
USBTU 1(2): –,2022 

35 
 

 

 

Comparative Study of Control Algorithms for 2-Degree of Freedom RR Planar Robot 

Manipulator Using Partical Swarm Optimization 

Umut MAYETİN1* (Orcid ID: 0000-0002-9114-088X) 

Serdar KÜÇÜK1, (Orcid ID: 0000-0002-5543-7539) 

1Kocaeli University, Faculty of Technology, Department of Biomedical Engineering, Kocaeli 

*Sorumlu yazar (Corresponding author): umayetin41@gmail.com 

 

Geliş Tarihi (Received): 15.10.2022                             Kabul Tarihi (Accepted): 18.11.2022 

Abstract 

In this paper; Proportional-Integral-Derivative Control, Fuzzy Logic and Integral Control, 

Sliding Mode Control algorithms are examined for trajectory control of 2 Degrees-of-Freedom 

(DOF) Planar Robot Manipulator (PRM). Firstly, conceptual model of the 2-DOF PRM is 

designed by using 3-dimensional design software. Subsequently, the actual mechanical 

architecture of 2-DOF PRM is constructed with imperfect transmission system. 

Kinematics/dynamics equations and control algorithms of the planar robot manipulator are 

embedded to the digital signal processor by using Matlab/Simulink toolbox. Afterwards, the 

parameters of control methods are tuned by using Partical Swarm Optimization (PSO). Four 

different experiments are carried out by using the same circular Cartesian trajectory in order to 

test the robustness of the control algorithms. Finally, the comparison results of the control 

algorithms obtained from the actual mechanism of the 2-DOF PRM are presented and 

discussed.  

Keywords: Planar robot manipulator, proportional-integral-derivative control, fuzzy logic and 

integral control, sliding mode control, particle swarm optimization, digital signal processor
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INTRODUCTION 

The major task of industrial robot manipulators is to operate its end-effector with high precision. 

In general, robot manipulators are forced to track the desired trajectory for performing required 

task. However, a position error exists between the desired and actual trajectories while the 

manipulator performs this task. There are several types of position errors for industrial robot 

manipulators which result from improper production of the manipulator’s mechanical 

components (geometric errors), gravity, joint compliances, gear transmission (non-geometric 

errors) (Gong et al., 2000) and controllers (Mavroidis et al., 1997). Geometric and non-

geometric errors can be eliminated by manufacturing the manipulator parts precisely and using 

the error calibration models (Jang et al., 2001). The controller errors might be minimized by 

selecting the proper control algorithm for the specified robotic manipulator.  

Several scientific studies have been focused on control algorithms for 2-Degree of Freedom 

(DOF) Planar Robot Manipulator (PRM) during the last decades. Most of these control 

algorithms have been tested by using computer simulations only. It is well known that there can 

be differences between simulation and experimental results in general. In simulation studies, 

the practical aspects of physical mechanisms such as friction, noise and actuator dynamics are 

not mostly considered. Therefore testing robustness of the control algorithms only in a computer 

environment yields incomplete results (Reyes and Kelly, 2001). On the other hand, 

experimentally validated control algorithms are of great importance in terms of their potential 

implementation to industrial robotic manipulators. Despite a great amount of simulation work 

in control algorithms for 2-DOF PRM (Wang et al., 2010; Bingul and Karahan, 2011, Nagesh 

et al., 2012; Queen et al., 2012; Acob et al., 2013; Elkhateeb et al., 2017; Ozkan, 2018; 

Sharkawy and Koustoumpardis, 2019; Zakia et al., 2019; Baccouch and Dodds, 2020; Ilgen et 

al., 2021), limited number of experimental studies have been completed for 2-DOF PRM (Reyes 

and Kelly, 2001; Parra-Vega et al., 2003; Reyes and Rosado, 2005; Osypiuk et al., 2006; 

Sharkawy et al., 2011; Garcia-Rodriguez and Parra-Vega, 2012; D'ippolito et al., 2014; 

Kormushev et al., 2015). Most of the experimental studies include performance analysis of 

solely one control method or comparison of two different control algorithms only (Reyes and 

Kelly, 2001; Queen et al., 2012; Acob et al., 2013; Zakia et al., 2019; Ilgen et al., 2021). There 

are very few studies comparing more than two algorithms in the same paper like Sharkawy et 

al. (2011). Experimental control algorithms for 2-DOF PRM are mostly carried out in horizontal 

plane (Parra-Vega et al., 2003; Sharkawy et al., 2011; Garcia-Rodriguez and Parra-Vega, 2012; 

D'ippolito et al., 2014; Kormushev et al., 2015). Real performance of control algorithms may 

not be measured properly in the horizontal plane since gravitational force is not any effect on 
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the control algorithms in horizontal plane. Only a few experimental studies are carried out in 

vertical plane (Reyes and Kelly, 2001; Reyes and Rosado, 2005; Osypiuk et al., 2006). Almost 

all of the experimental studies about 2-DOF PRM are related to Proportional-Integral-

Derivative (PID) control and its derivatives. Only Sharkawy et al. (2011) used four algorithms 

Proportional Derivative (PD), Computed Torque Control (CTC), Sliding Mode Control (SMC) 

and Fuzzy Logic Control (FLC) for tuning the control parameters of 2-DOF PRM. However, 

this study suffers from two conditions under consideration, i) 2-DOF PRM manipulator is in 

the horizontal plane and ii) any optimization algorithm is not used for tuning control parameters.  

