

A Qualitative Investigation of the Solution of the Difference Equation $\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}(\pm 1 \pm \Psi_{m-3}\Psi_{m-5})}$

Burak Oğul¹*, Dağıstan Şimşek², Tarek Fawzi Ibrahim³

Abstract

We explore the dynamics of adhering to rational difference formula

 $\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}(\pm 1 \pm \Psi_{m-3}\Psi_{m-5})} \quad m \in \mathbb{N}_0$

where the initials Ψ_{-5} , Ψ_{-4} , Ψ_{-3} , Ψ_{-2} , Ψ_{-1} , Ψ_0 are arbitrary nonzero real numbers. Specifically, we examine global asymptotically stability. We also give examples and solution diagrams for certain particular instances.

Keywords: Boundedness, Equilibrium point, Global asymptotic stability, Solution of difference equation, Stability. **2010 AMS:** 39A10, 39A30.

¹ Department of Management Information Systems, School of Applied Science, Istanbul Aydın University, Istanbul, Türkiye, ORCID: 0000-0002-3264-4340

² Department of Engineering Basic Sciences, Faculty of Engineering and Natural Science, Konya Technical University, Konya 42250, Türkiye, ORCID: 0000-0003-3003-807X

³Department of Mathematics, Faculty of Sciences and Arts (Mahayel Aser), King Khalid University, Saudi Arabia,

ORCID:0000-0002-6895-3268

*Corresponding author: burakogul@aydin.edu.tr

Received: 12 January 2023, Accepted: 29 May 2023, Available online: 30 June 2023

How to cite this article: B. Oğul, D. Şimşek, T. F. Ibrahim, A Qualitative Investigation of the Solution of the Difference Equation

 $\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}(\pm 1\pm \Psi_{m-3}\Psi_{m-5})}$, Commun. Adv. Math. Sci., (6)2 (2023) 78-85.

1. Introduction

Because of its employment in discrete-time systems with microprocessors, difference equations are becoming increasingly important in engineering. The study of rational difference equations and their qualitative features has recently sparked a surge of interest. We refer the reader to [1-3] for some literature in this field.

Important rational difference equations were investigated by several authors. As examples:

Aloqeili, [4] has actually gotten the solutions to the difference equation

$$\Psi_{m+1}=\frac{\Psi_{m-1}}{a-\Psi_m\Psi_{m-1}}.$$

Çınar [5], researched adhering to problems with positive first values:

$$\Psi_{m+1} = \frac{Q_{m-1}}{-1 + a\Psi_m\Psi_{m-1}}$$

for m = 0, 1, 2, ...

Gelişken [6] investigated behaviors of

$$\Psi_{m+1} = \frac{A_1 M_{m-(3k-1)}}{B_1 + C_1 M_{m-(3k-1)} \Psi_{m-(2k-1)} M_{m-(k-1)}}$$
$$M_{m+1} = \frac{A_2 \Psi_{m-(3k-1)}}{B_2 + C_2 \Psi_{m-(3k-1)} M_{m-(2k-1)} \Psi_{m-(k-1)}}$$

Karataş et al. [7] deal with

$$\Psi_{m+1} = \frac{\Psi_{m-5}}{1 + \Psi_{m-2}\Psi_{m-5}}$$

Oğul et al. [8] deal with

$$\Psi_{m+1} = \frac{\Psi_{m-17}}{\pm 1 \pm \Psi_{m-2} \Psi_{m-5} \Psi_{m-8} \Psi_{m-11} \Psi_{m-14} \Psi_{m-17}}$$

Şimşek et al. [9] examine the equation

$$\Psi_{m+1} = \frac{\Psi_{m-13}}{1 + \Psi_{m-1}\Psi_{m-3}\Psi_{m-5}\Psi_{m-7}\Psi_{m-9}\Psi_{m-11}}.$$

Yalçınkaya et al. [10] have studied

$$\Psi_{m+1} = \frac{a\Psi_{m-k}}{b+c_m^p}.$$

For more related works we refer to [11–18].

