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aKocaeli University, Gölcük Vocational School of Higher Education, Kocaeli, TURKEY
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Abstract. In the present work, we deal with non-null translation-homothetical surfaces in Minkowski
4−space. Initially, we describe non-null TH−type surface (Translation-Homothetical surface). Then, we
yield the normal curvature, mean curvature vector and Gaussian curvature functions. Using these concepts,
we characterize the non-null semiumbilical, minimal and flat translation-homothetical surfaces in E4

1.

1. Introduction

In physics literature, special relativity is a scientific theory that explains the relationship between space
and time. According to the theory, all objects and physical phenomena are relative. Time, space and motion
are not independent of each other. Minkowski space-time is the geometry that mathematically describes the
four-dimensional structure of special relativity. Minkowski 4−space ( or Minkowski space-time) is defined
with the help of a Lorentzian metric as

1
(
x, y

)
= −x0y0 + x1y1 + x2y2 + x3y3. (1)

Any arbitrary vector is known as spacelike, lightlike or timelike, if the Lorentzian metric 1 (x, x) is
positive definite, zero or negative definite, respectively. In Minkowski space-time, all surfaces are also
divided into three categories in a similar way. Any surface in E4

1 is known as a spacelike surface ( or
timelike surface), given that its all tangent vectors are spacelike (timelike).

Let M : ψ = ψ(s, t) be a non-lightlike (spacelike or timelike) surface in E4
1. Four-dimensional Minkowski

space can be decomposed into tangent space and normal space of M, at each point p as:

E4
1 = T⊥p M ⊕ TpM. (2)

Levi-Civita connections are indicated by
∼

∇ and ∇ on E4
1 and M. Assume: X and Y are tangent vector

fields and N is a normal vector field of M. The vector fields
∼

∇XN and
∼

∇XY are decomposed into normal and
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tangent components by Weingarten and Gauss formulas:

∼

∇XN = −ANX +DXN,
∼

∇XY = ∇XY + h(X,Y), (3)

where D, h and AN are the normal connection, the second fundamental form and the shape operator,
respectively. [7, 12].

Letψ =ψ(s, t) be a parametrization for a non-null surface M inE4
1. Then, TpM = span

{
ψs, ψt

}
corresponds

to the tangent space at a point p of M. The standard indications E = 1
(
ψs, ψs

)
, F = 1

(
ψs, ψt

)
, G = 1

(
ψt, ψt

)
are known as first fundamental form coefficients

I = Eds2 + 2Fdsdt + Gdt2, (4)

We can choose the tangent vector fields, for the timelike surface, as 1
(
ψs, ψs

)
< 0, 1

(
ψt, ψt

)
> 0. In

addition, we settle a normal frame field {N1,N2} for the spacelike surface as 1 (N1,N1) = −1, 1 (N2,N2) = 1,
i.e.

{
ψs, ψt,N1,N2

}
is oriented positively in E4

1. For the later use, we set

ξ =

1, if M is spacelike
−1, if M is timelike

(5)

Thus, we present W =
√
ξ (EG − F2). It means; EG− F2 is positive or negative definite with respect to being

the surface spacelike or timelike.
H:the mean curvature vector field can be computed by H = 1

2 trh. In other words, using the tangent
bundle’s orthonormal frame {X,Y}, it can be written as H = 1

2 (ξh (X,X) + h (Y,Y)) . The second fundamental
form coefficients can be calculated as

c1
11 = 1

(
ψss,N1

)
, c1

12 = 1
(
ψst,N1

)
, c1

22 = 1
(
ψtt,N1

)
,

c2
11 = 1

(
ψss,N2

)
, c2

12 = 1
(
ψst,N2

)
, c1

22 = 1
(
ψtt,N2

)
. (6)

One can write the second fundamental tensor as

h(ψs, ψs) = −ξc1
11N1 + c2

11N2,

h(ψs, ψt) = −ξc1
12N1 + c2

12N2, (7)

h(ψt, ψt) = −ξc1
22N1 + c2

22N2.

