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Abstract: This paper deals with the problem of robust stability of the class of bidirectional associative memory (BAM) 

neural networks with multiple time delays. Several new sufficient conditions that imply the existence, uniqueness and 

global robust stability of the equilibrium point for the class of BAM neural networks are obatined by the use of the proper 

Lyapunov functionals and exploiting the norm properties of the interval matrices. The derived results basically depend 

on the system parameters of neural network model and they are independent of the time delays. We also give some 

numerical examples to show the applicability and novelty of the results, and compare the results with the corresponding 

robust stability results derived in the previous literature. 
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1. Introduction 
 

In recent years, dynamical neural networks have 

been extensively studied due to their potential 

applications in image processing, control theory, pattern 

recognition, associative memories, optimization 

problems. In these types of applications, stability 

properties of the equilibrium point of neural networks 

are of great importance. In particular, when a neural 

network is electronically implemented, time delays 

become important parameters on the stability properties. 

On the other hand, in hardware implementation of neural 

networks, the network parameters of the system may 

change because of the deviations in values of the 

electronic components. In this case, we need to study the 

robust stability of neural networks. In the past literature, 

many different stability results for various neural 

network models have been reported in [1]-[17]. 

Bidirectional associative memory (BAM) neural 

networks have been first introduced in [18]. The stability 

of the BAM neural networks has been extensively 

studied in the past years and a great number of various 

sufficient conditions on the stability of BAM neural 

networks have been presented in [18]-[35]. However, 

most of these stability results derived for the BAM 

neural networks are applicable when neural network 

model has a single delay. In this paper, we will consider 

bidirectional associative memory neural networks with 

multiple time delays. By using some suitable Lyapunov-

Krasovskii functionals and properties of intervalized 

interconnection matrices of the neural system, some new 

delay-independent sufficient conditions for the 

existence, uniqueness and global robust asymptotic 

stability of the equilibrium point for hybrid, BAM neural 

networks with time delays are derived. Some numerical 

examples will be presented to show the advantages of our 

results over to the previous stability results derived in the 

literature. 

 

2. BAM Neural Networks 
 

Dynamics of a BAM neural network with constant 

multiple time delays is described by the differential 

equations of the form : 

 

�̇�𝑖(𝑡) = −𝑎𝑖𝑢𝑖(𝑡) + ∑ 𝑤𝑗𝑖𝑔𝑗 (𝑧𝑗(𝑡))

𝑚

𝑗=1

+ ∑ 𝑤𝑗𝑖
𝜏 𝑔𝑗 (𝑧𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

+ 𝐼𝑖 , ∀𝑖 

            (1) 

�̇�𝑗(𝑡) = −𝑏𝑗𝑧𝑗(𝑡) + ∑ 𝑣𝑖𝑗𝑔𝑖(𝑢𝑖(𝑡))

𝑛

𝑖=1

+ ∑ 𝑣𝑖𝑗
𝜏 𝑔𝑖 (𝑢𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

+ 𝐽𝑗 , ∀𝑗 

 

The BAM neural network model (1) consists of two layers. 

n denotes number of the neurons in the first layer and m 

denotes the number of neurons in the second layer. 𝑢𝑖(𝑡) is 

the state of the ith neuron in the first layer and 𝑧𝑗(𝑡) is the 

state of the jth neuron in the second layer. ai and bj denote the 

neuron charging time constants and passive decay rates, 

respectively; 𝑤𝑗𝑖 , 𝑤𝑗𝑖
𝜏 , 𝑣𝑖𝑗  and 𝑣𝑖𝑗

𝜏  are synaptic connection 

strengths; gi and gj represent the activation functions of the 
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neurons and the propagational signal functions, 

respectively; and Ii and Jj are the exogenous inputs. 

