thorax and their role in crash protection for older occupants. Stapp Car Crash J. 2005;49:231-49.
- Kindig MW, Kent RW. Characterization of the centroidal geometry of human ribs. J Biomech Eng. 2013;135:111007.
- Gayzik FS, Yu MM, Danelson KA, Slice DE, Stitzel JD. Quantification of age-related shape change of the human rib cage through geometric morphometrics. J Biomech. 2008;41:1545-54.
- Campbell EJ, Lefrak SS. How aging affects the structure and function of the respiratory system. Geriatrics. 1978;33:68-74.
- 9. Esme H, Solak O, Yurumez Y, Yavuz Y, Terzi Y, Sezer M, Kucu-

ker H. The prognostic importance of trauma scoring systems for blunt thoracic trauma. Thorac Cardiovasc Surg. 2007;55:190-5.

- 10. Weaver AA, Schoell SL, Stitzel JD. Morphometric analysis of variation in the ribs with age and sex. J Anat. 2014;225:246-61.
- Diaz JJ, Azar FK. Minimally invasive chest wall stabilization: a novel surgical approach to video-assisted rib plating (VARP). Trauma Surg Acute Care Open. 2019;18;PMCID: PMC6924860.
- 12. Torun E., Yavuz Y. Acute Traumatic Pathologies (Especially Rib Fractures) Based on Age and Gender in Patients with Blunt Thoracic Trauma: a CT Study. Research Square DOI: 10.21203/rs.3.rs-1529053/v1
- Beshay M, Mertzlufft F, Kottkamp HW, Reymond M, Schmid RA, Branscheid D, Vordemvenne T. Analysis of risk factors in thoracic trauma patients with a comparison of a modern trauma centre: a mono-centre study. World J Emerg Surg. 2020;15:45
- 14. Simon JB, Wickham AJ. Blunt chest wall trauma: an overview. Br J Hosp Med (Lond). 2019;80:711-715.
- Yazkan R. Pulmonary contusion in adult isolated chest injuries: Analysis of 73 cases. Bidder Tip Bilimleri Dergisi. 2011;3:9-15.
- 16. Altınok T. Akciğer Yaralanmaları. TTD Toraks Cerrahisi Bülteni 2010;1:55-9.