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ABSTRACT A new chaotic system is presented in this research work.The proposed system has three nonlinear
terms and one sine term which improves the complexity of the system. The basic properties of new system
such as Lyapunov exponent, equilibrium point and stability are analyzed in detail. The dynamic analysis is
conducted using classic tools such as bifurcation diagram and Lyapunov exponent plot to verify the chaotic
nature in the proposed system. The changes in the states of the system is verified using bifurcation diagram
and Lyapunov exponent plot. The proposed system presents some special features such as two wing attractors,
forward and reverse periodic doubling bifurcation, and dc offset boosting control. The dc offset boosting
behavior can be used to diagnosis the multistability behaviour in the dynamical system and to reduce the
number of components in the communication system. This special feature converts the bipolar signal in to
unipolar signal which can be used in many engineering applications. The theoretical study and the simulation
results show that the proposed system has wealthy chaotic behaviour itself. Furthermore, the adaptive
sysnchronization of identical new system is achieved for the application of secure communication system.
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INTRODUCTION

Since Lorenz discovered a chaotic system in 1963, the generation of
chaotic system becomes hot research topic due to their complex be-
haviour such as unpredictability, variation due to initial conditions
etc. The chaotic systems have wide range of applications in crypto
systems (Zia et al. 2022; El-Latif et al. 2022; Lin et al. 2022), secure
communication (Kumar and Singh 2022; Zhou and Tan 2019) mo-
bile robots (Nwachioma and Pérez-Cruz 2021; Cetina-Denis et al.
2022), Circuit applications (Lai et al. 2021; Wang et al. 2015), IOT
applications (Li et al. 2022a; Trujillo-Toledo et al. 2021) etc. Due to
these applications, recently many researchers introduced new 3D
chaotic systems (Veeman et al. 2022; Hu et al. 2022a; Ablay 2022;
Ramakrishnan et al. 2022).

The traditional chaotic system has low degree of complexity
and it leads to the limitation of usage of chaotic system to solve
some practical problems. The complex dynamic behaviour of
chaotic system is required for various engineering applications
such as image encryption, voice encryption, DCSK, particle motion
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and secure communication etc. Therefore, the construction of
chaotic system using trigonometry function is hot research topic
and many researchers proposed chaotic systems based on product
trigonometric function (Yu and Yu 2020; Yu and Gong 2022; Sriram
et al. 2023), hyperbolic sine (Liu et al. 2018; Mobayen et al. 2020; Hu
et al. 2022b; Joshi and Ranjan 2020), hyperbolic cosine (Signing et al.
2019; Signing and Kengne 2018), cosine function (Yan et al. 2022)
and tangent and cotangent (Guo and Liang 2021).

Recently, many researchers introduced sine function based
chaotic systems for example, Zhou et al. (2021) proposed a new
autonomous chaotic system with sine function and analysed co-
existing nested multiple attractors behaviour for different initial
conditions. Kuate and Fotsin (2020) described a new five term
chaotic system with one sine nonlinearity term which produces
one scroll and double scroll attractor and also analysed its coex-
isting attractor using dc offset boosting method. Yang et al. (2021)
presented a sine chaotic system which generates multi - scroll at-
tractors and observed both homogeneous and heterogeneous multi
stability in the proposed system. Hua et al. (2018) introduced a
one-dimensional sine chaotification model (SCM) and improved
the complexity of three existing systems. Bao et al. (2020) proposed
a 2D sine map and investigated initials – boosted coexisting attrac-
tors in the proposed system. Sahoo and Roy (2022) introduced a
new technique to generate multi wing attractors from two wing
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existing chaotic attractors. The proposed technique uses a nonlin-
ear function with sine term to generate multi wing attractors from
existing Lu and Chen system. Volos et al. (2021) proposed a dy-
namical system with sine function and observed hidden attractors
in the proposed system.

In the past few decades, the chaos synchronization has great
attention since it can be used to solve many issues in secure com-
munication system. Recently, various adaptive synchronization
scheme Rahman and Jasim (2022); Roldán-Caballero et al. (2023);
Pal et al. (2022); Li et al. (2022b) have been developed for the appli-
cation of secure communication system.

This motivates me in this study to construct another trigonome-
try function based chaotic system. The proposed system presents
offset boosting control property which means the position of the
attractor can be easily controlled by adding a controller with
any one of the state signals of the system. The offset boosting
control method can also be used to identify the multistability of
the dynamical system.

The proposed system has the following features:

• The proposed system produces two wing attractors.
• The proposed system is constructed using sine term which

presents complex behaviour.
• The system presents both forward and reverse periodic dou-

bling bifurcation.
• It presents dc offset boosting property that is the attractor of

proposed system is position controllable.

