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Abstract
We explore the dynamics of adhering to rational difference formula

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (±1±Ψm−3Ψm−5)
m ∈ N0

where the initials Ψ−5, Ψ−4, Ψ−3,Ψ−2, Ψ−1, Ψ0 are arbitrary nonzero real numbers. Specifically, we examine
global asymptotically stability. We also give examples and solution diagrams for certain particular instances.
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1. Introduction
Because of its employment in discrete-time systems with microprocessors, difference equations are becoming increasingly
important in engineering. The study of rational difference equations and their qualitative features has recently sparked a surge
of interest. We refer the reader to [1–3] for some literature in this field.

Important rational difference equations were investigated by several authors. As examples:
Aloqeili, [4] has actually gotten the solutions to the difference equation

Ψm+1 =
Ψm−1

a−ΨmΨm−1
.

Çınar [5], researched adhering to problems with positive first values:

Ψm+1 =
Qm−1

−1+aΨmΨm−1
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for m = 0,1,2, . . .
Gelişken [6] investigated behaviors of

Ψm+1 =
A1Mm−(3k−1)

B1 +C1Mm−(3k−1)Ψm−(2k−1)Mm−(k−1)
,

Mm+1 =
A2Ψm−(3k−1)

B2 +C2Ψm−(3k−1)Mm−(2k−1)Ψm−(k−1)
.

Karataş et al. [7] deal with

Ψm+1 =
Ψm−5

1+Ψm−2Ψm−5
.

Oğul et al. [8] deal with

Ψm+1 =
Ψm−17

±1±Ψm−2Ψm−5Ψm−8Ψm−11Ψm−14Ψm−17
.

Şimşek et al. [9] examine the equation

Ψm+1 =
Ψm−13

1+Ψm−1Ψm−3Ψm−5Ψm−7Ψm−9Ψm−11
.

Yalçınkaya et al. [10] have studied

Ψm+1 =
aΨm−k

b+ cp
m
.

For more related works we refer to [11–18].
Our objective in this study is to check out actions of the solution of adhering to nonlinear difference formula

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (±1±Ψm−3Ψm−5)
, m ∈ N0

where the initials are arbitrary real numbers. Additionally, we obtain these types of solutions.

2. Solution of Ψm+1 =
Ψm−3Ψm−5

Ψm−1(1+Ψm−3Ψm−5)

In this part we give the solutions of

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (1+Ψm−3Ψm−5)
, m ∈ N0 (2.1)

where the initials are real numbers.

Theorem 2.1. Let {Ψm}∞
m=−5 be a solution of (2.1). Then for m ∈ N0

Ψ4m+1 =
DFm+1

Bm+1

m

∏
i=0

(
1+(i)BD

1+(i+1)DF

)
, Ψ4m+2 =

CEm+1

Am+1

m

∏
i=0

(
1+(i)CA

1+(i+1)CE

)
,

Ψ4m+3 =
Bm+2

Fm+1

m

∏
i=0

(
1+(i+1)DF
1+(i+1)BD

)
, Ψ4m+4 =

Am+2

Em+1

m

∏
i=0

(
1+(i+1)CE
1+(i+1)CA

)
,

where, Ψ−5 = F, Ψ−4 = E, Ψ−3 = D, Ψ−2 =C, Ψ−1 = B, Ψ0 = A.

Proof. Assume m > 0 and this our supposition remains true for m−1.
That is,

Ψ4m−3 =
DFm

Bm

m−1

∏
i=0

(
1+(i)BD

1+(i+1)DF

)
, Ψ4m−2 =

CEm

Am

m−1

∏
i=0

(
1+(i)CA

1+(i+1)CE

)
,

Ψ4m−1 =
Bm+1

Fm

m−1

∏
i=0

(
1+(i+1)DF
1+(i+1)BD

)
, Ψ4m =

Am+1

Em

m−1

∏
i=0

(
1+(i+1)CE
1+(i+1)CA

)
, Ψ4m−5 =

Bm

Fm−1

m−2

∏
i=0

(
1+(i+1)DF
1+(i+1)BD

)
.
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At the present time, using the main (2.1), one has

Ψ4m+1 =
Ψ4m−3Ψ4m−5

Ψ4m−1 (1+Ψ4m−3Ψ4m−5)

=

DFm

Bm ∏
m−1
i=0

(
1+(i)BD

1+(i+1)DF

)
Bm

Fm−1 ∏
m−2
i=0

(
1+(i+1)DF
1+(i+1)BD

)
Bm+1

Fm ∏
m−1
i=0

(
1+(i+1)DF
1+(i+1)BD

)
+ Bm+1

Fm ∏
m−1
i=0

(
1+(i+1)DF
1+(i+1)BD

)
DFm

Bm ∏
m−1
i=0

(
1+(i)BD

1+(i+1)DF

)
Bm

Fm−1 ∏
m−2
i=0

(
1+(i+1)DF
1+(i+1)BD

) .
Hence, we have

Ψ4m+1 =
DFm+1

Bm+1

m

∏
i=0

(
1+(i)BD

1+(i+1)DF

)
.

