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Abstract 

Crude oil; is a fossil fuel containing carbon, hydrogen, sulfur and many other components and is 

one of the world's largest and most widely used energy sources. However, in order for crude oil to 

be used as an energy source, it must be refined. With the use of petroleum products obtained as a 

result of refining, very high amounts of SOx gas are released into the atmosphere. These gases 

seriously harm both the environment and human health. This study aimed to reduce the amount of 

sulfur in crude oil and reduce its possible damages by using clinoptilolite zeolite (CZ). For this 

purpose, first of all, CZ; was characterized by SEM and XRF. Then, 0.1 g, 0.5 g, 1 g, 2 g and 5 g 

of the characterized CZ were weighed and added to the 50 mL crude oil samples separately. The 

mixture was mixed with a magnetic stirrer at 400 rpm for 60 and 120 minutes at room temperature 

before going through with an adsorptive desulfurization step. Afterwards, it was separated from 

the adsorbent by centrifugation and the residual sulfur amount was determined by ASTM D 1552-

03 method. As a result of this study, which was carried out in an experimental laboratory 

environment; it has been observed that the desulfurization efficiency varies between 0.75 and 5.76 

% (w/v) with the use of CZ adsorbent. Moreover; it was determined that the highest sulfur removal 

was obtained by using 5 g CZ.  
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Introduction 

Access to energy; is of critical importance for the welfare, economic development and quality of 

life of society. Therefore, removing the barriers to access to usable energy can only be possible by 
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increasing the usable energy. For this reason, researchers have been increasing their studies on 

energy in recent years and they have been making efforts to ensure that usable energy sources do 

not harm the environment and human health (Kavak, 2022). Throughout history, energy systems 

have been based on fossil fuels (coal, oil and gas). As a result of the use of fossil fuels, carbon 

dioxide and other greenhouse gases are released, which is expressed as the main cause of global 

climate change. The high amount of carbon monoxide, which is proven to be harmful to human 

health and the environment, resulting from the combustion of fossil fuels; sulfur oxides, SO2 and 

SO3 (represented as SOx); nitrogen oxides, NO and NO2 (represented as NOx) and particles come 

out (Sonel, 1997). In particular, due to the harmful effects of SOx gases released as a result of 

combustion, the sulfur ratio in gasoline and diesel fuels has been limited. Governments strive to 

reduce the concentration of petroleum products like gasoline and diesel to less than 15 ppm in 

conformity with current rules. The sulphur limit in gasoline and diesel in the United States (USA) 

is 10 and 15 ppm, respectively, while it is 10 ppm in both in the European Union (EU). In contrast, 

Japan started carrying out the decision in 2007 to lower the sulphur content of gasoline and diesel 

to 10 ppm (Eßer et al., 2004; Stanislaus et al., 2010; Baeza, 2012; Ahmed, 2016; Yeole & 

Parthasarthy, 2022). To reduce the number of sulphur compounds in fuels, various methods such 

as hydrodesulphurization (Li et al., 2018; Zhou et al., 2019), oxidative desulphurization (Vickers, 

2017; Rezvani et al., 2019; Wang et. Al., 2022), and extractive desulphurization (Dharaskar et al., 

2014; Yang et al., 2022; Dashtpeyma et al., 2022) are used. Hydrodesulphurisation (HDS), the 

earliest known desulphurization technique, offers a quick reaction time and a high desulphurization 

effectiveness. This method, however, necessitates difficult conditions such as high temperature and 

pressure (Vít et al., 2015; Kazemi-Beydokhti & Hassanpour-Souderjani, 2022). The crude oil's 

sulphur is oxidized by sodium bromate, potassium permanganate, carboxylic acids, and sulfonic 

acids in the oxidative desulfurization process (Gokel et al., 1980; Kubata & Takeuchi, 2004; 

Shaabani et al., 2009). Adsorptive desulphurization studies have recently gained prominence due 

to their potential application in the desulphurization of various materials (Salehi et al., 2020; Tuna 

et al., 2020; Gupta et al., 2021). In this method, the hydrocarbon's sulfur and sulfur-containing 

compounds adhere to the solid adsorbent surface. The method's effectiveness is proportional to the 

adsorbent's effectiveness (Blanco-Brieva, 2010). 

Recently, researchers have been working on desulfurizing crude oil using a variety of 

adsorbents, including carbon nanomaterials, activated carbon, metal-organic frameworks, metal 

oxide nanoparticles, and zeolites (Svinterikos et al., 2019). 

For example; Özkan 2022 conducted a sulphur removal study using CuONPs/MWCNTs. 