Our objective in this study is to check out actions of the solution of adhering to nonlinear difference formula

$$\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}(\pm 1 \pm \Psi_{m-3}\Psi_{m-5})}, \quad m \in \mathbb{N}_0$$

where the initials are arbitrary real numbers. Additionally, we obtain these types of solutions.

2. Solution of
$$\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}(1+\Psi_{m-3}\Psi_{m-5})}$$

In this part we give the solutions of

$$\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}\left(1 + \Psi_{m-3}\Psi_{m-5}\right)}, \quad m \in \mathbb{N}_0$$
(2.1)

where the initials are real numbers.

Theorem 2.1. Let $\{\Psi_m\}_{m=-5}^{\infty}$ be a solution of (2.1). Then for $m \in \mathbb{N}_0$

$$\Psi_{4m+1} = \frac{DF^{m+1}}{B^{m+1}} \prod_{i=0}^{m} \left(\frac{1+(i)BD}{1+(i+1)DF} \right), \qquad \qquad \Psi_{4m+2} = \frac{CE^{m+1}}{A^{m+1}} \prod_{i=0}^{m} \left(\frac{1+(i)CA}{1+(i+1)CE} \right), \qquad \qquad \Psi_{4m+3} = \frac{B^{m+2}}{F^{m+1}} \prod_{i=0}^{m} \left(\frac{1+(i+1)DF}{1+(i+1)BD} \right), \qquad \qquad \Psi_{4m+4} = \frac{A^{m+2}}{E^{m+1}} \prod_{i=0}^{m} \left(\frac{1+(i+1)CE}{1+(i+1)CA} \right),$$

where, $\Psi_{-5} = F$, $\Psi_{-4} = E$, $\Psi_{-3} = D$, $\Psi_{-2} = C$, $\Psi_{-1} = B$, $\Psi_0 = A$.

Proof. Assume m > 0 and this our supposition remains true for m - 1. That is,

$$\begin{split} \Psi_{4m-3} &= \frac{DF^m}{B^m} \prod_{i=0}^{m-1} \left(\frac{1+(i)BD}{1+(i+1)DF} \right), \quad \Psi_{4m-2} &= \frac{CE^m}{A^m} \prod_{i=0}^{m-1} \left(\frac{1+(i)CA}{1+(i+1)CE} \right), \\ \Psi_{4m-1} &= \frac{B^{m+1}}{F^m} \prod_{i=0}^{m-1} \left(\frac{1+(i+1)DF}{1+(i+1)BD} \right), \quad \Psi_{4m} &= \frac{A^{m+1}}{E^m} \prod_{i=0}^{m-1} \left(\frac{1+(i+1)CE}{1+(i+1)CA} \right), \quad \Psi_{4m-5} &= \frac{B^m}{F^{m-1}} \prod_{i=0}^{m-2} \left(\frac{1+(i+1)DF}{1+(i+1)BD} \right). \end{split}$$

At the present time, using the main (2.1), one has

$$\begin{split} \Psi_{4m+1} &= \frac{\Psi_{4m-3}\Psi_{4m-5}}{\Psi_{4m-1}\left(1 + \Psi_{4m-3}\Psi_{4m-5}\right)} \\ &= \frac{\frac{DF^m}{B^m}\prod_{i=0}^{m-1}\left(\frac{1+(i)BD}{1+(i+1)DF}\right)\frac{B^m}{F^{m-1}}\prod_{i=0}^{m-2}\left(\frac{1+(i+1)DF}{1+(i+1)BD}\right)}{\frac{B^{m+1}}{F^m}\prod_{i=0}^{m-1}\left(\frac{1+(i+1)DF}{1+(i+1)BD}\right) + \frac{B^{m+1}}{F^m}\prod_{i=0}^{m-1}\left(\frac{1+(i+1)DF}{1+(i+1)BD}\right)\frac{B^m}{B^m}\prod_{i=0}^{m-1}\left(\frac{1+(i)BD}{1+(i+1)DF}\right)\frac{B^m}{F^{m-1}}\prod_{i=0}^{m-2}\left(\frac{1+(i+1)DF}{1+(i+1)BD}\right)}$$

Hence, we have

$$\Psi_{4m+1} = \frac{DF^{m+1}}{B^{m+1}} \prod_{i=0}^{m} \left(\frac{1+(i)BD}{1+(i+1)DF} \right)$$

Similarly, it is easily obtained in other relationships.