Contributions of this paper can be stated as follows: i) On the contrary of experimental studies 

mentioned above, this paper is the first study that compares the trajectory tracking performances 

of three control methods (PID, FLIC-Fuzzy Logic and Integral Control and SMC) at the same 

study considering 2-DOF PRM in the vertical plane where gravitational force have full effect, 

ii) this paper is one of the few experimental studies that uses PSO algorithm for tuning control 

parameters of three control methods at the same time. PSO algorithm is especially selected in 

this study as an optimization algorithm since it has been proven an effective technique for 

tuning control parameters (Poli, 2008; Wang et al., 2010; Bingul and Karahan, 2011; Nagaraj 

and Vijayakumar, 2011; Zhang et al., 2015; Sungthonga and Assawinchaichoteb, 2016). 

Advanced optimization algorithms like PSO, Artificial Bee Colony (ABC) and Genetic 

Algorithm (GA) generate better trajectory tracking results than traditional analytical methods. 

iii) Since 2-DOF PRM presented in this study is manufactured in the laboratory, it has imperfect 

axial design, higher backlashes in the gearboxes and higher friction than the mass production 

industrial robot manipulators. These imperfect conditions make 2-DOF PRM an appropriate 

robot control test platform for comparing the robustness of the control algorithms. Therefore 

comparative results obtained from PID, FLIC and SMC in this study are especially valuable 

since they are attained from an imperfect robot mechanism. iv) Achieving close trajectory 

tracking performance from imperfect mechanism of 2-DOF PRM to the advanced robotic 

systems which have expensive drivers like in Garcia-Rodriguez and Parra-Vega (2012) and 

expensive control board like in D'ippolito et al. (2014) is the another contribution of this study.  

 

MATERIAL AND METHODS 

Dynamic model of the 2-DOF PRM 

The rigid body model of 2-DOF PRM illustrated in Figure 1 composes of two revolute joints. 

Two direct current (DC) motors are used for actuating these revolute joints.  The first DC motor 
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is directly coupled to the first link with the maximum torque of about 5𝑁𝑚 while the second 

DC motor is indirectly coupled to the second link trough a gearbox as shown in Figure 1.  

 

 

Figure 1. The rigid body of the two-link planar robot manipulator  

 

Figure 2 illustrates the dynamics model of 2-DOF PRM given in Figure 1. The m1 and m2 

illustrate the total masses of links 𝑙1 and 𝑙2, respectively. The 𝑐𝑚1
= [𝑐𝑚1,𝑥 𝑐𝑚1,𝑦 𝑐𝑚1,𝑧]𝑇 

and 𝑐𝑚2
= [𝑐𝑚2,𝑥 𝑐𝑚2,𝑦 𝑐𝑚2,𝑧]𝑇 are the mass centers of the links l1 and l2, respectively. 

Letter 𝑟𝑖  illustrates the distance between point 𝐴𝑖 and the center of mass of link 𝑙𝑖, where 𝑖 =

1 and 2. Considering the above explanations and Figure 2, the torque equations (𝜏1 𝑎𝑛𝑑 𝜏2) are 

obtained as follows where  𝜃𝑖 , �̇�𝑖  and �̈�𝑖 are the positions, velocity and accelerations, 

respectively. 
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Figure 2. The dynamics model of 2-DOF PRM 
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𝜏1 = [𝑚2𝑙1
2 + 2𝑚2𝑙1𝑐𝑚2𝑥𝑐𝑜𝑠(𝜃2) − 2𝑚2𝑙1𝑐𝑚2𝑦𝑠𝑖𝑛(𝜃2) + 𝑚2𝑐𝑚2𝑥

2 + 𝑚2𝑐𝑚2𝑦
2 + 𝐼𝑧𝑧2 +

𝑚1(𝑐𝑚1𝑥
2 + 𝑐𝑚1𝑦

2 ) + 𝐼𝑧𝑧1]𝜃1̈ + [𝑚2𝑙1𝑐𝑚2𝑥𝑐𝑜𝑠(𝜃2) − 𝑚2𝑙1𝑐𝑚2𝑦𝑠𝑖𝑛(𝜃2) + 𝑚2𝑐𝑚2𝑥
2 +

𝑚2𝑐𝑚2𝑦
2 + 𝐼𝑧𝑧2]𝜃2̈ + [−2𝑚2𝑙1𝑐𝑚2𝑥𝑠𝑖𝑛(𝜃2) − 2𝑚2𝑙1𝑐𝑚2𝑦𝑐𝑜𝑠(𝜃2)]𝜃1̇𝜃2̇ +

[−𝑚2𝑙1𝑐𝑚2𝑥𝑠𝑖𝑛(𝜃2) − 𝑚2𝑙1𝑐𝑚2𝑦𝑐𝑜𝑠(𝜃2)]𝜃2
2̇ + 𝑔𝑚1 (𝑐𝑚1𝑦𝑠𝑖𝑛(𝜃1) + 𝑐𝑚1𝑥𝑐𝑜𝑠(𝜃1)) +

𝑔𝑚2 (𝑐𝑚2𝑦𝑠𝑖𝑛(𝜃1 + 𝜃2) + 𝑐𝑚2𝑥𝑐𝑜𝑠(𝜃1 + 𝜃2) − 𝑙1𝑐𝑜𝑠(𝜃1))  

(1a) 

𝜏2 = [𝑚2𝑙1𝑐𝑚2𝑥𝑐𝑜𝑠(𝜃2) − 𝑚2𝑙1𝑐𝑚2𝑦𝑠𝑖𝑛(𝜃2) + 𝑚2𝑐𝑚2𝑥
2 + 𝑚2𝑐𝑚2𝑦

2 + 𝐼𝑧𝑧2]𝜃1̈ +

[𝑚2𝑐𝑚2𝑥
2 + 𝑚2𝑐𝑚2𝑦

2 + 𝐼𝑧𝑧2]𝜃2̈[𝑚2𝑙1𝑐𝑚2𝑦𝑐𝑜𝑠(𝜃2) + 𝑚2𝑙1𝑐𝑚2𝑥𝑠𝑖𝑛(𝜃2)]𝜃1
2̇ +

𝑔𝑚2 (𝑐𝑚2𝑦𝑠𝑖𝑛(𝜃1 + 𝜃2) − 𝑐𝑚2𝑥𝑐𝑜𝑠(𝜃1 + 𝜃2))  

(1b) 

Discrete time mathematical model of DC motor 

The discrete-time control scheme illustrated in Figure 3 includes in blocks of desired Cartesian 

trajectory, inverse kinematics, dynamic model, controller and DC motor.  The controller block 

includes PID, FLIC and SMC.  