     We assume that ai, bj, wji, 𝑤𝑗𝑖
𝜏 , vij , 𝑣𝑖𝑗

𝜏  ,τji and σij in 

system (1) are defined at the following intervals: 

 

𝐴𝐼  ∶=  {𝐴 = 𝑑𝑖𝑎𝑔(𝑎𝑖) ∶ 0 < 𝐴  ≤ 𝐴 ≤ 𝐴,  
             𝑖. 𝑒. , 0 < 𝑎𝑖 ≤ 𝑎𝑖 ≤ 𝑎𝑖 , 𝑖 = 1,2, … , 𝑛, ∀𝐴 ∈ 𝐴𝐼} 

𝐵𝐼  ∶=  {𝐵 = 𝑑𝑖𝑎𝑔(𝑏𝑗) ∶ 0 < 𝐵  ≤ 𝐵 ≤ 𝐵,  

            𝑖. 𝑒. , 0 < 𝑏𝑗 ≤ 𝑏𝑗 ≤ 𝑏𝑗, 𝑗 = 1,2, … , 𝑚, ∀𝐵 ∈ 𝐵𝐼} 

𝑊𝐼  ∶= {𝑊 = (𝑤𝑗𝑖)𝑚𝑥𝑛
∶ 𝑊 ≤ 𝑊 ≤ 𝑊,  

              𝑖. 𝑒. ,  𝑤𝑗𝑖 ≤ 𝑤𝑗𝑖 ≤ 𝑤𝑗𝑖 , 𝑖 = 1,2, … , 𝑛;  

               𝑗 = 1,2, … , 𝑚, ∀𝑊 ∈ 𝑊𝐼} 

𝑉𝐼  ∶=  {𝑉 = (𝑣𝑖𝑗)
𝑛𝑥𝑚

∶ 𝑉  ≤ 𝑉 ≤ 𝑉,                        (2)                 

              𝑖. 𝑒. , 𝑣𝑖𝑗 ≤ 𝑣𝑖𝑗 ≤ 𝑣𝑖𝑗 , 𝑖 = 1,2, … , 𝑛;   

              𝑗 = 1,2, … , 𝑚, ∀𝑉 ∈ 𝑉𝐼}   

𝑊𝐼
𝜏 ∶=  {𝑊𝜏 = (𝑤𝑗𝑖

𝜏 )
𝑚𝑥𝑛

∶ 𝑊𝜏  ≤ 𝑊 ≤ 𝑊
𝜏
,  

              𝑖. 𝑒. , 𝑤𝑗𝑖
𝜏 ≤ 𝑤𝑗𝑖

𝜏 ≤ 𝑤𝑗𝑖
𝜏

, 𝑖 = 1,2, … , 𝑛; 

               𝑗 = 1,2, … , 𝑚, ∀𝑊𝜏 ∈ 𝑊𝐼
𝜏} 

𝑉𝐼
𝜏 ∶=  {𝑉𝜏 = (𝑣𝑖𝑗

𝜏 )
𝑛𝑥𝑚

∶ 𝑉𝜏  ≤ 𝑉 ≤ 𝑉
𝜏
, 

              𝑖. 𝑒. , 𝑣𝑖𝑗
𝜏 ≤ 𝑣𝑖𝑗

𝜏 ≤ 𝑣𝑖𝑗
𝜏

,   𝑖 = 1,2, … , 𝑛;  

               𝑗 = 1,2, … , 𝑚, ∀𝑉𝜏 ∈ 𝑉𝐼
𝜏}            

 
       The activation functions are assumed to satisfy the 

following conditions: 

      (H1) There exist some positive constants ℓ𝑖, 𝑖 =
1,2, … , 𝑛    and 𝑘𝑗, 𝑗 = 1,2, … , 𝑚 such that 

 

0 ≤
𝑔𝑖( 𝑥 ) − 𝑔𝑖( 𝑦 )

𝑥 − 𝑦
≤ ℓ𝑖 ,       0 ≤

𝑔𝑗(�̂�) − 𝑔𝑖(�̂�)

�̂� − �̂�
≤ 𝑘𝑗 

 

for all 𝑥 , 𝑦, �̂�, �̂� ∈ 𝑅.  This class of functions is denoted 

by 𝑔 ∈ 𝐾. 