Theorem 2.2. (2.1) has one equilibrium $\overline{\Psi} = 0$ and this equilibrium isn't locally asymptotically stable.

Proof. We may express the equilibrium points of (2.1) as

$$\begin{split} \overline{\Psi} &= \frac{\overline{\Psi}^2}{\overline{\Psi}(1+\overline{\Psi}^2)}, \\ \overline{\Psi}^2 \left(1+\overline{\Psi}^2\right) &= \overline{\Psi}^2. \end{split}$$

After that

$$\overline{\Psi}^4 = 0.$$

As a result, the equilibrium of (2.1) is $\overline{\Psi} = 0$. Assume that $f: (0,\infty)^4 \to (0,\infty)$ is the function defined by

$$f(\tau,\kappa,
ho) = rac{ au
ho}{\kappa(1+ au
ho)}.$$

As a result, it follows that

$$f_{\tau}(\tau,\kappa,\rho) = \frac{\rho}{\kappa(1+\tau\rho)^2}, \qquad \qquad f_{\kappa}(\tau,\kappa,\rho) = -\frac{\tau\rho}{\kappa^2(1+\tau\rho)}, \qquad \qquad f_{\rho}(\tau,\kappa,\rho) = \frac{\tau}{\kappa(1+\tau\rho)^2}.$$

We see that

$$f_{\tau}(\overline{\Psi}, \overline{\Psi}, \overline{\Psi}) = 1,$$
 $f_{\kappa}(\overline{\Psi}, \overline{\Psi}, \overline{\Psi}) = 1,$ $f_{\rho}(\overline{\Psi}, \overline{\Psi}, \overline{\Psi}) = 1.$

We confirm our results with the following numerical examples.

Example 2.3. Assume that

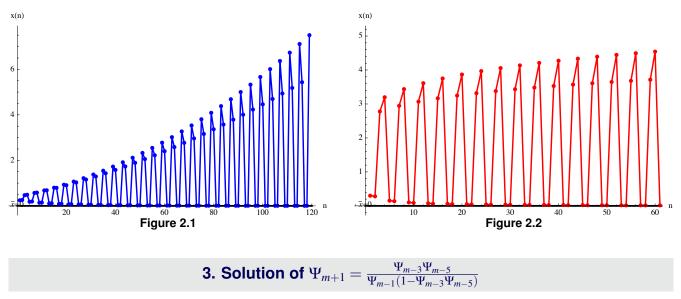
$$\Psi_{-5} = 0.3, \qquad \Psi_{-4} = 0.32, \qquad \Psi_{-3} = 0.34, \qquad \Psi_{-2} = 0.36, \qquad \Psi_{-1} = 0.38, \qquad \Psi_{0} = 0.4$$

See Figure 2.1.

Example 2.4. Assume that

$$\Psi_{-5} = 0.35, \qquad \Psi_{-4} = 0.32, \qquad \Psi_{-3} = 0.34, \qquad \Psi_{-2} = 0.38, \qquad \Psi_{-1} = 0.42, \qquad \Psi_{0} = 0.43$$

See Figure 2.2.