 

 

Figure 3. The discrete-time control scheme for trajectory control of 2-DOF PRM 

 

The symbols used in Figure 3 are as follows: 𝜃𝑑𝑖 is the desired or reference position, 𝜃𝑚𝑖 is the 

measured position, 𝑒𝑖 is the error between desired and measured position, 𝜏𝑖 is the computed 

torque, 𝑉𝑖 is the motor armature voltage, where 𝑖 = 1 and 2. The desired joint angles are 

obtained by performing inverse kinematics. The equations related to the electrical part of DC 

motor are given by 
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𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
+ 𝑅𝑎𝑖𝑎 = 𝑉𝑎 − 𝐸𝑚  and  𝐸𝑚 = 𝐾𝑏

𝑑𝜃𝑚

𝑑𝑡
 (2) 

where 𝐿𝑎, 𝑅𝑎, 𝑉𝑎, 𝐸𝑚 and 𝐾𝑏 are the armature inductance, armature resistance, armature voltage, 

back electromotor-force and back electromotor-force constant, respectively. The equations 

related to the mechanical part of DC motor are stated as 

 

𝐽𝑚
𝑑2𝜃𝑚

𝑑𝑡2
+ 𝐵𝑚

𝑑𝜃𝑚

𝑑𝑡
= 𝜏𝑚 −

1

𝑛
𝜏𝑙 and 𝜏𝑚 = 𝐾𝑚𝑖𝑎 (3) 

where 𝐽𝑚, 𝜃𝑚, 𝐵𝑚, 𝜏𝑚, 𝜏𝑙, 𝑛, 𝐾𝑚, and 𝑖𝑎 illustrate the rotor inertia, rotor position, damping 

constant, generated torque, load torque, gearbox ratio, torque constant and armature current, 

respectively. DC motor model is obtained as in Figure 4 when Equation 2 and Equation 3 are 

combined in Laplace domain. In Figure 4, Ω𝑚 denotes rotor velocity, 𝐺1(𝑠) = (
1

𝐿𝑎𝑠+𝑅𝑎
) 

and 𝐺2(𝑠) = (
1

𝐽𝑚𝑠+𝐵𝑚
). 

 

Figure 4. Block diagram of DC motor model 

 

The following transformations can be performed to derive the Discrete-time Motor Model 

(DMM). 

𝐺𝑖(𝑧) = (1 − 𝑧−1)𝒵 (
𝐺𝑖(𝑠)

𝑠
) (4a) 

where i = 1 and 2. Let’s substitute Gi(s) into the Equation 4a 

 

𝐺𝑖(𝑧) = 𝛽𝑖(1 − 𝑧−1)𝒵 (
1

𝑠(𝑠 + 𝛼𝑖)
)  (4b) 
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where  𝛽1 =
1

𝐿𝑎
,   𝛽2 =

1

𝐽𝑚
,  𝛼1 =

𝑅𝑎

𝐿𝑎
 and  𝛼2 =  

𝐵𝑚

𝐽𝑚
. The following expression is derived by 

using partial fractions 

 

𝐺𝑖(𝑧) = 𝛽𝑖(1 − 𝑧−1)𝒵 (
𝐴

𝑠
+

𝐵

𝑠 +  𝛼𝑖
) = 𝛽𝑖(1 − 𝑧−1)𝒵

1

 𝛼𝑖
(

1

𝑠
−

1

𝑠 +  𝛼𝑖
) (4c) 

  

where  𝐴 = −𝐵 =
1

 𝛼𝑖
. Equation 4d is obtained by transforming (

1

s
−

1

s+ αi
)  from s domain to z 

domain.  

𝐺𝑖(𝑧) =
𝛽𝑖

 𝛼𝑖

(1 − 𝑧−1) (
𝑧

𝑧 − 1
−

𝑧

𝑧 − 𝑒−𝛼𝑖𝑇 
)  (4d) 

where 
𝛽1

 𝛼1
=

1

𝑅𝑎
 and  

𝛽2

 𝛼2
=

1

𝐵𝑚
 and T illustrates the sampling time. 𝐺1(𝑧) and 𝐺2(𝑧) are obtained 

as follows by substituting 
1

𝑅𝑎
 and 

1

𝐵𝑚
 instead of 

𝛽1

 𝛼1
  and 

𝛽2

 𝛼2
 into Equation 4d, respectively.  

 

𝐺1(𝑧) =
1

𝑅𝑎

(
𝑧 − 1

𝑧
) (

𝑧

𝑧 − 1
−

𝑧

𝑧 − 𝑒−𝛼1𝑇 
) =

1

𝑅𝑎

(1 −
𝑧 − 1

𝑧 − 𝑒−𝛼1𝑇 
) =

1

𝑅𝑎

(
𝑧 − 𝑒−𝛼1𝑇 − 𝑧 + 1

𝑧 − 𝑒−𝛼1𝑇
) (4e) 

𝐺2(𝑧) =
1

𝐵𝑚

(
𝑧 − 1

𝑧
) (

𝑧

𝑧 − 1
−

𝑧

𝑧 − 𝑒−𝛼2𝑇 
) =

1

𝐵𝑚

(1 −
𝑧 − 1

𝑧 − 𝑒−𝛼2𝑇 
) =

1

𝐵𝑚

(
𝑧 − 𝑒−𝛼2𝑇 − 𝑧 + 1

𝑧 − 𝑒−𝛼2𝑇
) (4f) 

After simplification 𝐺1(𝑧) and 𝐺2(𝑧) are obtained as 

 

𝐺1(𝑧) =
1

𝑅𝑎

1 − 𝑒−𝛼1𝑇

𝑧 − 𝑒−𝛼1𝑇
    and     𝐺2(𝑧) =

1

𝐵𝑚

1 − 𝑒−𝛼2𝑇

𝑧 − 𝑒−𝛼2𝑇
 (4g) 

 

Finally, block diagram of discrete-time motor model is obtained as in Figure 5. 