       (H2) There exist positive constants       𝑀𝑖 ,   𝑖 =
1,2, … , 𝑛  and  𝐿𝑗 , 𝑗 = 1,2, … , 𝑚  such that |𝑔𝑖(𝑢)| ≤ 𝑀𝑖   

and |𝑔𝑗(𝑧)| ≤ 𝐿𝑗  for all 𝑢, 𝑧 ∈ 𝑅. This class of functions 

is denoted by 𝑔 ∈ 𝐵. 

 

3. Preliminaries 
 

       Let 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛)𝑇 ∈ 𝑅𝑛   be a column vector 

and 𝑄 = (𝑞𝑖𝑗)𝑛𝑥𝑛   be a real matrix. The three commonly 

used vector norms  ‖𝑣‖1, ‖𝑣‖2, ‖𝑣‖∞  are defined as : 

 

‖𝑣‖1 = ∑ |𝑣𝑖|

𝑛

𝑖=1

, ‖𝑣‖2 = √∑ 𝑣𝑖
2

𝑛

𝑖=1

,   ‖𝑣‖∞ = max
1≤𝑖≤𝑛

|𝑣𝑖|. 

 

     The three commonly used matrix norms ‖𝑄‖1,
‖𝑄‖2, ‖𝑄‖∞  are defined as follows: 

 

‖𝑄‖1 = max
1≤𝑗≤𝑛

∑|𝑞𝑖𝑗|

𝑛

𝑖=1

,   ‖𝑄‖2 = [𝜆𝑀(𝑄𝑇𝑄)]
1
2,       

‖𝑄‖∞ = max
1≤𝑖≤𝑛

∑ |𝑞𝑖𝑗|

𝑛

𝑗=1

. 

 

        If 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛)𝑇, then, |𝑣| will denote 𝑣 =
(|𝑣1|, |𝑣2|, … , |𝑣𝑛|)𝑇. If 𝑄 = (𝑞𝑖𝑗)𝑛𝑥𝑛, then, |𝑄| will denote  

|𝑄| = (|𝑞𝑖𝑗|)𝑛𝑥𝑛, and  𝜆𝑚(𝑄)  and  𝜆𝑀(𝑄)  will denote the 

minimum and maximum eigenvalues of 𝑄, respectively. 

 

Lemma 1 [36] : Let 𝐴 be any real matrix defined by 𝐴 ∈

𝐴𝐼 ≔ {𝐴 = (𝑎𝑖𝑗) ∶ 𝐴  ≤ 𝐴 ≤ 𝐴,   𝑖. 𝑒. ,  𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ,  

𝑖, 𝑗 = 1,2, … , 𝑛}. Define 𝐴∗ =
1

2
(𝐴 +  𝐴) and 𝐴∗ =

1

2
(𝐴 −

 𝐴).  Let 

 

𝜎1(𝐴) = √‖ |𝐴∗𝑇𝐴∗| + 2|𝐴∗𝑇|𝐴∗ + 𝐴∗
𝑇𝐴∗ ‖2 

 

Then, the following inequality holds 

 

‖𝐴‖2 ≤ 𝜎1(𝐴) 

 

Lemma 2 [37] : Let 𝐴 be any real matrix defined by 𝐴 ∈

𝐴𝐼 ≔ {𝐴 = (𝑎𝑖𝑗) ∶ 𝐴  ≤ 𝐴 ≤ 𝐴, 𝑖. 𝑒. , 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ,  

𝑖, 𝑗 = 1,2, … , 𝑛}. Define 𝐴∗ =
1

2
(𝐴 +  𝐴) and  𝐴∗ =

1

2
(𝐴 −

 𝐴).  Let 

 

𝜎2(𝐴) = ‖𝐴∗‖2 + ‖𝐴∗‖2 
 

Then, the following inequality holds 

 

‖𝐴‖2 ≤ 𝜎2(𝐴) 
 