Similarly, it is easily obtained in other relationships.

Theorem 2.2. (2.1) has one equilibrium Ψ = 0 and this equilibrium isn’t locally asymptotically stable.

Proof. We may express the equilibrium points of (2.1) as

Ψ =
Ψ

2

Ψ(1+Ψ
2
)
,

Ψ
2
(

1+Ψ
2
)
= Ψ

2
.

After that

Ψ
4
= 0.

As a result, the equilibrium of (2.1) is Ψ = 0.
Assume that f : (0,∞)4→ (0,∞) is the function defined by

f (τ,κ,ρ) =
τρ

κ(1+ τρ)
.

As a result, it follows that

fτ(τ,κ,ρ) =
ρ

κ(1+ τρ)2 , fκ(τ,κ,ρ) =−
τρ

κ2(1+ τρ)
, fρ(τ,κ,ρ) =

τ

κ(1+ τρ)2 .

We see that

fτ(Ψ,Ψ,Ψ) = 1, fκ(Ψ,Ψ,Ψ) = 1, fρ(Ψ,Ψ,Ψ) = 1.

We confirm our results with the following numerical examples.

Example 2.3. Assume that

Ψ−5 = 0.3, Ψ−4 = 0.32, Ψ−3 = 0.34, Ψ−2 = 0.36, Ψ−1 = 0.38, Ψ0 = 0.4.

See Figure 2.1.

Example 2.4. Assume that

Ψ−5 = 0.35, Ψ−4 = 0.32, Ψ−3 = 0.34, Ψ−2 = 0.38, Ψ−1 = 0.42, Ψ0 = 0.43.

See Figure 2.2.
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Figure 2.2

3. Solution of Ψm+1 =
Ψm−3Ψm−5

Ψm−1(1−Ψm−3Ψm−5)

We deal with the difference equation

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (1−Ψm−3Ψm−5)
, m ∈ N0. (3.1)

Theorem 3.1. Let {Ψm}∞
m=−7 represent a solution of (3.1). In that case for m ∈ N0

Ψ4m+1 =
DFm+1

Bm+1

m

∏
i=0

(
−1+(i)BD
−1+(i+1)DF

)
, Ψ4m+2 =

CEm+1

Am+1

m

∏
i=0

(
−1+(i)CA
−1+(i+1)CE

)
,

Ψ4m+3 =
Bm+2

Fm+1

m

∏
i=0

(
−1+(i+1)DF
−1+(i+1)BD

)
, Ψ4m+4 =

Am+2

Em+1

m

∏
i=0

(
−1+(i+1)CE
−1+(i+1)CA

)
,

where, Ψ−5 = F, Ψ−4 = E, Ψ−3 = D, Ψ−2 =C, Ψ−1 = B, Ψ0 = A.

Proof. The proof is similar to the proof of Theorem 2.1 and therefore it will be omitted.

Theorem 3.2. The unique equilibrium Ψ = 0 in (3.1) isn’t locally asymptotically stable.

Proof. For confirming outcomes of this section, we take into consideration mathematical instances which stand for various
kind of solutions to (3.1).

Example 3.3. Figure 3.1 depicts the actions taken when

Ψ−5 = 3, Ψ−4 = 3.9, Ψ−3 = 3.1, Ψ−2 = 2.8, Ψ−1 = 2.5, Ψ0 = 3.5.

Example 3.4. Figure 3.2 depicts the actions taken when

Ψ−5 = 5.1, Ψ−4 = 4.9, Ψ−3 = 4.3, Ψ−2 = 5.3, Ψ−1 = 4.5, Ψ0 = 4.6.
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4. Solution of Ψm+1 =
Ψm−3Ψm−5

Ψm−1(−1+Ψm−3Ψm−5)

In this part, we study

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (−1+Ψm−3Ψm−5)
, m ∈ N0. (4.1)

Theorem 4.1. Let {Ψm}∞
m=−5 represent a solution of (4.1). In that case for, m = 0,1,2, . . .

Ψ8m+1 =
−DF2m+1(1+BD)m

B2m+1(1+DF)m+1 , Ψ8m+2 =
−CE2m+1(1+AC)m

A2m+1(1+CE)m+1 , Ψ8m+3 =
B2m+2(1+DF)m+1

F2m+1(1+BD)m+1 ,

Ψ8m+4 =
A2m+2(1+CE)m+1

E2m+1(1+AC)m+1 , Ψ8m+5 =
DF2m+2(1+BD)m+1

B2m+2(1+DF)m+1 , Ψ8m+6 =
CE2m+2(1+AC)m+1

A2m+2(1+CE)m+1 ,

Ψ8m+7 =
B2m+3(1+DF)m+1

F2m+2(1+BD)m+1 , Ψ8m+8 =
A2m+3(1+CE)m+1

E2m+2(1+AC)m+1 .