We deal with the difference equation

$$\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}\left(1 - \Psi_{m-3}\Psi_{m-5}\right)}, \quad m \in \mathbb{N}_0.$$
(3.1)

Theorem 3.1. Let $\{\Psi_m\}_{m=-7}^{\infty}$ represent a solution of (3.1). In that case for $m \in \mathbb{N}_0$

$$\Psi_{4m+1} = \frac{DF^{m+1}}{B^{m+1}} \prod_{i=0}^{m} \left(\frac{-1+(i)BD}{-1+(i+1)DF} \right), \qquad \qquad \Psi_{4m+2} = \frac{CE^{m+1}}{A^{m+1}} \prod_{i=0}^{m} \left(\frac{-1+(i)CA}{-1+(i+1)CE} \right), \qquad \qquad \qquad \Psi_{4m+3} = \frac{B^{m+2}}{F^{m+1}} \prod_{i=0}^{m} \left(\frac{-1+(i+1)DF}{-1+(i+1)BD} \right), \qquad \qquad \qquad \Psi_{4m+4} = \frac{A^{m+2}}{E^{m+1}} \prod_{i=0}^{m} \left(\frac{-1+(i+1)CE}{-1+(i+1)CA} \right),$$

where, $\Psi_{-5} = F$, $\Psi_{-4} = E$, $\Psi_{-3} = D$, $\Psi_{-2} = C$, $\Psi_{-1} = B$, $\Psi_0 = A$.

Proof. The proof is similar to the proof of Theorem 2.1 and therefore it will be omitted.

Theorem 3.2. The unique equilibrium $\overline{\Psi} = 0$ in (3.1) isn't locally asymptotically stable.

Proof. For confirming outcomes of this section, we take into consideration mathematical instances which stand for various kind of solutions to (3.1).

Example 3.3. Figure 3.1 depicts the actions taken when

$$\Psi_{-5} = 3,$$
 $\Psi_{-4} = 3.9,$ $\Psi_{-3} = 3.1,$ $\Psi_{-2} = 2.8,$ $\Psi_{-1} = 2.5,$ $\Psi_{0} = 3.5$

Example 3.4. Figure 3.2 depicts the actions taken when

$$\Psi_{-5} = 5.1,$$
 $\Psi_{-4} = 4.9,$ $\Psi_{-3} = 4.3,$ $\Psi_{-2} = 5.3,$ $\Psi_{-1} = 4.5,$ $\Psi_{0} = 4.6.$



4. Solution of
$$\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}(-1+\Psi_{m-3}\Psi_{m-5})}$$

In this part, we study

$$\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}\left(-1 + \Psi_{m-3}\Psi_{m-5}\right)}, \quad m \in \mathbb{N}_0.$$
(4.1)

Theorem 4.1. Let $\{\Psi_m\}_{m=-5}^{\infty}$ represent a solution of (4.1). In that case for, m = 0, 1, 2, ...

$$\begin{split} \Psi_{8m+1} &= \frac{-DF^{2m+1}(1+BD)^m}{B^{2m+1}(1+DF)^{m+1}}, \qquad \Psi_{8m+2} &= \frac{-CE^{2m+1}(1+AC)^m}{A^{2m+1}(1+CE)^{m+1}}, \qquad \Psi_{8m+3} &= \frac{B^{2m+2}(1+DF)^{m+1}}{F^{2m+1}(1+BD)^{m+1}}, \\ \Psi_{8m+4} &= \frac{A^{2m+2}(1+CE)^{m+1}}{E^{2m+1}(1+AC)^{m+1}}, \qquad \Psi_{8m+5} &= \frac{DF^{2m+2}(1+BD)^{m+1}}{B^{2m+2}(1+DF)^{m+1}}, \qquad \Psi_{8m+6} &= \frac{CE^{2m+2}(1+AC)^{m+1}}{A^{2m+2}(1+CE)^{m+1}}, \\ \Psi_{8m+7} &= \frac{B^{2m+3}(1+DF)^{m+1}}{F^{2m+2}(1+BD)^{m+1}}, \qquad \Psi_{8m+8} &= \frac{A^{2m+3}(1+CE)^{m+1}}{E^{2m+2}(1+AC)^{m+1}}. \end{split}$$

Proof. Assume that m > 0 and our supposition hold for m - 1.