 

 

Figure 5. Discrete-time motor model 
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PID control algorithm 

Although several advanced controllers have been developed for robot manipulators, PID 

controllers are still one of the extensively preferred algorithms in real-time industrial control 

applications (Xue et al., 2002; Kuo, 2009). The simple structure, easily tuned control parameters 

and providing effective and reliable results in practical applications are the basic reasons why 

the PID controllers are still preferred. Adjusting the proportional (𝑘𝑝), derivative (𝑘𝑑) and 

integral (𝑘𝑖) gains are the main issue of PID controller. In this method, initially an error “𝑒(𝑡)” 

(difference between actual and desired trajectory) is computed. Afterwards, this error is tried to 

be minimized by adjusting the control signal below. 

 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝜏
𝑡

0

+ 𝑘𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (5) 

  

The proportional gain 𝑘𝑝 adjusts speed of system response. If the 𝑘𝑝 is set to a large value, 

system response can become unstable. Therefore, a suitable  𝑘𝑝 value is required to be tuned 

for operating the system properly. Derivative gain 𝑘𝑑 is used for decreasing magnitude of 

overshoot caused by integral components and improving transient response of the system. In 

general, very low derivative time constant is used in practical control systems since derivative 

response is very sensitive to noise signals. Finally, integral gain  𝑘𝑖 is used for eliminating the 

steady-state error. The discrete-time PID controller embedded to the controller block in Figure 

3 is given in Figure 6. 

 

 

Figure 6. Discrete-time PID controller 

 



USBTU 1(2): –,2022 

43 
 

Computed torque model illustrated in Figure 6 provides an additional control signal that 

eliminates disturbances caused by the joint masses, velocities and accelerations. The following 

current equation can be obtained by using Equation 3 for finding additional control signal. 

 

𝑖𝑎 =
𝐽𝑚

𝐾𝑡
�̈� +

𝐵𝑚

𝐾𝑡
�̇� +

1

𝑛𝐾𝑡
𝜏𝐿 (6) 

The additional control signal taken from output of computed torque model can be obtained as 

follows if the Equation 6 is substituted in Equation 2.  

 

𝑉𝑎 =
𝑅𝑎𝐽𝑚

𝐾𝑡
�̈� +

𝑅𝑎𝐵𝑚

𝐾𝑡
�̇� +

𝑅𝑎

𝑛𝐾𝑡
𝜏𝐿 +

𝐿𝑎𝐽𝑚

𝐾𝑡
𝜃 +

𝐿𝑎𝐵𝑚

𝐾𝑡
�̈� +

𝐿𝑎

𝑛𝐾𝑡
�̇�𝐿 + 𝐾𝑏�̇� (7) 

Fuzzy logic and integral controller 

The main concept of fuzzy logic was first proposed by Zadeh (1972, 1973). After its suggestion, 

FLC has been increasingly used in robotic manipulators which do not have precise dynamic 

model. Robustness, easy modification, fast and cheaper implementation are the some major 

advantageous of FLC that comprises of three main stages namely, fuzzification, inference 

mechanism and defuzzification. The fuzzification stage converts input data into a fuzzy set 

using membership functions. There are several different types of membership functions 

(triangular, trape-zoidal, piecewise linear, Gaussian, or singleton) used in fuzzy control system. 

The triangular membership function used also in this study is chosen in general due to its simple, 

familiar structure and easy computation. Inference mechanism criticizes the conveniences of 

the control rules for current step and then decides which input is applied to system. There are 

two types of inference mechanism namely, Mamdani and Sugeni. Mamdani type is the most 

preferred one (Panjehfouladgaran et al., 2010) and used also in this study. Defuzzification stage 

converts membership degrees of fuzzy set into a real value. There are several defuzzification 

methods (Souse and Bose, 1994; Driankov et al., 1996; Rao and Saraf, 1996) proposed for FLC 

namely, Center of Area (COA), Center of Sums (COS), Height Method (HM), Mean of Maxima 

(MOM), Center of Largest Area (COLA), and First of Maxima (FOM). COA is used as 

defuzzification method in this study. Control performance of system is highly dependent on the 

membership functions and fuzzy control rules (Simon, 2002). The general architecture of FLC 

is shown in Figure 7. 
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Figure 7. The general architecture of FLC 

 

Discrete-time FLIC embedded to the controller block as shown in Figure 4 is given in Figure 8 

where 𝑓𝐾𝑖𝑖 illustrates the integral coefficient of the FLIC, i=1 and 2.  

 

 

Figure 8. Discrete-time FLIC controller block 

 

Input variables are position errors “𝑒” (𝑟𝑎𝑑𝑖𝑎𝑛 −  𝑟𝑎𝑑) and derivative of position errors “𝑑𝑒” 

(𝑟𝑎𝑑𝑖𝑎𝑛/𝑠𝑒𝑐𝑜𝑛𝑑 −  𝑟𝑎𝑑/𝑠) while output variable is the motor voltage (𝑉𝑜𝑙𝑡 −  𝑉) of the first 

and second joints. Values of position error inputs and derivative of position error inputs are 

scaled from −1 𝑟𝑎𝑑 to +1 𝑟𝑎𝑑 and from −10 𝑟𝑎𝑑/𝑠 to +10 𝑟𝑎𝑑/𝑠, respectively, while motor 

voltage varies between −24𝑉 and +24𝑉 for the first and second joints. Fuzzification operator 

maps input variables to five linguistic rules. Gaussian membership functions are preferred for 

input and output variables. Figure 9 illustrates initial fuzzy membership functions.  
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Figure 9. The initial fuzzy membership functions 

 

Fuzzy logic linguistic rules are summarized in Table 1 where NL, NS, ZZ, PS, PL are negative 

large, negative small, zero-zero, positive small and positive large, respectively. Centroid area 

is used for defuzzification process that converts fuzzy sets to the control signal 𝑢𝑖. 