In his study, he investigated the adsorptive desulphurization efficiency by using 

CuONPs/MWCNTs in amounts ranging from 0.02 to 0.01 g. As a result of the study, in which 60 

and 120 minutes of contact time were tested, an efficiency of 2.47 - 5.44 % was obtained (Özkan, 

2022). Yu et al. (2015) examined the impact of surface functional groups and surface morphology 

on the ADS of diesel range fuel for carbon-based adsorbents such as activated carbons, carbon 

aerogels, and carbon nanotubes. This review also discussed the effect of nitrogen and aromatic 

compounds in the feed on adsorptive desulfurization. For the purpose of removing sulfur, 
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Rajendran et al. (2020) studied boron nitride-based adsorbents. These reviews investigated at a 

particular type of adsorbents' adsorptive desulfurization. The current review focuses on new 

developments in ADS as well as ADS of various absorbent types, including carbon, mesoporous 

materials, metal oxide, clay, industrial waste, metal-organic framework, and zeolite-based 

materials. Comprehensive evaluations are also made of the adsorbent regeneration methods, 

adsorptive desulfurization mechanisms, kinetics, and thermodynamics. Critically covered are the 

impacts of operating factors such adsorbent loading, working time, initial adsorbate volume, and 

operating temperature on the effectiveness of adsorbents. The recent advancement of adsorptive 

desulfurization of genuine feedstocks is also included in this paper. Liao et al. (2015), incorporation 

of Ag, Cu, Ni, and Zn for the removal of thiophene increased the adsorption capacity of alumina (-

Al2O3). Silver has the best sulfur adsorption efficiency of the four metals. Watanabe et al. (2021) 

looked at the behavior of mixed metal oxide TiO2-CeO2 adsorptively desulfurizing jet fuel with 

1055 ppm sulfur. The surface active oxygen species on TiO2-CeO2 served as active sites and 

adsorbed sulfur molecules through the interaction of electron donors and acceptors. The sulfur 

content of jet fuel was reported to be reduced to 1 ppm using this mixed metal adsorbent. Ln 

(BTC)(H2O)DMF, where Ln = Samarium [Sn], Terbium [Tb], Europium [Eu], and Yttrium [Y], 

and BTC = benzene-1,3,5-tricarboxylate, was the subject of research by Xiang et al. (2014). Due 

to the distinct electronic structure of rare earth metals (an imperfect configuration of the 4f electron 

shell), this form of MOF proved very successful at adsorbing sulfur compounds thanks to a 

combination of strong electron-metal and electron-metal interactions.  

By employing clinoptilolite zeolite, this research intended to reduce the amount of sulphur 

in crude oil and eliminate potential harm (CZ). First, SEM and XRF were used to characterize CZ 

for this purpose. The described CZ was then weighed, and independent additions of 0.1 g, 0.5 g, 1 

g, 2 g, and 5 g were made to the 50 mL crude oil samples. By mixing the solution at 400 rpm for 

60 and 120 min at room temperature, the mixture was put through an adsorptive desulfurization 

process. Following centrifugation to remove it from the adsorbent, the amount of residual sulfur 

was measured using the ASTM D 1552-03 method. 

Materıal and Methods  

All of the compounds used in this study were obtained from Merck and Sigma-Aldrich and were 

of analytical purity. Additionally, the sample of crude oil used in our investigation came from 

Kirkuk, Iraq. The chemical properties of the crude oil used in our study are given in Table 1. 

Table 1. Chemical properties of crude oil 

Chemical properties Crude oil Method 

API gravity value 29.43 Calculation 

Water & Sediment content (% v/v) 1 % ASTM D-4007 

Salt content (% w/v) - ASTM D-3230 

Asphaltene content (% w/v) 0.3 % ASTM D-6560 

Total sulphur content (% w/v) 3.69 % ASTM D-2622 
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Characterization of Clinoptilolite Zeolite 

X-ray fluorescence (XRF) analysis was used to determine the clinoptilolite-rich zeolite's elemental 

compositions, and the results are displayed in Table 2. When the zeolite we used in our study is 

classified according to its chemical composition, considering the Si/Al ratios, it is seen that it is 

included in the middle silicate zeolite class. 

Table 2. The chemical composition of the Clinoptilolite Zeolite 

 Content of Oxides (wt %) 

Sample Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 

CZ 0.7 1.5 13.6 71.7 <0.1 3.9 5.6 0.3 <0.1 2.5 

The CZ's morphology is assessed using SEM. Figure 1 depicted the irregular prismatic cristobalite 

crystals in a pore's boundary that were clinoptilolite crystals that were authigenic and euhedral in 

shape. 