$$\begin{split} \Psi_{8m-7} &= \frac{-DF^{2m}(1+BD)^{m-1}}{B^{2m}(1+DF)^m}, \qquad \Psi_{8m-6} &= \frac{-CE^{2m}(1+AC)^{m-1}}{A^{2m}(1+CE)^m}, \qquad \Psi_{8m-5} &= \frac{B^{2m+1}(1+DF)^m}{F^{2m}(1+BD)^m}, \\ \Psi_{8m-4} &= \frac{A^{2m+1}(1+CE)^m}{E^{2m}(1+AC)^m}, \qquad \Psi_{8m-3} &= \frac{DF^{2m+1}(1+BD)^m}{B^{2m+1}(1+DF)^m}, \qquad \Psi_{8m-2} &= \frac{CE^{2m+1}(1+AC)^m}{A^{2m+1}(1+CE)^m}, \\ \Psi_{8m-1} &= \frac{B^{2m+2}(1+DF)^m}{F^{2m+1}(1+BD)^m}, \qquad \Psi_{8m} &= \frac{A^{2m+2}(1+CE)^m}{E^{2m+1}(1+AC)^m}. \end{split}$$

Now, it follows from (4.1) that

$$\begin{split} \Psi_{8m+1} &= \frac{\Psi_{8m-3}\Psi_{8m-5}}{\Psi_{8m-1}(-1+\Psi_{8m-3}\Psi_{8m-5})} \\ &= \frac{\frac{DF^{2m+1}(1+BD)^m}{B^{2m+1}(1+DF)^m} \frac{B^{2m+1}(1+DF)^m}{F^{2m}(1+BD)^m}}{-\frac{B^{2m+2}(1+DF)^m}{F^{2m+1}(1+BD)^m} + \frac{B^{2m+2}(1+DF)^m}{F^{2m+1}(1+BD)^m} \frac{DF^{2m+1}(1+BD)^m}{B^{2m+1}(1+DF)^m} \frac{B^{2m+1}(1+DF)^m}{F^{2m}(1+BD)^m}} \end{split}$$

Then, we have

$$\Psi_{8m+1} = \frac{-DF^{2m+1}(1+BD)^m}{B^{2m+1}(1+DF)^{m+1}}$$

The other relations can be provided in the same way.

Theorem 4.2. (4.1) contains three equilibriums, $0, \pm \sqrt{2}$ and they aren't locally asymptotically stable.

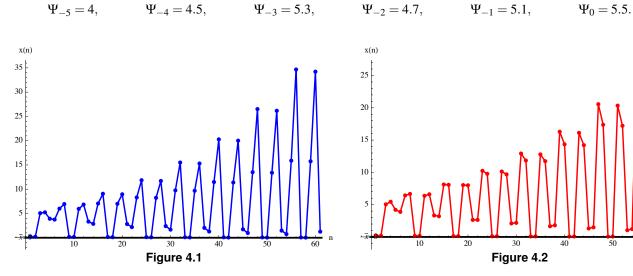
A Qualitative Investigation of the Solution of the Difference Equation $\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}(\pm \pm \Psi_{m-3}\Psi_{m-5})}$ - 83/85

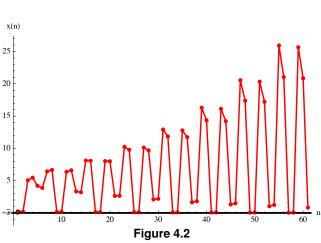
Proof. The proof is similar to the proof of Theorem 2.2 and therefore it will be omitted.