Another way of representing it;

h(X,Y) = −ξ1
(
AN1 (X) ,Y

)
N1 + 1

(
AN2 (X) ,Y

)
N2. (8)

Hk is used for k−th mean curvature function and calculated by Hk = 1 (H,Nk) =
tr(ANk )

2 , hence we obtain

Hk =
ck

11G − 2ck
12F + ck

22E
2(EG − F2)

. (9)

According to the basis {N1,N2}, the mean curvature vector field H turns into

H = −ξH1N1 +H2N2, (10)

(see, [7, 12])

The mean curvature of M is congruent to the norm of the mean curvature vector (
∥∥∥∥∥→H∥∥∥∥∥). The surface is

called as minimal, if the mean curvature vector of it is identically zero [5].
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Gaussian curvature of M : ψ(s, t) can be stated by using the first and second fundamental forms’
coefficients:

K =
−ξdet(AN1 ) + det(AN2 )

W2 . (11)

In case of zero Gaussian curvature, M is called as a flat surface.
Furthermore, with the help of orthonormal tangent vectors

{
ψ1, ψ2

}
and unit normal vectors {N1,N2},

the normal curvature of a surface is

KN = 1
(
R⊥

(
ψ1, ψ2

)
N2, N1

)
. (12)

This relation can be given by the entries of shape operator matrices:

KN = h1
12

(
h2

22 − h2
11

)
+ h2

12

(
h1

11 − h1
22

)
.

Regarding the previous equation, a surface M is known as semiumbilical surface if the normal curvature
is zero, for all points on M [8].

In [1], Yu A. Aminov focused on the notion of Monge Patch in E4 with the representation

f = f (s, t) , 1 = 1 (s, t) . (13)

Also, in [3], the authors studied some surfaces given by the parametrization

ψ (s, t) =
(
s, t, f (s, t) , 1 (s, t)

)
. (14)

Two special surfaces, called translation surfaces and homothetical (factorable) surfaces are interesting
classes in differential geometry. These surfaces have been studied from many viewpoints, theoretically
[2, 4, 9, 10, 13].

A new surface named TH− type surface (or translation-homothetical surface) is first handled by Difi et.
al. in 3−dimensional Euclidean spaces [6]. The parameterization of this surface is given with the help of
the sum and multiplication of differentiable functions. Some studies on TH−type surfaces can be found
in [6, 11]. Recently, the authors have defined TF− type (TH− type) surface in 4−dimensional Euclidean
space[11]. They investigated the structure of this type of surface in E4.

In this study, we deal with the non-null translation-homothetical surfaces in 4-dimensional Minkowski
space. First, we describe the non-lightlike (non-null) Translation-Homothetical surface inE4

1.Then, we yield
the normal curvature, mean curvature vector and Gaussian curvature for spacelike and timelike surfaces.
Further, we characterize some non-null semiumbilical, minimal and flat TH−type surfaces in Minkowski
space-time.

2. Classification of Non-null Translation-Homothetical Surfaces in E4
1

Definition 2.1. [2] The surface which is defined by the sum of two curves α (s) = (s, 0, z1 (s) , z2 (s)) and β (t) =
(0, t,w1 (t) ,w2 (t)) is called as translation surface. Thus, the translation surface in 4−dimensional space has the
parametrization

ψ (s, t) = (s, t, z1(s) + w1(t), z2(s) + w2(t)) . (15)

Definition 2.2. [4] The surface which is given by an explicit form f (s, t) = z1 (s) w1 (t) , 1 (s, t) = z2 (s) w2 (t) is
called as homothetical (or factorable) surface where s, t, f, g are Cartesian coordinates. Thus, the homothetical surface
in 4−dimensional space has the parametrization

ψ (s, t) = (s, t, z1(s)w1(t), z2(s)w2(t)) . (16)

With respect to these definitions, the translation-homothetical surface is defined as the following:
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Definition 2.3. The surface is called TH−type surface (or translation-homothetical surface) if it is given by the
Monge patch

ψ (s, t) =
(
s, t, λ (z1(s)+w1(t))+µ (z1(s)w1(t)) , σ (z2(s)+w2(t)) + ρ (z2(s)w1(t))

)
(17)

where λ, µ, σ and ρ are non-zero real constants.