 

Table 1. The fuzzy logic linguistic rules 

de \ e  NL NS ZZ PS PL 

NL NL NL NL NS ZZ 

NS NL NL NS ZZ PS 

ZZ NL NS ZZ PS PL 

PS NS ZZ PS PL PL 

PL ZZ PS PL PL PL 

 

Sliding mode control 

The sliding mode control has been received more attention from the robotic community 

especially last decades due to its successfully tracking performance of the desired trajectory 

under improper conditions such as modeling errors, parameter uncertainties and disturbances 

(Utkin, 1977; Young, 1978; Slotine, 1985). SMC design is composed of two different stages. 

The first stage involves designing the switching function selected from the system trajectories. 

These trajectories are called sliding modes. The sliding modes that do not depend on both 

system dynamics and control law can be obtained by changing the parameters of switching 

function. The second stage composes of designing sliding mode control law that involves both 
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a corrective control law and a suitable sliding surface. Corrective control law forces system 

trajectories to reach the sliding surface and remains there at all times. The system dynamics and 

switching surface are given in state space as follows. 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑓(𝑡, 𝑥) (8) 

 

where 𝑥 ∈ 𝑅𝑛 represents the states, 𝐴 ∈ 𝑅𝑛𝑥𝑛, 𝐵 ∈ 𝑅𝑛𝑥𝑚 𝑢 ∈ 𝑅𝑚𝑥1 denotes control input 

and 𝑓(𝑡, 𝑥) ∈ 𝑅𝑛𝑥1 illustrates disturbance input or unmodeled dynamic term. The discretized 

counterpart of Equation 8 is obtained by performing “𝑧 = 𝑇𝑥” coordinate transformation and 

taking time derivative of the resultant transformation. 

 

�̇�(𝑡) = 𝑇�̇� (9) 

 

One can obtain the following equation after substituting the �̇�(𝑡) into Equation 9 and 

substituting “𝑥 = 𝑇−1𝑧” into the resultant equation. 

 

�̇� = 𝑇𝐴𝑇−1𝑧 + 𝑇𝐵𝑢 + 𝑇𝑓 = 𝐴∗𝑧 + 𝐵∗𝑢 + 𝑓∗ (10) 

 

where  𝑇𝐴𝑇−1 = 𝐴∗, 𝑇𝐵 = 𝐵∗ and 𝑇𝑓 = 𝑓∗. The main purpose of the sliding mode control law 

(Utkin, 1977) is to force the variable error and its derivative to zero. In this study, the position 

error 𝑒(𝑘) and its derivative �̇�(𝑘) are chosen as coordinate variables 𝑧1(𝑘) and 𝑧2(𝑘), 

respectively.  

𝑧1(𝑘) = 𝑒(𝑘) = 𝜃𝑟(𝑘) − 𝜃𝑚(𝑘) (11a) 

𝑧2(𝑘) = �̇�1 = �̇�(𝑘) = �̇�𝑟(𝑘) − �̇�𝑚(𝑘) (11b) 

 

where 𝜃𝑟(𝑘) and 𝜃𝑚(𝑘) are the desired reference position and actual position (rotor position) 

at the kth sampling interval, respectively. The �̇�2(𝑘) can be stated by using time derivative of  

�̇�1 as 

�̇�2(𝑘) = �̈�(𝑘) = �̈�𝑟(𝑘) − �̈�𝑚(𝑘) (12) 

 

Equation 8 can also be written as follows taking Equations 10, 11a, 11b and 12 into account. 
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[
�̇�1

�̇�2
] = [

0 1
𝐴21

∗ 𝐴22
∗ ] [

𝑧1

𝑧2
] + [

0
𝑏2

∗] 𝑢 + [
0

𝑓2
∗]  

(13) 

 

 

where  𝐴21
∗ ,  𝐴22

∗ , 𝑏2
∗, 𝑧1, 𝑧1, 𝑓2

∗ and 𝑢 ∈ 𝑅. The system dynamic given in Equation 13 is 

transformed into two sub-systems in order to derive the slope matrix of the sliding surface. The 

first sub-system given by Equation 14 does not include the control input while the second sub-

system stated in Equation 15 contains the control input. 

 

�̇�1 = 𝑧2 (14) 

�̇�2 = 𝐴21
∗ 𝑧1 + 𝐴22

∗ 𝑧2 + 𝑏2
∗𝑢 + 𝑓2

∗ (15) 

  

where u is the control input. In order to find A21
∗ , A22

∗ , b2
∗  and f2

∗ in terms of system parameters 

the term θ̈r(k) − θ̈m(k) can be written instead of ż2 on the left side of Equation 15. The 

following equation can be obtained after substituting the θ̈m in the resultant equation where θ̈m 

can be determined by using the electrical and mechanical equations given by Equation 2 and 

Equation 3, respectively.  

 

𝐴21
∗ 𝑧1 + 𝐴22

∗ 𝑧2 + 𝑏2
∗𝑢 + 𝑓2

∗ = �̈�𝑟 − 𝜇1�̇�𝑚 − 𝜇2𝑉𝑎 +
1

𝑛𝐽𝑚
𝜏𝐿 

(16) 

 

  

where μ1 = (−
Kb

JmRa
−

Bm

Jm
) and μ2 =

Km

JmRa
. Equality does not change when the term μ1θ̇r is 

added to the both sides of Equation 16. The following equation is obtained after transferring 

the term μ1θ̇r to right-hand side of the equation. 