Example 4.3. Figure 4.1 depicts the actions taken when

 $\Psi_{-3} = 4.9,$ $\Psi_{-2} = 3.8,$ $\Psi_{-1} = 3.6,$ $\Psi_0 = 3.3.$ $\Psi_{-5} = 4.3$, $\Psi_{-4} = 4.7$,

Example 4.4. Figure 4.2 depicts the actions taken when





5. Solution of
$$\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}(-1-\Psi_{m-3}\Psi_{m-5})}$$

In this section, we find the solutions of

$$\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}\left(-1 - \Psi_{m-3}\Psi_{m-5}\right)}, \quad m \in \mathbb{N}_0.$$
(5.1)

Theorem 5.1. Assume that, $\{\Psi_m\}_{m=-5}^{\infty}$ represent a solution of (5.1).

$$\begin{split} \Psi_{8m+1} &= \frac{DF^{2m+1}(-1+BD)^m}{B^{2m+1}(-1+DF)^{m+1}}, \qquad \Psi_{8m+2} &= \frac{CE^{2m+1}(-1+AC)^m}{A^{2m+1}(-1+CE)^{m+1}}, \qquad \Psi_{8m+3} &= \frac{B^{2m+2}(-1+DF)^{m+1}}{F^{2m+1}(-1+BD)^{m+1}}, \\ \Psi_{8m+4} &= \frac{A^{2m+2}(-1+CE)^{m+1}}{E^{2m+1}(-1+AC)^{m+1}}, \qquad \Psi_{8m+5} &= \frac{DF^{2m+2}(-1+BD)^{m+1}}{B^{2m+2}(-1+DF)^{m+1}}, \qquad \Psi_{8m+6} &= \frac{CE^{2m+2}(-1+AC)^{m+1}}{A^{2m+2}(-1+CE)^{m+1}}, \\ \Psi_{8m+7} &= \frac{B^{2m+3}(-1+DF)^{m+1}}{F^{2m+2}(-1+BD)^{m+1}}, \qquad \Psi_{8m+8} &= \frac{A^{2m+3}(-1+CE)^{m+1}}{E^{2m+2}(-1+AC)^{m+1}}. \end{split}$$

Proof. The proof is similar to the proof of Theorem 4.1 and therefore it will be omitted.

Theorem 5.2. (5.1) contains three equilibriums, $0, \pm \sqrt{-2}$ and these aren't locally asymptotically stable.

Proof. The proof is similar to the proof of Theorem 2.2 and therefore it will be omitted.

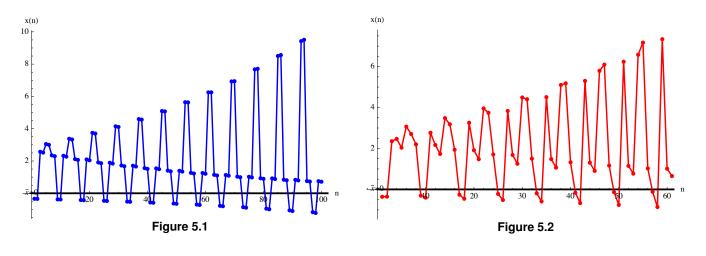
Example 5.3. See Figure 5.1 for the initials

 $\Psi_{-5} = 2.85,$ $\Psi_{-4} = 2.8,$ $\Psi_{-3} = 2.75,$ $\Psi_{-2} = 2.7,$ $\Psi_{-1} = 2.6,$ $\Psi_{0} = 2.55.$

Example 5.4. We consider

 $\Psi_{-5} = 2,$ $\Psi_{-4} = 2.8,$ $\Psi_{-3} = 2.4,$ $\Psi_{-2} = 2.7,$ $\Psi_{-1} = 2.3,$ $\Psi_{0} = 2.5.$

See Figure 5.2.



6. Conclusion

We explore the behavior of the following difference equation

$$\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}\left(\pm 1 \pm \Psi_{m-3}\Psi_{m-5}\right)}, \quad m \in \mathbb{N}_0$$

with positive real integers as initials. Local stability is discussed. Furthermore, we obtain the solution to several exceptional circumstances. Finally, a few numerical examples are shown.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism was detected.

Availability of data and materials: Not applicable.