TH−type surface in Minkowski space-time can be considered by the representation

ψ (s, t) = (s, t, z1(s) + w1(t) + z1(s)w1(t), z2(s) + w2(t) + z2(s)w2(t)) . (18)

Thus, in this study, we investigate some properties of non-null (spacelike and timelike) TH−type surfaces
given by the parameterization (18). Let M be a non-null TH−type surface inE4

1, then we have the followings:
The following vector fields span the tangent space of M:

ψs =
(
1, 0, z′1(s) + z′1(s)w1(t), z′2(s) + z′2(s)w2(t)

)
,

ψt =
(
0, 1,w′1(t) + z1(s)w′1(t),w′2(t) + z2(s)w′2(t)

)
. (19)

Therefore, the first fundamental form coefficients can be yielded by the Lorentzian inner product

E = −1 +
(
z′1 + z′1w1

)2
+

(
z′2 + z′2w2

)2
,

F =
(
z′1 + z′1w1

) (
w′1 + z1w′1

)
+

(
z′2 + z′2w2

) (
w′2 + z2w′2

)
, (20)

G = 1 +
(
w′1 + z1w′1

)2
+

(
w′2 + z2w′2

)2
.

Choosing the surface as timelike or spacelike with respect to being E < 0 ( or E > 0), one can determine
W =

√
ξ (EG − F2).

Two times derivatives of ψ (s, t) are

ψss =
(
0, 0, z′′1 (s) + z′′1 (s)w1(t), z′′2 (s) + z′′2 (s)w2(t)

)
,

ψst =
(
0, 0, z′1 (s) w′1 (t) , z′2 (s) w′2 (t)

)
, (21)

ψtt =
(
0, 0,w′′1 (t) + z1(s)w′′1 (t),w′′2 (t) + z2(s)w′′2 (t)

)
.

The orthonormal vector fields {N1,N2} spans the normal space of non-null surface:

N1 =
1
√
|A1|

(
z′1 + z′1w1,−

(
w′1 + z1w′1

)
, 1, 0

)
, (22)

N2 =
1

√
A1W∗

(
A1

(
z′2+z′2w2

)
−A3

(
z′1+z′1w1

)
,A3

(
w′1+z1w′1

)
−A1

(
w′2+z2w′2

)
,−A3,A1

)
,

where

A1 = 1 −
(
z′1 + z′1w1

)2
+

(
w′1 + z1w′1

)2
,

A2 = 1 −
(
z′2 + z′2w2

)2
+

(
w′2 + z2w′2

)2

A3 =
(
w′1 + z1w′1

) (
w′2 + z2w′2

)
−

(
z′1 + z′1w1

) (
z′2 + z′2w2

)
,

W∗ = A1A2 − (A3)2 .
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and by using (29) and (30), ck
i j, (i, j, k = 1, 2) are given as

c1
11 =

z′′1 + z′′1 w1
√
|A1|

, c2
11 =

(
z′′2 + z′′2 w2

)
A1 −

(
z′′1 + z′′1 w1

)
A3

√
A1W∗

,

c1
12 =

z′1w′1
√
|A1|

, c2
12 =

z′2w′2A1 − z′1w′1A3
√

A1W∗
, (23)

c1
22 =

w′′1 + z1w′′1
√
|A1|

, c2
22 =

(
w′′2 + z2w′′2

)
A1 −

(
w′′1 + z1w′′1

)
A3

√
A1W∗

.

we can write the orthonormal tangent vector by using Gram-Schmidt orthonormalization method for ψs
and ψt,