Lemma 3 [38] : Let A be any real matrix defined by  𝐴 ∈

𝐴𝐼 ≔ {𝐴 = (𝑎𝑖𝑗) ∶ 𝐴  ≤ 𝐴 ≤ 𝐴, 𝑖. 𝑒. , 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ,  

𝑖, 𝑗 = 1,2, … , 𝑛}. Define 𝐴∗ =
1

2
(𝐴 +  𝐴) and  𝐴∗ =

1

2
(𝐴 −

 𝐴).  Let 

 

𝜎3(𝐴) = √‖ 𝐴∗‖2
2 + ‖𝐴∗‖2

2 + 2‖𝐴∗
𝑇|𝐴∗| ‖2 

 

Then, the following inequality holds 

 

‖𝐴‖2 ≤ 𝜎3(𝐴) 

 

Lemma 4 [39] : Let A be any real matrix defined by 𝐴 ∈

𝐴𝐼 ≔ { 𝐴 = (𝑎𝑖𝑗) ∶  𝐴 ≤ 𝐴 ≤ 𝐴, 𝑖. 𝑒., 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗 ≤ 𝑎𝑖𝑗. 

𝑖, 𝑗 = 1,2, … , 𝑛} Define �̂� = (�̂�𝑖𝑗)𝑛𝑥𝑛 and �̂�𝑖𝑗 =

max {|𝑎𝑖𝑗|, |𝑎𝑖𝑗|}.  Let 

 

𝜎4(𝐴) = ‖�̂�‖
2
 

 

Then, the following inequality holds 

 

‖𝐴‖2 ≤ 𝜎4(𝐴) 

 

 

 

4. Global Robust Stability Results 
 

In this section, we present some sufficient conditions for the 

global robust asymptotic stability of the equilibrium point of 



 

Eylem YUCEL  / IU-JEEE Vol. 17(1), (2017), 3195-3204 
 

  

 

 

3197 

 

neural network model (1). First, the equilibrium point of 

system (1) will be shifted to the origin. By the 

transformation 

 

𝑥𝑖( . ) = 𝑢𝑖(. ) − 𝑢𝑖
∗, 𝑖 = 1, 2, … , 𝑛, 

𝑦𝑗( . ) = 𝑧𝑗(. ) − 𝑧𝑗
∗, 𝑗 = 1, 2, … , 𝑚, 

 

system (1) can be transformed into a new system of the 

following form : 

 

�̇�𝑖(𝑡) = −𝑎𝑖𝑥𝑖(𝑡) + ∑ 𝑤𝑗𝑖𝑓𝑗 (𝑦𝑗(𝑡))

𝑚

𝑗=1

 

               + ∑ 𝑤𝑗𝑖
𝜏 𝑓𝑗 (𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

, ∀𝑖 

                                       (3) 

�̇�𝑗(𝑡) = −𝑏𝑗𝑦𝑗(𝑡) + ∑ 𝑣𝑖𝑗𝑓𝑖(𝑥𝑖(𝑡))

𝑛

𝑖=1

 

               + ∑ 𝑣𝑖𝑗
𝜏 𝑓𝑖 (𝑥𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

, ∀𝑗 

 

where  𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡) , … , 𝑥𝑛(𝑡))𝑇 , 𝑦(𝑡) =

(𝑦1(𝑡), 𝑦2(𝑡) , … , 𝑦𝑛(𝑡)))𝑇 , 𝑓(𝑥(𝑡)) =   ( 𝑓1(𝑥1(𝑡)),  

 𝑓2(𝑥2(𝑡)) , … , 𝑓𝑛(𝑥𝑛(𝑡)) )𝑇 , 𝑓(𝑦(𝑡)) =( 𝑓1(𝑦1(𝑡)), 
𝑓2(𝑦2(𝑡)) , … , 𝑓𝑛(𝑦𝑛(𝑡)) )𝑇 , 𝑓(𝑥(𝑡 − 𝜎)) =( 𝑓1(𝑥1(𝑡 −
𝜎1)),   𝑓2(𝑥2(𝑡 − 𝜎2))  , … ,   𝑓𝑛(𝑥𝑛(𝑡 − 𝜎𝑛)))𝑇 ,
𝑓(𝑦(𝑡 − 𝜏)) =  (𝑓1(𝑦1(𝑡 − 𝜏1)), 𝑓2(𝑦2(𝑡 − 𝜏2)) , … ,
𝑓𝑛(𝑦𝑛(𝑡 − 𝜏𝑛)))𝑇. 