INTRODUCTION OF SINE FUNCTION BASED NEW
CHAOTIC SYSTEM

In 2017, Lai et al. (2017) introduced a new chaotic system as given
in Equation. (1).

ẋ = ax − yz

ẏ = −by + xz

ż = xyz − cz + d

(1)

where, (a, b, c, d)=(4, 9, 4, 4). The Lyapunov exponents of the sys-
tem (1) are calculated as l1 = 1.7729, l2 = 0, l3 = −7.5549. The
Lyapunov dimension is DL = 2.2334. The system (1) presents one
scroll attractors. In this paper, the new chaotic system is designed
by replacing the term y by sin(x) in second equation and the term
xyz by xy in third equation of system (1). The new system (2) pro-
duces two scroll attractors while the old system (1) produces one
scroll attractor and infinitely many shifted attractors.

Thus, the new chaotic system with sine term can be modelled
as in Equation. (2).

ẋ = ax − kyz

ẏ = bsinx + xz

ż = gxy − cz + d

(2)

Here x, y, and z are the signal variables of new system (2) and
a,b,c,d,g and k are the positive and non-zero parameters. The
system (2) has the parameter values as, a = 1.5, b = 10, c = 4,
d = 2, g = 4 and k = 2.

(a) xy plane

(b) yz plane

(c) xz plane

(d) xyz plane

Figure 1 The two wing attractors of new chaotic system with
sine term.

BASIC INFORMATION ABOUT THE NEW CHAOTIC SYSTEM
WITH SINE TERM

In this section, the basic information about the proposed chaotic
system such as, Lyapunov exponents, dissipative, equilibrium
points, stability and the sensitivity to the initial conditions are
discussed in detail.
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(a) Bifurcation diagram

(b) Lyapunoov exponent spectrum

Figure 2 (a) Bifurcation diagram (b) Lyapunov exponent spec-
trum of system (2) under parameter a with initial condition
(−1, 0, 1).

Lyapunov Exponents (LE) are calculated numerically using
Wolf algorithm and MATLAB with the initial conditions (−1, 0, 1)
and simulation time 10000 sec. The system (2) has Lyapunov expo-
nent value as, (LE1, LE2, LE3)= (0.561522, 0,−3.061664). Since, the
proposed system satisfies the conditions that LE1 > 0,LE2 = 0 and
LE3 < 0, it is found that the system (2) has the chaotic behaviour
itself.

Lyapunov dimension (DL) of system (2) can be calculated using
(3) as,

DL = 2 +
LE1 + LE2

|LE3|
= 2.183 (3)

which indicates that the system (2) has fractional dimension. The
dissipative nature of the system (2) can be verified using (4) as,

∇V =
∂V
∂x

+
∂V
∂y

+
∂V
∂z

= a − c = −2.5 (4)

The dissipative nature of the dynamic system can also be verified
by adding all their Lyapunov exponent values as (5),

LET = LE1 + LE2 + LE3 = −2.5 (5)

The negative values of LET indicates that the proposed system (2)
is dissipative.

The equilibrium (E) points are calculated by letting ẋ=ẏ=ż=0 in
the proposed system (2) and by solving those equations. Thus the

(a) a = 0.8

(b) a = 1.6

(c) a = 1.8

Figure 3 Various periodic and chaotic attractors of system (2)
under the parameter aϵ[0, 2].

system (2) can be written as in (6) and the solution of (6) gives the
equilibrium point as, E = (0, 0, 0.5).

ax − kyz = 0

bsinx + xz = 0

gxy − cz + d = 0

(6)

Now, Jacobian Matrix (J) of the system (2) can be written as in (7),

J =

∣∣∣∣∣∣∣∣∣∣∣
a −kz −ky

z + bcosx 0 x

gy gx −c

∣∣∣∣∣∣∣∣∣∣∣
(7)

By substituting the equilibrium point (E) and the corresponding
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parameter values in (7),

J(E) =

∣∣∣∣∣∣∣∣∣∣∣
1.5 −1 0

10.5 0 0

0 0 −4

∣∣∣∣∣∣∣∣∣∣∣
(8)

The eigen values (λ) can be calculated from (8) as λ1,2 = 0.75 ±
j3.152, λ3 = −4 which indicates that the equilibrium point (E)
is saddle which is always unstable. The attractors of proposed
system (2) in 2D and 3D plane are displayed in Figure 1.