X =
ψs
√
|E|
,

Y =

√
|E|

W

(
ψt −

F
E
ψs

)
. (24)

By the use of (6), (7), (24) and (8), the shape operator matrices can be presented as[
h1

11 h1
12

h1
12 h1

22

]
,

[
h2

11 h2
12

h2
12 h1

22

]
, (25)

where the functions hk
i j are given by

h1
11 = ξ

(
z′′1 + z′′1 w1

)
E
√
|A1|

, h1
12 =

Ez′1w′1 − F
(
z′′1 + z′′1 w1

)
EW
√
|A1|

,

h1
22 = ξ

(
w′′1 + z1w′′1

)
E2
− 2z′1w′1EF +

(
z′′1 + z′′1 w1

)
F2

E
√
|A1|

,

h2
11 = ξ

A1

(
z′′2 + z′′2 w2

)
− A3

(
z′′1 + z′′1 w1

)
E
√

A1W∗
, (26)

h2
12 =

(
z′2w′2A1 − z′1w′1A3

)
E −

[
A1

(
z′′2 + z′′2 w2

)
− A3

(
z′′1 + z′′1 w1

)]
F

EW
√

A1W∗
,

h2
22 = ξ

[(
w′′2 +z2w′′2

)
A1−

(
w′′1 +z1w′′1

)
A3

]
E2
−2

(
z′2w′2A1−z′1w′1A3

)
EF

+
[(

z′′2 +z′′2 w2

)
A1−A3

(
z′′1 +z′′1 w1

)]
F2

EW2√A1W∗
.

2.1. Non-null Flat Translation-Homothetical Surfaces
Theorem 2.4. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4

1. Then, its
Gaussian curvature is given as

K =

A1

((
z′′2 + z′′2 w2

) (
w′′2 + z2w′′2

)
−

(
z′2w′2

)2
)

+A2

((
z′′1 + z′′1 w1

) (
w′′1 + z1w′′1

)
−

(
z′1w′1

)2
)

−A3

((
z′′2 + z′′2 w2

) (
w′′1 + z1w′′1

)
+

(
z′′1 + z′′1 w1

) (
w′′2 + z2w′′2

)
− 2z′1w′1z′2w′2

)
W∗W2 .

where W and W∗ are defined as W2 = ξ
(
EG − F2

)
, W∗ = A1A2 − A2

3, respectively.
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Proof. By using (11) and (26), we obtain the desired result.

Theorem 2.5. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4
1. Then M

has zero Gaussian curvature if and only if

0 = A1

((
z′′2 + z′′2 w2

) (
w′′2 + z2w′′2

)
−

(
z′2w′2

)2
)

(27)

+A2

((
z′′1 + z′′1 w1

) (
w′′1 + z1w′′1

)
−

(
z′1w′1

)2
)

−A3

((
z′′2 + z′′2 w2

) (
w′′1 + z1w′′1

)
+

(
z′′1 + z′′1 w1

) (
w′′2 + z2w′′2

)
− 2z′1w′1z′2w′2

)
.

Theorem 2.6. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4
1. If M is

given by one of the following parametrizations, then it is flat surface:

(1) f (s, t) = a1w1 (t) + a1 + w1 (t) , 1 (s, t) = a2w2 (t) + a2 + w2 (t) ;
(2) f (s, t) = a1z1 (s) + a1 + z1 (s) , 1 (s, t) = a2z2 (s) + a2 + z2 (s) ;
(3) f (s, t) = a1w1 (t) + a1 + w1 (t) , 1 (s, t) = a2z2 (s) + a2 + z2 (s) ;
(4) f (s, t) = a1z1 (s) + a1 + z1 (s) , 1 (s, t) = a2w2 (t) + a2 + w2 (t) ;
(5) f (s, t) = a1, 1 (s, t) = a2w2 (t) + a2 + w2 (t) ;
(6) f (s, t) = a1, 1 (s, t) = a2z2 (s) + a2 + z2 (s) ;
(7) f (s, t) = a, 1 (s, t) = bea1sea2t