Proof. Assume that m > 0 and our supposition hold for m−1.

Ψ8m−7 =
−DF2m(1+BD)m−1

B2m(1+DF)m , Ψ8m−6 =
−CE2m(1+AC)m−1

A2m(1+CE)m , Ψ8m−5 =
B2m+1(1+DF)m

F2m(1+BD)m ,

Ψ8m−4 =
A2m+1(1+CE)m

E2m(1+AC)m , Ψ8m−3 =
DF2m+1(1+BD)m

B2m+1(1+DF)m , Ψ8m−2 =
CE2m+1(1+AC)m

A2m+1(1+CE)m ,

Ψ8m−1 =
B2m+2(1+DF)m

F2m+1(1+BD)m , Ψ8m =
A2m+2(1+CE)m

E2m+1(1+AC)m .

Now, it follows from (4.1) that

Ψ8m+1 =
Ψ8m−3Ψ8m−5

Ψ8m−1(−1+Ψ8m−3Ψ8m−5)

=

DF2m+1(1+BD)m

B2m+1(1+DF)m
B2m+1(1+DF)m

F2m(1+BD)m

−B2m+2(1+DF)m

F2m+1(1+BD)m + B2m+2(1+DF)m

F2m+1(1+BD)m
DF2m+1(1+BD)m

B2m+1(1+DF)m
B2m+1(1+DF)m

F2m(1+BD)m

.

Then, we have

Ψ8m+1 =
−DF2m+1(1+BD)m

B2m+1(1+DF)m+1 .

The other relations can be provided in the same way.

Theorem 4.2. (4.1) contains three equilibriums, 0, ±
√

2 and they aren’t locally asymptotically stable.
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Proof. The proof is similar to the proof of Theorem 2.2 and therefore it will be omitted.

Example 4.3. Figure 4.1 depicts the actions taken when

Ψ−5 = 4.3, Ψ−4 = 4.7, Ψ−3 = 4.9, Ψ−2 = 3.8, Ψ−1 = 3.6, Ψ0 = 3.3.

Example 4.4. Figure 4.2 depicts the actions taken when

Ψ−5 = 4, Ψ−4 = 4.5, Ψ−3 = 5.3, Ψ−2 = 4.7, Ψ−1 = 5.1, Ψ0 = 5.5.
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5. Solution of Ψm+1 =
Ψm−3Ψm−5

Ψm−1(−1−Ψm−3Ψm−5)

In this section, we find the solutions of

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (−1−Ψm−3Ψm−5)
, m ∈ N0. (5.1)

Theorem 5.1. Assume that, {Ψm}∞
m=−5 represent a solution of (5.1).

Ψ8m+1 =
DF2m+1(−1+BD)m

B2m+1(−1+DF)m+1 , Ψ8m+2 =
CE2m+1(−1+AC)m

A2m+1(−1+CE)m+1 , Ψ8m+3 =
B2m+2(−1+DF)m+1

F2m+1(−1+BD)m+1 ,

Ψ8m+4 =
A2m+2(−1+CE)m+1

E2m+1(−1+AC)m+1 , Ψ8m+5 =
DF2m+2(−1+BD)m+1

B2m+2(−1+DF)m+1 , Ψ8m+6 =
CE2m+2(−1+AC)m+1

A2m+2(−1+CE)m+1 ,

Ψ8m+7 =
B2m+3(−1+DF)m+1

F2m+2(−1+BD)m+1 , Ψ8m+8 =
A2m+3(−1+CE)m+1

E2m+2(−1+AC)m+1 .

Proof. The proof is similar to the proof of Theorem 4.1 and therefore it will be omitted.

Theorem 5.2. (5.1) contains three equilibriums, 0, ±
√
−2 and these aren’t locally asymptotically stable.

Proof. The proof is similar to the proof of Theorem 2.2 and therefore it will be omitted.

Example 5.3. See Figure 5.1 for the initials

Ψ−5 = 2.85, Ψ−4 = 2.8, Ψ−3 = 2.75, Ψ−2 = 2.7, Ψ−1 = 2.6, Ψ0 = 2.55.

Example 5.4. We consider

Ψ−5 = 2, Ψ−4 = 2.8, Ψ−3 = 2.4, Ψ−2 = 2.7, Ψ−1 = 2.3, Ψ0 = 2.5.

See Figure 5.2.



A Qualitative Investigation of the Solution of the Difference Equation Ψm+1 =
Ψm−3Ψm−5

Ψm−1(±1±Ψm−3Ψm−5)
— 84/85

�� �� �� �� ���
�

�

�

�

�

��

�(�)

�
-=�

Figure 5.1

�� �� �� �� �� ��
�

�

�

�

	(�)

�
-=�

Figure 5.2

6. Conclusion
We explore the behavior of the following difference equation

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (±1±Ψm−3Ψm−5)
, m ∈ N0

with positive real integers as initials. Local stability is discussed. Furthermore, we obtain the solution to several exceptional
circumstances. Finally, a few numerical examples are shown.
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