(a) Bifurcation diagram

(b) Lyapunoov exponent spectrum

Figure 4 (a) Bifurcation diagram (b) Lyapunov exponent spec-
trum of system (2) under parameter c with initial condition
(−1, 0, 1).

DYNAMIC ANALYSIS OF NEW CHAOTIC SYSTEM WITH
SINE FUNCTION

In this section, the bifurcation diagram and Lyapunov spectrum
are investigated in order to prove the rich dynamics in the new
system. Both plots can be obtained by varying any one of the sys-
tem parameters and keeping remaining parameters with constant
values. The state of the chaotic system may change from periodic
to chaotic or chaotic to period depends on the system parameter
values. This change in the states can be observed using bifurcation
diagram and Lyapunov exponent spectrum plot under various

(a) c = 3

(b) c = 3.5

(c) c = 5

Figure 5 Various periodic and chaotic attractors of system (2)
under the parameter cϵ[3, 5.5].

system parameters. In Lyapunov exponent spectrum, the positive
Lyapunov exponents region indicates the chaotic attractor and
other regions indicate the periodic attractor. The LE1, LE2 and LE3
are represented using blue, red and green colours respectively.

Figure 2 shows the bifurcation diagram and corresponding Lya-
punov exponents spectrum for parameter a in the region aϵ[0, 2]
and indicates that the system has periodic attractor up to a = 1.3
and chaotic attractor for the region aϵ[1.4, 1.6]. Figure 3 repre-
sents the periodic and chaotic attractors of system (2) under the
parameter aϵ[0, 2] and (b, c, d, g, k)=(10, 4, 2, 4, 2).

Figure 4 shows the bifurcation diagram and Lyapunov exponent
spectrum for the parameter c in the region cϵ[3, 5.5]. The state of the
system is changed from chaotic to periodic beyond c = 4.5 when
the parameter value is increased. Figure 5 represents some of the
periodic and chaotic attractors of system (2) under the parameter
cϵ[3, 5.5] and (a, b, d, g, k)=(1.5, 10, 2, 4, 2).

Figure 6 shows the bifurcation diagram and Lyapunov exponent
spectrum for another parameter d in the region dϵ[0, 4] and also
shows that the system has chaotic flow beyond d = 1.75. Figure 7
represents the periodic and chaotic attractors of system (2) under
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the parameter dϵ[0, 4] and (a, b, c, g, k)=(1.5, 10, 4, 4, 2).

(a) Bifurcation diagram

(b) Lyapunoov exponent spectrum

Figure 6 (a) Bifurcation diagram (b) Lyapunov exponent spec-
trum of system (2) under parameter d with initial condition
(−1, 0, 1).

Figure 8 shows the bifurcation diagram and Lyapunov exponent
spectrum for the parameter g in the region gϵ[3, 5.5]. Figure8 indi-
cates that the system has chaotic atrractors in the region gϵ[3, 4.2]
and then periodic atrractors. It is evident from Figures 6 and 8
that the proposed system experiences both forward and reverses
periodic doubling behaviour. Figure 9 represents the periodic and
chaotic attractors of system (2) under the parameter gϵ[2, 6] and
(a, b, c, d, k)=(1.5, 10, 4, 2, 2).

OFFSET BOOSTING CONTROL

Offset boosting control Chunbiao et al. (2021); Ma et al. (2021); Wen
et al. (2021) is the important property of chaotic system which
is used to find the multistability of the system. It is observed
in the system (2) when we introduce the offset booster m in the
state signal y as given in Equation. (9). When the value of the
booster m is varied, the proposed attractor becomes bipolar to
unipolar as shown in Figure 10. Figures (10a - 10b) show the offset
boosted attractor of system (2) in xy and yz plane for m = −10
(Red), m = 0 (Blue) and m = 10 (Green) respectively. Figure 10c
represents the Lyapunov exponent plot of system (9) in the region
mϵ[−20, 20]. Figure 10c also represents that the system (9) has
constant Lyapunov exponent in the specified region and the offset

(a) d = 0.5

(b) d = 1.4

(c) d = 3.5

Figure 7 Various periodic and chaotic attractors of system (2)
under the parameters dϵ[0, 4].

booster m does not modify the chaotic behavior of the proposed
system (2).

ẋ = ax − k(y + m)z

ẏ = bsinx + xz

ż = gx(y + m)− cz + d

(9)
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(a) Bifurcation diagram

(b) Lyapunoov exponent spectrum

Figure 8 (a) Bifurcation diagram (b) Lyapunov exponent spec-
trum of system (2) under parameter g with initial condition
(−1, 0, 1).