− 1;
(8) f (s, t) = a, 1 (s, t) = z2 (s) + w2 (t) + z2w2 (t) satisfying

z2 (s) =
(
(1 − c) (a3s + a4)

1
1−c − 1

)
, (28)

w2 (t) =

(
(c − 1) (a5t + a6)

c

) c
c−1

− 1,

(9) f (s, t) = a1a5ea2sea6t
− 1, 1 (s, t) = a3a7ea4sea8t

− 1; a4a6 = a2a8,
(10) f (s, t) = a1a5ea2sea6t

− 1, 1 (s, t) = a3a7ea4sea8t
− 1; a2a4 = a6a8,

where a, b, c, ai are real constants, i = 1, .., 8, c , 0, 1.

Proof. Let M be a non-null TH−type surface given by the parametrization (18) in E4
1. If z′1 (s) = 0, z′2 (s) = 0

or w′1 (t) = 0, w′2 (t) = 0 or z′1 (s) = 0, w′2 (t) = 0 (z′2 (s) = 0, w′1 (t) = 0 ) in (27), then we obtain the cases (1), (2),
(3) and (4). If z′1 (s) = 0 and w′1 (t) = 0,then we have(

z′′2 + z′′2 w2

) (
w′′2 + z2w′′2

)
−

(
z′2w′2

)2
= 0. (29)

In this equation, if z′2 = 0 (or w′2 = 0), then we obtain the surfaces (5) and (6). If z′1 (s) w′1 (t) , 0, then we get

z′′2 (s)z2(s) + z′′2 (s)(
z′2(s)

)2 =

(
w′2(t)

)2

w′′2 (t)w2(t) + w′′2 (t)
= c, (30)

where c ∈ IR. If c = 1, from (30) we get the differential equations z′′2 (s)z2(s)+ z′′2 (s) =
(
z′2(s)

)2
and w′′2 (t)w2(t)+

w′′2 (t) =
(
w′2(t)

)2
which have the solutions z2(s) = a3ea4s

− 1 and w2(t) = a5ea6t
− 1. Then, we obtain the surface

parameterization (7).
If c , 1, we yield the solution of the differential equation (30) as z2(s) = (1 − c) (a3s + a4)

1
1−c − 1 and

w2(t) = (c−1)(a5t+a6)
c

c−1 −1
c −1. Hence, we get the surface (8). Also, in equation (27) we suppose(

z′′1 + z′′1 w1

) (
w′′1 + z1w′′1

)
−

(
z′1w′1

)2
= 0. (31)
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z′′2 + z′′2 w2

) (
w′′2 + z2w′′2

)
−

(
z′2w′2

)2
= 0. (32)

and (
z′′2 + z′′2 w2

) (
w′′1 + z1w′′1

)
+

(
z′′1 + z′′1 w1

) (
w′′2 + z2w′′2

)
− 2z′1w′1z′2w′2 = 0 or A3 = 0. (33)

In a similar way, we obtain the solutions of the differential equations (31) and (32) as

z1(s) = a1ea2s
− 1, w1(t) = a5ea6t

− 1,
z2(s) = a3ea4s

− 1, w2(t) = a7ea8t
− 1. (34)

Substituting these functions into (33), we yield the surface parametrizations (9) and (10).

2.2. Non-null Minimal Translation-Homothetical Surfaces
Theorem 2.7. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4

1. Then, its
mean curvature vector is given as

H = −ξ

(
z′′1 + z′′1 w1

)
G − 2z′1w′1F +

(
w′′1 + z1w′′1

)
E

2W2
√
|A1|

N1 +

[(
z′′2 + z′′2 w2

)
G − 2z′2w′2F +

(
w′′2 + z2w′′2

)
E
]

A1

−

[(
z′′1 + z′′1 w1

)
G − 2z′1w′1F + w′′1 + z1w′′1 E

]
A3

2W2
√

A1W∗
N2.