References

- ^[1] R. P. Agarwal, *Difference Equations and Inequalities. 1st edition*, Marcel Dekker, New York, 1992.
- [2] V.L. Kocic, G. Ladas, *Global behavior of nonlinear difference equations of higher order with applications*, Volume 256 of Mathematics and Its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993.
- [3] M.A. Radin, *Difference Equations for Scientists and Engineering*, Interdisciplinary Difference Equations, World Scientific Publishing, October 2019.
- ^[4] M. Aloqeili, *Dynamics of a rational difference equation*, Appl. Math. Comput., **176**(2) (2006), 768-774.
- ^[5] C. Çınar, On the positive solutions of the difference equation $\Psi_{m+1} = \frac{\Psi_{m-1}}{1+\alpha\Psi_m\Psi_{m-1}}$, Appl. Math. Comput., **158**(3) (2004), 809-812.

A Qualitative Investigation of the Solution of the Difference Equation $\Psi_{m+1} = \frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1}(\pm \pm \pm \Psi_{m-3}\Psi_{m-5})}$ – 85/85

- ^[6] A. Gelişken, On a system of rational difference equations, J. Comput. Anal. Appl., 23(4) (2017), 593-606.
- ^[7] R. Karataş, C. Çinar, D. Şimşek, *On positive solutions of the difference equation* $\Psi_{m+1} = \frac{\Psi_{m-5}}{1+\Psi_{m-2}\Psi_{m-5}}$, Int. J. Contemp. Math. Sci., **10**(1) (2006), 495-500.
- ^[8] B. Oğul, D. Şimşek, H. Öğünmez, A.S. Kurbanlı, *Dynamical behavior of rational difference equation* $\Psi_{m+1} = \frac{\Psi_{m-17}}{\pm 1 \pm \Psi_{m-2} \Psi_{m-5} \Psi_{m-8} \Psi_{m-11} \Psi_{m-14} \Psi_{m-17}}$, Bol. Soc. Mat. Mexicana, **27**(49) (2021).
- ^[9] D. Şimsek, B. Oğul, F. Abdullayev, *Solution of the rational difference equation* $\Psi_{m+1} = \frac{\Psi_{m-13}}{1+\Psi_{m-1}\Psi_{m-3}\Psi_{m-5}\Psi_{m-7}\Psi_{m-9}\Psi_{m-11}}$, Appl. Math. Nonlinear Sci., **5**(1) (2020), 485-494.
- ^[10] I. Yalçınkaya, C. Çınar, On the dynamics of difference equation $\Psi_{m+1} = \frac{a\Psi_{m-k}}{b+c_m^p}$, Fasciculi Mathematici, **42**, (2009), 141-148.
- [11] T. F. Ibrahim, A. Q. Khan, Forms of solutions for some two-dimensional systems of rational partial recursion equations, Math. Probl. Eng., 2021, Article ID 9966197, (2021), 10 pages.
- ^[12] A. Ghezal, *Note on a rational system of* (4k+4)*-order difference equations: periodic solution and convergence*, J. Appl. Math. Comput., **2022** (2022), 1-9.
- [13] A.Q. Khan, H. El-Metwally, Global dynamics, boundedness, and semicycle analysis of a difference equation, Discrete Dyn. Nat. Soc., (2021).
- [14] M. Rahaman, S. P. Mondal, E. A. Algehyne, A. Biswas, S. Alam, A method for solving linear difference equation in Gaussian fuzzy environments, Granular Comput., 7(1) (2021), 63-76.
- ^[15] S. Stevic, A note on periodic character of a higher order difference equation, Rostock. Math. Kolloq., **61** (2006), 21-30.
- [16] S. Stevic, Iricanin, B., Kosmala, W., Smarda, Z., On a nonlinear second-order difference equation, J. Inequal. Appl., 2022(1) (2022).
- [17] Y. Soykan, E. Taşdemir, M. Göcen, Binomial transform of the generalized third-order Jacobsthal sequence, Asian-Eur. J. Math., (2022).
- ^[18] N. Touafek, E. M. Elsayed, On the solution of some difference equations, Hokkaido Math. J., 44(1) 29-45, (2015).