ADAPTIVE SYNCHRONIZATION

In this section, the adaptive synchronization between the proposed
system is achieved using nonlinear feedback control methodology
and master - slave scheme. The adaptive synchronization results
are verified using Lyapunov stability theorem. The master and
slave systems are considered as in (10) and (11) respectively.

ẋ1 = ax1 − ky1z1

ẏ1 = bsinx1 + x1z1

ż1 = gx1y1 − cz1 + d

(10)

ẋ2 = ax2 − ky2z2 + ux

ẏ2 = bsinx2 + x2z2 + uy

ż2 = gx2y2 − cz2 + d + uz

(11)

Here x1, y1, z1 are the signal variables of master system, x2, y2,
z2 are the signal variables of slave system, ux, uy and uz are the
adaptive controllers to be designed. The adaptive synchronization
errors can be written as, ex=x2 − x1, ey=y2 − y1 and ez=z2 − z1. By

(a) g = 2.5

(b) g = 3.5

(c) g = 3.6

Figure 9 Various periodic and chaotic attractors of system (2)
under the parameter gϵ[2, 6].

simple calculation, the adaptive controllers and the estimates of er-
ror dynamics can be obtained as given in (12) and (13) repectively.

ux = −âex − k̂(y1z1 − y2z2)− kxex

uy = −b̂(sinx2 − sinx1)− x2z2 + x1z1 − kyey

uz = −ĝ(x2y2 − x1y1) + ĉez − kzez

(12)

ėx = eaex + ek[y1z1 − y2z2]− kxex

ėy = eb[sinx2 − sinx1]− kyey

ėz = eg[x2y2 − x1y1]− ecez − kzez

(13)

Here, ea = a − â, eb = b − b̂, ec = c − ĉ, eg = g − ĝ, ek = k − k̂ are
the parameter errors, â, b̂, ĉ, ĝ and k̂ are the estimates of unknown
parameters a, b, c, g and k respectively and kx, ky and kz are the
gains of the controllers.
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Now, consider Lyapunov stability function as given in (14),

V̇ = ex ėx + ey ėy + ez ėz + ea ėa + eb ėb + ec ėc + eg ėg + ek ėk

= ea[(ex)
2 − ˙̂a] + ek[ex(y1z1 − y2z2)− ˙̂k]+

eb[ey(sinx2 − sinx1)− ˙̂b] + eg[ez(x2y2 − x1y1)− ˙̂g]+

ec[−(ez)
2 − ˙̂c]− [kx(ex)

2 + ky(ey)
2 + kz(ez)

2] (14)

The Eqn. (14) is a negative function when ˙̂a=(ex)2, ˙̂b = ey(sinx2 −
sinx1), ˙̂c=−(ez)2, ˙̂k=ex(y1z1 − y2z2) and ˙̂g=ez(x2y2 − x1y1). The
negative value of (14) represents that the system (2) is globally
synchronized and the synchronization errors are globally bounded.

The results obtained for adaptive synchronization are verified
using MATLAB software with the assumptions that the initial
conditions for master and slave systems are (−1, 0, 1) and (1,−1, 1)
respectively and gain of the controllers are kx,y,z=0.8. Figure 11
shows the synchronization results obtained in this work. The state
signals are synchronized after the time period t = 11sec and hence
the error signals reach zero after the time period t = 11sec.

(a) xy plane

(b) yz plane

(c) Lyapunov exponent plot

Figure 10 (a-b) Offset boosted attractors of system (2) with initial
condition (−1, 0, 1), (c) Lyapunov exponent plot of system (9).

(a) Synchronized x signal

(b) Synchronized y signal

(c) Synchronized z signal

(d) Synchronized error signal

Figure 11 (a-c) Synchronized state variables of master (Blue) and
slave (Red) system, (d) Synchronized error signals ex (Blue), ey
(Red) and ez (Green).
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CONCLUSION

A new chaotic system with two wing attractor is developed. The
proposed system satifies the basic conditions required to be a
chaotic such as unstable equilibrium point and atleast one positive
Lyapunov value. The chaotic nature in the proposed system is
also verified using the bifurcation diagram, Lyapunov exponent
plot and attractor diagram. The offset boosting control behavior
of the new system is verified by means of attractor diagram and
Lyapunov exponent plot. The offset boosted system has constant
Lyapunov exponent values which means that the system maintain
its chaotic nature for the various values of booster parameter. The
adaptive controllers are designed for the adaptive synchronization
of proposed system using feedback control method. All the state
signal of proposed system can be synchronized and the synchro-
nization errors become zero after the small time period. Due to
these properties, the proposed system has complex dynamic be-
haviour, infinitely multiple attractors which can be used in many
engineering applications.
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