 

𝐴21
∗ 𝑧1 + 𝐴22

∗ 𝑧2 + 𝑏2
∗𝑢 + 𝑓2

∗ = �̈�𝑟 − 𝜇1(�̇�𝑟 − �̇�𝑚) + 𝜇1�̇�𝑚 − 𝜇2𝑉𝑎 +
1

𝑛𝐽𝑚
𝜏𝐿 

(17) 

 

  

The above equation can be rewritten as follows since θ̇r − θ̇m = z2. 

 

𝐴21
∗ 𝑧1 + 𝐴22

∗ 𝑧2 + 𝑏2
∗𝑢 + 𝑓2

∗ = −𝜇1𝑧2 − 𝜇2𝑉𝑎 + [�̈�𝑟 + 𝜇1�̇�𝑚 +
1

𝑛𝐽𝑚
𝜏𝐿] 

(18) 

 

  

The parameters 𝐴21
∗ , 𝐴22

∗ , 𝑏2
∗ and 𝑓2

∗ can be extracted from Equation 18 as follows. 
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𝐴21
∗ = 0    𝐴22

∗ = −𝜇1 = − (−
𝐾𝑏

𝐽𝑚𝑅𝑎
−

𝐵𝑚

𝐽𝑚
) 

𝑏2
∗ = −𝜇2 = −

𝐾𝑚

𝐽𝑚𝑅𝑎
  𝑓2

∗ = �̈�𝑟 + 𝜇1�̇�𝑚 +
1

𝑛𝐽𝑚
𝜏𝐿 

(19) 

  

In the new situation, the state-space equations can be written as 

 

[
�̇�1

�̇�2
] = [

0 1
0 𝐴22

∗ ] [
𝑧1

𝑧2
] + [

0
𝑏2

∗] 𝑢 + [
0

𝑓2
∗] 

(20) 

 

 

where �̇�1 = 𝑧2 and �̇�2 = 𝐴22
∗ 𝑧2 + 𝑏2

∗𝑢 + 𝑓2
∗. The following sliding surface can be introduced in 

order to design the controller. 

𝜎(𝑘) = 𝑆𝑇𝑧(𝑘) (21) 

 

where S is a vector and its elements 𝑆1 and 𝑆2 ∈ 𝑅 are selected such that they drive the state 

trajectories to the following sliding surface where sliding dynamics is globally asymptotically 

stable. 

𝜎(𝑘) = 𝑆1𝑧1(𝑘) + 𝑆2𝑧2(𝑘) = 0 (22) 

  

where 𝑆1 ≠ 0 and 𝑆2 ≠ 0. The controller can be designed considering corrective control (𝑢c) 

and equivalent control (𝑢eq). The corrective control forces the system trajectories to reach 

sliding surface while the equivalent control gets the derivative of the sliding surface equal to 

zero and remains on the sliding surface for all the time. The following equation is obtained after 

performing derivative of the sliding surface given by Equation 22 and selecting 𝑆2 = 1. 

 

�̇� = 𝑆1�̇�1 + �̇�2 = 0  (23) 

  

Let’s substitute �̇�1 and �̇�2 in Equation 23 

 

�̇� = (𝑆1 + 𝐴22
∗ )𝑧2 + 𝑏2

∗𝑢eq + 𝑓2
∗ = 0  (24) 

 

The equivalent control that composes of low frequency part of controller is defined as 
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𝑢eq = −
1

𝑏2
∗ [(𝑆1 + 𝐴22

∗ )𝑧2 + 𝑓2
∗] (25) 

  

The corrective control (𝑢c) comprises high frequency part of controller and is stated as 

 

𝑢c = −𝑘. 𝑠𝑖𝑔𝑛(𝜎(𝑘))  (26) 

  

As parameter k gets larger values, system reaches to sliding surface faster. When k gets much 

larger, amplitude of chattering gets higher. Total control signal is finally obtained as 

 

𝑢 = 𝑢c + 𝑢eq  (27) 

 

The block diagram of the control signal of SMC method is shown in Figure 10. 

 

 

Figure 10. Sliding Mode Controller 

Particle swarm optimization 

Activities of an individual in a swarm are considered trivial in general, however, their 

communal actions present great importance for scientists to develop novel computational 

methods. Behaviors of swarms such as birds, ants and bees can be used for finding new 

techniques to handle complex problems more efficiently. The particle swarm optimization 

which has been enormously successful (Poli, 2008) is one of the best techniques developed 

recently. PSO algorithm optimizes the problem iteratively in order to have a population or a 

swarm of candidate solutions. Every individual in the swarm is accepted as a particle in the 
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search space which has own position and velocity. The swarm of particles travels through the 

search space in accordance with a few simple formulas looking for the best solution (Kennedy 

and Eberhart, 1995). Each particle has position and velocity based on its own performance as 

well as the performance of another selected guide particle. In general, the guide particle is 

selected as the best current performing particle in the swarm. 

PSO algorithm based on the movement and intelligence of swarms (Zhang et al., 2015) 

produces generally better results in control problems than several other optimization algorithms 

(Nagaraj and Vijayakumar, 2011; Zhang et al., 2015; Sungthonga and Assawinchaichoteb, 

2016). Recently, Bingul and Karahan (2011) and Elkhateeb and Badr (2017) studied trajectory 

control of 2-DOF PRM which is the same configuration under consideration here. Bingul and 

Karahan (2011) used PSO while Elkhateeb and Badr (2017) used ABC algorithm for tuning 

controller parameters. Comparisons of two studies illustrate that PSO-PID controller produces 

smaller trajectory tracking error for 2-DOF PRM than ABC–PID controller. Sungthonga and 

Assawinchaichoteb (2016) used PSO, GA and traditional Ziegler-Nichols (ZN) method for 

optimal PID parameters of heater temperature control system. Comparison results illustrate that 

PSO-PID controller generates better step response than GA and ZN for optimizing parameters 

of PID controller. Nagaraj and Vijayakumar (2011) used GA, Evolutionary Programming (EP), 

Ant Colony Optimization (ACO) and PSO algorithms for tuning PID parameters.  Comparisons 

showed that rise time, settling time and integral square error obtained from PSO algorithm are 

obtained better than GA, EP and ACO algorithms.  