 

Figure 1. SEM image of CZ (Özkan & Özkan, 2019) 

Sulphur Analysis 

0.1 g, 0.5 g, 1 g, 2 g, and 5 g of CZ were weighed and added separately to beakers having a 100 ml 

capacity. After that, 50 mL of crude oil was poured into these beakers. It was stirred in a magnetic 

stirrer at 400 rpm for 60 and 120 minutes at room temperature to undergo an adsorptive 

desulfurization procedure. Each beaker's petroleum/adsorbent solution was combined, then poured 

into 10 ml tubes and sealed with their covers. All test tubes were prepared, and then they were 

centrifuged for 15 minutes at 4100 rpm to separate the crude oil from the adsorbent. After that, a 

disposable dropper was used to add 0.1 g of the petroleum sample that had been centrifugally 

separated from the adsorbent to 1 g of Com-Cat (a combustion catalyst made up of a WO3, KH2PO4 

mixture). Sulfur was measured after the ceramic crucible that had been created as a result of these 
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procedures was left in the LECO 628 S device's combustion chamber. Sulfur levels were measured 

in accordance with the ASTM D 1552-03 standard (ASTM D1552-03 std). The technical 

specifications of the device used in the determination of sulphur are given in Table 3. 

Table 3. The technical specifications of the device used in the determination of sulfur 

Technical Specifications Description (Values/Range) 

Instrument Range 0.01 to 20 mg Sulphur 

Precision (Sulphur) 0.005 mg or 1 % RSD (whicever is greater) 

Nominal Sample Weight up to 350 mg, 250 mg nominal 

Detection Method Infrared Absorption 

Chemical Reagent Magnesium Perchlorate (Anhydrous) 

Gas Requirements Oxygen, 99.5 % pure, 40 psi (2.8 bar) 

Regulator Requirements Oxygen, 0 to 125 psi (0 to 8.6 bar) 

Furnace 600 to 1450 oC ±1 % of self point; Horizontal Resistance-type 

Results and Discussion 

As a result of this study, which was carried out with the contact time of the crude oil with the 

adsorbent of 60 and 120 minutes, the amount of sulfur in the crude oil was reduced at rates ranging 

from 0.75% to 5.76%. The desulphurization values obtained as a result of this study are given in 

Table 4 and Figure 2. 

Table 4. Adsorbtive desulphurization and its response to various adsorbent concentrations and 

contact times 

Sample Name 
Crude 

Oil 
1 2 3 4 5 

Amount of Adsorbent (g) - 0.1 0.5 1 2 5 

Sulphur in Crude Oil  (%w/v) 3.6875 3.6875 3.6875 3.6875 3.6875 3.6875 

Sulphur Amount After 

Processing (%) 

60 min 3.6875 3.6600 3.6440 3.6000 3.5410 3.5101 

120 

min 
3.6875 3.6355 3.6120 3.5550 3.5105 3.4753 

Desulphurization 

Efficiency (%) 

60 min 3.6875 0.7458 1.1797 2.3729 3.9729 4.8102 

120 

min 
3.6875 1.4102 2.0475 3.5932 4.800 5.7546 
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Figure 2. The impact of CZ contact time and quantity on adsorptive desulphurization 

When the results obtained are examined, it is seen that the amount of sulfur adsorbed 

increases as the contact time of CZ with crude oil increases. Similarly, it was determined that the 

desulphurization efficiency increased in parallel with the increasing amount of CZ. As can be seen 

from the results given in Table 4, CZ can be used as an adsorbent for the removal of sulfur in crude 

oil. In addition, when all the results were compared among themselves, it was determined that the 

best result was obtained by contacting 5 g CZ adsorbent with crude oil for 120 minutes. 

Similar results were observed when compared with similar studies in the literature. For 

example; Özkan (2022) used CuONPs/MWCNTs for the desulphurization of crude oil and stated 

that the desulphurization efficiency increased in parallel with the increasing amount of adsorbent 

and the increase in contact time. As a result of his study, he achieved sulfur removal of around 5% 

as a result of the contact time of 0.01 g nanomaterial for 120 minutes. Khaled similarly contrasted 

the ability of MWCNTs, graphene oxide, and activated carbon to remove thiophene and 

dibenzothiophene (DBT) from diesel fuel. In all three adsorbents employed in the investigation, it 

was discovered that DBT adsorbed more easily than thiophene. According to the author, this results 

from the two molecules' different dipole moments. He added that the success of the investigation 

was enhanced by the growing amount of adsorbent. Gördük et al. in their work to reduce the amount 

of sulfur in crude oil in 2022, they used multi-walled carbon nanotubes functionalized with 

aluminium oxide nanoparticles. They stated that increasing the amount of adsorbent decreased the 

amount of sulphur in crude oil and they achieved a success rate of 4.75% as a result of their studies. 

Finally, this study, in which CZ was used as an adsorbent and aimed to remove sulfur from 

crude oil, was carried out in accordance with ASTM D-1552-03 standard and 5.76% sulfur removal 

was achieved. It has been concluded that more successful results will be obtained if modifications 

are made taking into account the porous structure of CZ in the following periods. Thus, the presence 
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of sulfur compounds in crude oil will be reduced and important work will be done in order to leave 

a cleaner future for future generations. 
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