The functions 𝑓
𝑖
(𝑥𝑖), 𝑓

𝑗
(𝑦

𝑗
)  are of the form : 

 

𝑓
𝑖
(𝑥𝑖( . )) = 𝑔

𝑖
(𝑥𝑖(. ) + 𝑢𝑖

∗) − 𝑔
𝑖
(𝑢𝑖

∗) , 𝑖 = 1,2, … , 𝑛, 

𝑓𝑗 (𝑦𝑗(. )) = 𝑔𝑗(𝑦𝑗(. ) + 𝑧𝑗
∗) − 𝑔𝑗(𝑧𝑗

∗), 𝑗 = 1,2, … , 𝑚. 

 

        It can be noted that the functions fi and fj satisfy the 

assumptions on 𝑔𝑖 and 𝑔𝑗 , i.e., 𝑔𝑖 ∈ 𝐾 and 𝑔𝑗 ∈

𝐵  implies that 𝑓𝑖 ∈ 𝐾 and  𝑓𝑗 ∈ 𝐵,  respectively. It is 

also easy to see that 𝑓𝑖(0) = 0 and 𝑓𝑗(0) = 0, 𝑖 =

1,2, … , 𝑛. 
       Note that the equilibrium point of system (1) is 

globally asymptotically stable, if the origin of system (3) 

is a globally asymptotically stable. Therefore, the proof 

of global asymptotic stability of the equilibrium point of 

system (1) is equivalent to the proof of the global 

asymptotic stability of the origin of system (3). We now 

state the following result : 

 

Theorem 1 : Let the assumptions (H1) and (H2) hold. 

Then, neural system (1) with (2) has a unique 

equilibrium point which is globally asymptotically 

robustly stable if there exist positive constants α, γ and 

β such that 

 

𝛿𝑖 = 𝑚(2𝑎𝑖 − 𝛼 − 𝛾) −
1

𝛾
𝑛ℓ𝑖

2𝜎𝑚
2 (𝑉)        

−
1

𝛼
𝑛2ℓ𝑖

2 ∑(𝑣𝑖𝑗
𝜏∗

)
2

𝑚

𝑗=1

> 0, ∀𝑖 

 

𝛺𝑗 = 𝑛(2𝑏𝑗 − 𝛼 − 𝛽) −
1

𝛽
𝑚𝑘𝑗

2𝜎𝑚
2 (𝑊)

−
1

𝛼
𝑚2𝑘𝑗

2 ∑(𝑤𝑗𝑖
𝜏∗

)
2

𝑛

𝑖=1

> 0, ∀𝑗 

 

where 𝑊 = (𝑤𝑗𝑖), 𝑉 = (𝑣𝑖𝑗),    𝜎𝑚(𝑉) = 𝑚𝑖𝑛{𝜎1(𝑉),

𝜎2(𝑉), 𝜎3(𝑉),  𝜎4(𝑉)},    𝜎𝑚(𝑊) = 𝑚𝑖𝑛{𝜎1(𝑊), 𝜎2(𝑊),

𝜎3(𝑊),  𝜎4(𝑊)}, 𝑣𝑖𝑗
𝜏∗

= 𝑚𝑎𝑥{|𝑣𝑖𝑗
𝜏 |, |𝑣𝑖𝑗

𝜏
|},   

𝑤𝑗𝑖
𝜏∗

= 𝑚𝑎𝑥{|𝑤𝑗𝑖
𝜏 |, |𝑤𝑗𝑖

𝜏
|}   

 

Proof: Define the following positive definite Lyapunov 

functional : 

 