 

EXPERIMENTS WITH 2-DOF PRM 

Experimental setup 

2-DOF PRM shown in Figure 11 is produced by using homogenous aluminum beams. It 

consists of two DC motors, motor drivers, links, position sensors, gripper and controller unit.  

 

 

Figure 11. The 2-DOF PRM 
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Faulhaber DC motor with a gear ratio of 86: 1 is directly coupled to the first link while the 

Maxon DC motor with the same gear ratio is indirectly coupled to the second link by a bevel 

gear with a ratio of 44: 13. Both DC motors are supplied by a 24𝑉. The incremental encoders 

are used for measuring the actual joint positions. The 3600 𝑝𝑝𝑟 (pulses per revolution) encoder 

is directly coupled to the first motor shaft while 500 𝑝𝑝𝑟 encoder directly coupled to the back 

of the second motor shaft. In order to perform real-time implementation, the kinematics and 

control algorithms of 2-DOF PRM are embedded to TMS320F28335 DSP using MATLAB 

Simulink toolbox. The block diagram of the control system is illustrated in Figure 12. 

 

 

Figure 12. The block diagram of the control system 

 

In the trajectory planning block in Figure 12, end-effector motion is converted from Cartesian 

space to the joint space. The terms theta1 & theta2 and theta1dot & theta2dot denote desired 

positions and velocities of the first and second joints, respectively. The control system block in 

Figure 12 includes controller, signal conversion and encoder units illustrated in Figure 13.  
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Figure 13. The control system block including controller, signal conversion and encoder. 

Controller unit includes in PID, FLIC and SMC algorithms. Signal conversion unit converts the 

voltage (𝑢𝑖) supplied by controller unit into the Pulse Width Modulation (PWM) signal and 

direction signal for motor drivers. Encoder unit measures actual position in radians. Error is the 

difference between measured actual position and desired position. 

 

Experimental results 

Kinematics and dynamic parameters of 2-DOF PRM are illustrated in Table 2 while DC motor 

parameters used in this study are shown in Table 3. It should be noted that since viscous frictions 

of DC motors are not illustrated in datasheets, they are obtained from experimental tests. 

  

Table 2. The kinematics and dynamic parameters of 2-DOF PRM 

 Notation Value Unit 

Link1 length L1 0,23 m 

Link2 length L2 0,25 m 

Link1 mass m1 0,91335 kg 

Link2 mass m2 0,36375 kg 

Link1 center of mass 
cm1,x 

cm1,y 

cm1,z 

0,11950 

0 

0,00074 

m 

Link2 center of mass 
cm2,x 

cm2,y 

cm2,z 

0,11945 

-0,00110 

0,00254 

m 

Link1 inertia 
Ixx1

 

Iyy1
 

Izz1
 

0,547.10-3 

5,727.10-3 

5,360.10-3 

kg m2 

Link2 inertia 
Ixx2

 

Iyy2
 

Izz2
 

0,177.10-3 

3,634.10-3 

3,561.10-3 

kg m2 

Gravity 𝑔 9,81 m/sn2 

4

vel1

3

pos1
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dir1
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pwm1
v olt
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Table 3. Numerical values for the DC motors 

 Notation Value Unit 

Armature voltage Va1 24 V 

 Va2 24 V 

Rotor inertia Jm1 4,1.10-6 kg m2 

 Jm2 1,05.10-6 kg m2 

Armature resistance  Ra1 1,63 Ω 

 Ra2 7,31 Ω 

Armature inductance La1 0,270 mH 

 La2 0,832 mH 

Torque constant Km1 0,0377 Nm/A 

 Km2 0,044 Nm/A 

Back emf constant Kb1 0,0377 V/(rad/sn) 

 Kb2 0,044 V/(rad/sn) 

Viscous friction Bm1 0,756.10-6 Nms 

 Bm2 1,2.10-6 Nms 

Gearbox ratio n1 86 - 

 n2 86 - 

𝐾𝑝, 𝐾𝑑 and 𝐾𝑖  parameters in PID, 𝑓𝐾𝑝, 𝑓𝐾𝑑, 𝑓𝐾𝑖 in FLIC and s and k in SMC algorithms are 

tuned by using PSO algorithm. The most important step to evaluate the performance of the 

controllers is to select proper cost function. In this study Mean of Root squared Error (MRSE) 

and Mean of Absolute Magnitude of the Error (MAE) are used as cost functions.  

 

MRSE   ➔   𝐸(𝑘) =
1

𝑁
∑ √𝑒1

2(𝑖) + 𝑒2
2(𝑖)

𝑁

𝑖=1

 (28a) 

MAE   ➔   𝐸(𝑘) =
1

𝑁
∑|𝑒1(𝑖)| + |𝑒2(𝑖)|

𝑁

𝑖=1

 (28b) 

The same circular Cartesian trajectory is used for testing robustness of the control algorithms. 