(35)

Proof. By the use of (9), (10) and (23), we obtain the desired result.

Theorem 2.8. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4
1. Then, M

has zero mean curvature if and only if(
z′′i + z′′i wi

)
G − 2z′i w

′

i F +
(
w′′i + ziw′′i

)
E = 0. (36)

Theorem 2.9. Let M be a non-null TH−type surface with the parameterization (18) in E4
1. Then, M is minimal if it

is given by one of the following parametrizations :

(1) f (s, t) = a1t + a2, 1 (s, t) = a3t + a4,
(2) f (s, t) = a1s + a2, 1 (s, t) = a3s + a4,
(3) f (s, t) = a1s + a2, 1 (s, t) = a3t + a4,
(4) f (s, t) = a1t + a2, 1 (s, t) = a3s + a4,
(5) f (s, t) = a, 1 (s, t) = (s + b) tan (ct + d) − 1,
(6) f (s, t) = a, 1 (s, t) = (t + b) tan (cs + d) − 1,
(7) f (s, t) = (s + b) tan (ct + d) − 1, 1 (s, t) = (s + b) tan (ct + d) − 1,
(8) f (s, t) = (t + b) tan (cs + d) − 1, 1 (s, t) = (t + b) tan (cs + d) − 1,
(9) f (s, t) = z1 (s) + w1 (t) + z1 (s) w1 (t) , 1 (s, t) = z2 (s) + w2 (t) + z2 (s) w2 (t)
where the functions satisfy

s = ±

∫
dzi (s)√

2c ln (zi (s) + 1) − 2ca1

, (37)

t = ±

∫
dwi (t)√

a2 (wi (t) + 1)4
−

d
2

,

or

s = ±

∫
dzi (s)√

a1 (zi (s) + 1)4
−

c
2

, (38)

t = ±

∫
dwi (t)√

2d ln (wi (s) + 1) − 2da2

,
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or

s = ±

∫
dzi (s)√

a1 (zi (s) + 1)2(1+k)
− a2

, (39)

t = ±

∫
dwi (t)√

a3 (wi (t) + 1)2(1+k) + a4

.

Proof. Let M is TH−type surface given by the parameterization (18) inE4
1. If M is minimal, then the equation

(36) is hold. Hence, we write

0 =
(
z′′1 + z′′1 w1

) (
1 +

(
w′1 + z1w′1

)2
+

(
w′2 + z2w′2

)2
)

(40)

−2z′1w′1
((

z′1 + z′1w1

) (
w′1 + z1w′1

)
+

(
z′2 + z′2w2

) (
w′2 + z2w′2

))
+

(
w′′1 + z1w′′1

) (
−1 +

(
z′1 + z′1w1

)2
+

(
z′2 + z′2w2

))
,

and

0 =
(
z′′2 + z′′2 w2

) (
1 +

(
w′1 + z1w′1

)2
+

(
w′2 + z2w′2

)2
)

(41)

−2z′2w′2
((

z′1 + z′1w1

) (
w′1 + z1w′1

)
+

(
z′2 + z′2w2

) (
w′2 + z2w′2

))
+

(
w′′2 + z2w′′2

) (
−1 +

(
z′1 + z′1w1

)2
+

(
z′2 + z′2w2

))
,

The surface parametrizations (1), (2), (3) and (4) are obtained by taking z′1 (s) = 0, z′2 (s) = 0 or w′1 (t) = 0,
w′2 (t) = 0 or z′1 (s) = 0,w′2 (t) = 0 or z′2 (s) = 0,w′1 (t) = 0, respectively. By taking z′1 (s) = 0 and w′1 (t) = 0, then
we get

−
w′′2

w2+1
+

z′′2
z2+1

+
(
z′2

)2
(
w′′2 (w2+1)−

(
w′2

)2
)
+

(
w′2

)2
(
z′′2 (z2+1)−

(
z′2

)2
)
= 0. (42)

In this equation, if we suppose z′′2 (s) = 0 or w′′2 (t) = 0, then we yield w2 (t) = tan(ct+d)
a1
−1 and z2 (s) = tan(ct+d)

a2
−1.