𝑉(𝑥(𝑡), 𝑦(𝑡)) = ∑ 𝑚𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+ ∑ 𝑛𝑦𝑗
2(𝑡)

𝑚

𝑗=1

+
1

𝛼
∑ ∑ 𝑚2(𝑤𝑗𝑖

𝜏 )2

𝑚

𝑗=1

∫ 𝑓𝑗
2 (𝑦𝑗(𝜂)) 𝑑𝜂

𝑡

𝑡−𝜏𝑗𝑖

𝑛

𝑖=1

+
1

𝛼
∑ ∑ 𝑛2(𝑣𝑖𝑗

𝜏 )2

𝑛

𝑖=1

∫ 𝑓𝑗
2(𝑥𝑖(𝜉))𝑑𝜉

𝑡

𝑡−𝜎𝑗𝑖

𝑚

𝑗=1

 

 

The derivative of 𝑉(𝑥(𝑡), 𝑦(𝑡)) along the trajectories of the 

system is obtained as : 

 

�̇�(𝑥(𝑡), 𝑦(𝑡)) = − ∑ 2𝑚𝑎𝑖𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+ ∑ ∑ 2𝑚𝑥𝑖(𝑡)𝑤𝑗𝑖𝑓𝑗 (𝑦𝑗(𝑡))

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ ∑ 2𝑚𝑥𝑖(𝑡)𝑤𝑗𝑖
𝜏 𝑓𝑗 (𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

𝑛

𝑖=1

− ∑ 2𝑛𝑏𝑗𝑦𝑗
2(𝑡)

𝑚

𝑗=1

+ ∑ ∑ 2𝑛𝑦𝑗(𝑡)𝑣𝑖𝑗𝑓𝑖(𝑥𝑖(𝑡))

𝑛

𝑖=1

𝑚

𝑗=1

+ ∑ ∑ 2𝑛𝑦𝑗(𝑡)𝑣𝑖𝑗
𝜏 𝑓𝑖 (𝑥𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

𝑚

𝑗=1

+
1

𝛼
∑ ∑ 𝑚2(𝑤𝑗𝑖

𝜏 )
2

𝑓𝑗
2 (𝑦𝑗(𝑡))

𝑚

𝑗=1

𝑛

𝑖=1

−
1

𝛼
∑ ∑ 𝑚2(𝑤𝑗𝑖

𝜏 )
2

𝑓𝑗
2 (𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

𝑛

𝑖=1

+
1

𝛼
∑ ∑ 𝑛2(𝑣𝑖𝑗

𝜏 )
2

𝑓𝑖
2(𝑥𝑖(𝑡))

𝑛

𝑖=1

𝑚

𝑗=1

 

 

                       −
1

𝛼
∑ ∑ 𝑛2(𝑣𝑖𝑗

𝜏 )
2

𝑓𝑖
2 (𝑥𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

𝑚

𝑗=1
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                            ≤ − ∑ 2𝑚𝑎𝑖𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+ ∑ ∑ 2𝑚𝑥𝑖(𝑡)𝑤𝑗𝑖𝑓𝑗 (𝑦𝑗(𝑡))

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ ∑ 2𝑚𝑥𝑖(𝑡)𝑤𝑗𝑖
𝜏 𝑓𝑗 (𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

𝑛

𝑖=1

− ∑ 2𝑛𝑏𝑗𝑦𝑗
2(𝑡)

𝑚

𝑗=1

+ ∑ ∑ 2𝑛𝑦𝑗(𝑡)𝑣𝑖𝑗𝑓𝑖(𝑥𝑖(𝑡))

𝑛

𝑖=1

𝑚

𝑗=1

+ ∑ ∑ 2𝑛𝑦𝑗(𝑡)𝑣𝑖𝑗
𝜏 𝑓𝑖 (𝑥𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

𝑚

𝑗=1

+
1

𝛼
∑ ∑ 𝑚2(𝑤𝑗𝑖

𝜏 )
2

𝑘𝑗
2𝑦𝑗

2(𝑡)