Radius and central coordinates of the trajectory are chosen as 50𝑚𝑚 and (𝑝𝑥 = 300𝑚𝑚, 𝑝𝑦 =

300𝑚𝑚), respectively. Duration of the experiments is chosen as 28 seconds. When the 

experiments are initialized, manipulator joints keep their horizontal line positions and reach the 

start points of their trajectories in the first four seconds. Afterward, end-effector follows the 

trajectory three times during the succeeding 24 seconds. Four different experiments are carried 
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out using the same trajectory.  Experiment-I: The 2-DOF PRM is forced to follow the trajectory 

without carrying any load; Experiment-II, III and IV: 2-DOF PRM is forced to follow the 

trajectory with loads of 100𝑔𝑟, 200𝑔𝑟 and 300𝑔𝑟, respectively. Only trajectory tracking 

results of PID, FLIC and SMC controllers for Experiment-III are given in this section due to 

the page limit. However, all results obtained from Experiment-I, II, III and IV are given in Table 

4 and Table 5 for easy comparison.  

The experimental results from PID controller are illustrated in Figure 14 where average tracking 

errors are obtained less than 0.5𝑚𝑚 for end-effector, 0.1 degrees for first joint and 0.05 degrees 

for second joint. Backlashes in transmission system cause overshoots at 2nd, 4th, 10th, 18th 

and 26th seconds as seen in Figure 14b and Figure 14d. PID controller cannot sufficiently 

minimize these overshoots.  
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(e) 

 

(f) 

Figure 14. Desired and actual positions of a) end effector, c) first joint, e) second joints and trajectory tracking 

errors b) end-effector, d) first joint, f) second joints for PID controller  

 

The experimental results obtained from the FLIC are illustrated in Figure 15 where average 

tracking errors are obtained less than 0.3𝑚𝑚 for end-effector, 0.06 degrees for first joint and 

0.01 degrees for second joint. As seen in Figure 15b and Figure 15d, FLIC controller 

demonstrates better performance than PID controller at minimizing the overshoots at 2nd, 4th, 

10th, 18th and 26th seconds.  
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(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 15. Desired and actual positions of a) end effector, c) first joint, e) second joints and trajectory tracking 

errors b) end-effector, d) first joint, f) second joints for FLIC. 

 

The experimental results from the SMC are illustrated in Figure 16 where average tracking 

errors are obtained less than 0.7𝑚𝑚 for end-effector, 0.1 degrees for first joint and 0.05 degrees 

for second joint. As seen in Figure 16b and Figure 16d, although overshoots do not take place, 

SMC controller generates chattering along the trajectory. In addition, experiments show that 

the second joint generates less tracking error compared to the first joint for PID, FLIC and SMC 

controllers.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 16. Desired and actual positions of a) end effector, c) first joint, e) second joints and trajectory tracking 

errors b) end-effector, d) first joint, f) second joints for SMC 

 

MRSE and MAE cost function values obtained from PID, FLIC and SMC for Experiment-I, I, 

III and IV are given in Table 4 and Table 5, respectively, in degrees. According to Table 4, 

when end-effector tracks the trajectory without load, minimum tracking errors (in degrees) take 
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place for all of the controllers such as 0.0271 for PID Control, 0.0187 for FLIC and 0.0216 

for SMC. If the end-effector load is increased, tracking errors will also increase for all of the 

controllers. If the end-effector load is less than 200𝑔𝑟, SMC generates less tracking error than 

PID controller. If the end-effector load is greater than 200𝑔𝑟, PID controller produces less 

tracking error than SMC. It can be concluded that FLIC is the best control algorithm compared 

to PID and SMC since the end effector with FLIC follows the circular Cartesian trajectory with 

minimum tracking error for all of the experiments (I, I, III and IV). 

 

Table 4.  MRSE cost function values obtained from PID, FLIC and SMC in degrees 

Experiments Load Value PID  FLIC SMC 

Experiments – I No Load 0.0271 0.0187 0.0216 

Experiments – II 100 gr 0.0289 0.0217 0.0274 

Experiments – III 200 gr 0.0300 0.0234 0.0348 

Experiments – IV 300 gr 0.0342 0.0276 0.0481 

 

Table 5.  MAE cost function values obtained from PID, FLIC and SMC in degrees 

Experiments Load Value PID  FLIC SMC 

Experiments – I No Load 0.0296 0.0201 0.0238 

Experiments – II 100 gr 0.0320 0.0235 0.0301 

Experiments – III 200 gr 0.0336 0.0255 0.0395 

Experiments – IV 300 gr 0.0385 0.0302 0.0566 

 

CONCLUSIONS 

Initially, trajectory tracking performances of classical FLC and PID algorithms are compared 

for 2-DOF PRM in vertical plane. This comparison showed that PID algorithm generates better 

performance than classical FLC especially when direction of the manipulator links is changed 

from reverse to the same direction with gravitational force. That’s why the integral component 

is added to the classical FLC. In the new condition, PID, FLIC and SMC control algorithms are 

compared for trajectory control of 2-DOF PRM in vertical plane. The actual mechanical 

architecture of 2-DOF PRM has imperfect transmission system that generates a challenge for 

robot control test platform in comparing the robustness of the control algorithms. PSO 
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algorithm, which can provide better trajectory tracking performance compared to analytical 

methods, has successfully optimized the parameters of PID, FLIC and SMC control algorithms. 

Although 2-DOF PRM has imperfect mechanism its trajectory tracking performance is obtained 

so close to advance robotic systems with expensive drivers and control cards. 

In this study, four different experiments are carried out using the same circular Cartesian 

trajectory to test the robustness of the control algorithms that consider trajectory tracking errors 

as performance criteria. MRSE and MAE are selected as cost functions since they have been 

extensively used in control problems. Experiments produced the following results: i) if the end-

effector load is increased, tracking errors will also gradually increase for all of the controllers, 

ii) the second joint of 2-DOF PRM produces less tracking error than the first joint for all of the 

controllers, and finally, iii) FLIC is the best control algorithm compared with PID and SMC 

since the end effector with FLIC controller follows the circular cartesian trajectory minimum 

tracking error for all of the experiments. 
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