Hence, the surfaces (5) and (6) are obtained. Also, in (42), if z′′2 (s) w′′2 (t) , 0, the derivatives of (42) with
regards to s and t, one after another are obtained as(

z′′2 (z2 + 1) −
(
z′2

)2
)′

((
z′2

)2
)′ = −

(
w′′2 (w2 + 1) −

(
w′2

)2
)′

((
w′2

)2
)′ = c (43)

where c ∈ IR. Therefore, integrating this equation regarding s or t, we get

z′′2 (z2 + 1) − (1 + c)
(
z′2

)2
= k, (44)

w′′2 (w2 + 1) − (1 − c)
(
w′2

)2
= l,

where k, l ∈ IR. By taking c = 1 and c = −1 in (44) respectively, we get

z′′2 (z2 + 1) = k, (45)

w′′2 (w2 + 1) − 2
(
w′2

)2
= l,

and

z′′2 (z2 + 1) − 2
(
z′2

)2
= k,

w′′2 (w2 + 1) = l. (46)
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Thus, if we solve these differential equations, the results (37) and (38) are obtained. If c , 1 in (44), the
solution of the differential equation is congruent to the last result of (9). Finally, by taking z1(s) = z2 (s) and
w1(t) = w2 (t) , then we have the surfaces (7) and (8). This completes the proof.

2.3. Non-null Semiumbilical Translation-Homothetical Surfaces

Theorem 2.10. Let M be a non-null translation-homothetical surface in E4
1. Then, M has the normal curvature as

KN = −ξ

E
(
z′1w′1

(
w′′2 + z2w′′2

)
− z′2w′2

(
w′′1 + z1w′′1

))
−F

((
z′′1 + z′′1 w1

) (
w′′2 + z2w′′2

)
−

(
z′′2 + z′′2 w2

) (
w′′1 + z1w′′1

))
+G

(
z′2w′2

(
z′′1 + z′′1 w1

)
− z′1w′1

(
z′′2 + z′′2 w2

))
W3
√

W∗

. (47)

Proof. Let M be a non-null TH−type surface with (15) in E4
1. Substituting the second fundamental form

coefficients hk
i j into (12), we get the result.

Corollary 2.11. Let M be a non-null translation-homothetical surface with the parameterization (15). If the functions
zi, wi, (i = 1, 2) are linear polynomial functions, then M corresponds to semiumbilical surface in E4

1.

Proof. Let M be a non-null TH−type surface and suppose zi,wi, (i = 1, 2) are the linear polynomial functions
as

zi = ais + bi, (48)
wi = cit + di.

Thus, by the use of (47) and (48), we get z′′i (s) = 0, w′′i (t) = 0, i.e , KN = 0. This completes the proof.

Example. The surface given by the parameterization

ψ (s, t) = (s, t, 2st − 2s + 3t − 3,−st + 2s + 4t − 8)

is a semiumbilical TH−type surface and can be plotted by projection in 3−dimension with command
plot3d

([
s + t, f (s, t), 1(s, t)

]
: s = −2..2, t = 0..1

)
:

Figure 1: Semiumbilical TH−type surface
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3. Conclusion

TH−type surfaces (or Translation-Homothetical surfaces) have been previously discussed by Difi et
al.(2018) and Pamuk et al.(2021). They considered 3−dimensional spaces and 4−dimensional Euclidean
space. In this article, we define non-null translation-homothetical surfaces in Minkowski space-time and
classify these surfaces with respect to being flat, minimal and especially semiumbilical. The results provide
valuable insights into the nature of surfaces in Minkowski space and will be of interest to researchers and
scholars in the fields of mathematics, physics, and astronomy.
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