𝑚

𝑗=1

𝑛

𝑖=1

−
1

𝛼
∑ ∑ 𝑚2(𝑤𝑗𝑖

𝜏 )
2

𝑓𝑗
2 (𝑦𝑗(𝑡

𝑚

𝑗=1

𝑛

𝑖=1

− 𝜏𝑗𝑖)) +
1

𝛼
∑ ∑ 𝑛2(𝑣𝑖𝑗

𝜏 )
2

ℓ𝑖
2𝑥𝑖

2(𝑡)

𝑛

𝑖=1

𝑚

𝑗=1

−
1

𝛼
∑ ∑ 𝑛2(𝑣𝑖𝑗

𝜏 )
2

𝑓𝑖
2 (𝑥𝑖(𝑡

𝑛

𝑖=1

𝑚

𝑗=1

− 𝜎𝑖𝑗))         (4) 

 

We note the following inequalities : 

 

∑ ∑ 2𝑚𝑥𝑖(𝑡)𝑤𝑗𝑖𝑓𝑗 (𝑦𝑗(𝑡))

𝑚

𝑗=1

𝑛

𝑖=1

= 2𝑚𝑥𝑇(𝑡)𝑊𝑓(𝑦(𝑡))       

≤ 𝑚𝛽𝑥𝑇(𝑡)𝑥(𝑡)                              

+ 𝑚
1

𝛽
𝑓𝑇(𝑦(𝑡))𝑊𝑇𝑊𝑓(𝑦(𝑡))

≤  𝑚𝛽𝑥𝑇(𝑡)𝑥(𝑡)                                      

+ 𝑚
1

𝛽
‖𝑊‖2

2 ‖𝑓(𝑦(𝑡))‖
2

2

≤  𝑚𝛽 ∑ 𝑥𝑖
2

𝑛

𝑖=1

(𝑡)

+ 𝑚
1

𝛽
‖𝑊‖2

2 ∑ 𝑘𝑗
2𝑦𝑗

2(𝑡)

𝑚

𝑗=1

        (5) 

 

∑ ∑ 2𝑛𝑦𝑗(𝑡)𝑣𝑖𝑗𝑓𝑖(𝑥𝑖(𝑡))

𝑛

𝑖=1

𝑚

𝑗=1

= 2𝑛𝑦𝑇(𝑡)𝑉𝑓(𝑥(𝑡))

≤ 𝑛𝛾𝑦𝑇(𝑡)𝑦(𝑡)

+ 𝑛
1

𝛾
𝑓𝑇(𝑥(𝑡))𝑉𝑇𝑉𝑓(𝑥(𝑡)) 

 

 

 

 

 

                               ≤ 𝑛𝛾𝑦𝑇(𝑡)𝑦(𝑡) + 𝑛
1

𝛾
‖𝑉‖2

2 ‖𝑓(𝑥(𝑡))‖
2

2

≤  𝑛𝛾 ∑ 𝑦𝑗
2

𝑚

𝑗=1

(𝑡)

+ 𝑛
1

𝛾
‖𝑉‖2

2 ∑ ℓ𝑖
2𝑥𝑖

2(𝑡)

𝑛

𝑖=1

           (6) 

 

∑ ∑ 2𝑚𝑥𝑖(𝑡)𝑤𝑗𝑖
𝜏 𝑓𝑗 (𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

𝑛

𝑖=1

≤ ∑ ∑ 𝛼𝑥𝑖
2(𝑡)

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ ∑
1

𝛼
𝑚2(𝑤𝑗𝑖

𝜏 )
2

𝑓𝑗
2 (𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

𝑛

𝑖=1

= 𝑚𝛼 ∑ 𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+ ∑ ∑
1

𝛼
𝑚2(𝑤𝑗𝑖

𝜏 )
2

𝑓𝑗
2 (𝑦𝑗(𝑡

𝑚

𝑗=1

𝑛

𝑖=1

− 𝜏𝑗𝑖))                                          (7) 

 

∑ ∑ 2𝑛𝑦𝑗(𝑡)𝑣𝑖𝑗
𝜏 𝑓𝑖 (𝑥𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

𝑚

𝑗=1

≤ ∑ ∑ 𝛼𝑦𝑗
2(𝑡)

𝑛

𝑖=1

𝑚

𝑗=1

+ ∑ ∑
1

𝛼
𝑛2(𝑣𝑖𝑗

𝜏 )
2

𝑓𝑖
2 (𝑥𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

𝑚

𝑗=1

= 𝑛𝛼 ∑ 𝑦𝑗
2(𝑡)

𝑚

𝑗=1

+ ∑ ∑
1

𝛼
𝑛2(𝑣𝑖𝑗

𝜏 )
2

𝑓𝑖
2 (𝑥𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

𝑚

𝑗=1

 (8) 

 

Using (5)-(8) in (4) results in               

 

�̇�(𝑥(𝑡), 𝑦(𝑡)) ≤ − ∑ 2𝑚𝑎𝑖𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+  𝑚𝛽 ∑ 𝑥𝑖
2

𝑛

𝑖=1

(𝑡)

+ 𝑚
1

𝛽
‖𝑊‖2

2 ∑ 𝑘𝑗
2𝑦𝑗

2(𝑡)

𝑚

𝑗=1

− ∑ 2𝑛𝑏𝑗𝑦𝑗
2(𝑡)

𝑚

𝑗=1

+ 𝑛𝛾 ∑ 𝑦𝑗
2

𝑚

𝑗=1

(𝑡)

+ 𝑛
1

𝛾
‖𝑉‖2

2 ∑ ℓ𝑖
2𝑥𝑖

2(𝑡)

𝑛

𝑖=1
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                                +𝑚𝛼 ∑ 𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+ 𝑛𝛼 ∑ 𝑦𝑗
2(𝑡)

𝑚

𝑗=1

+
1

𝛼
∑ ∑ 𝑚2(𝑤𝑗𝑖

𝜏 )
2

𝑘𝑗
2𝑦𝑗

2(𝑡)

𝑚

𝑗=1

𝑛

𝑖=1

+
1

𝛼
∑ ∑ 𝑛2(𝑣𝑖𝑗

𝜏 )
2

ℓ𝑖
2𝑥𝑖

2(𝑡)

𝑛

𝑖=1

𝑚

𝑗=1

 

 

Since ‖𝑊‖2
2 ≤ 𝜎𝑚

2 (𝑊), ‖𝑉‖2
2 ≤ 𝜎𝑚

2 (𝑉)  and  (𝑤𝑗𝑖
𝜏 )

2
≤

(𝑤𝑗𝑖
𝜏∗

)
2

, (𝑣𝑖𝑗
𝜏 )

2
≤ (𝑣𝑖𝑗

𝜏∗
)

2
  

 

�̇�(𝑥(𝑡), 𝑦(𝑡)) ≤ ∑ {𝑚(−2𝑎𝑖 + 𝛼 + 𝛾)

𝑛

𝑖=1

+
1

𝛾
𝑛ℓ𝑖

2𝜎𝑚
2 (𝑉)

+
1

𝛼
𝑛2ℓ𝑖

2 ∑(𝑣𝑖𝑗
𝜏∗

)
2

𝑚

𝑗=1

} 𝑥𝑖
2(𝑡)

+ ∑ {𝑛(−2𝑏𝑗 + 𝛼 + 𝛽)

𝑚

𝑗=1

+
1

𝛽
𝑚𝑘𝑗

2𝜎𝑚
2 (𝑊)

+
1

𝛼
𝑚2𝑘𝑗

2 ∑(𝑤𝑗𝑖
𝜏∗

)
2

𝑛

𝑗=1

} 𝑦𝑗
2(𝑡)

= − ∑ 𝛿𝑖𝑥𝑖
2(𝑡)

𝑛

𝑖=1

− ∑ Ω𝑗𝑦𝑗
2(𝑡)

𝑚

𝑗=1

 

 

Since δi > 0 for 𝑖 = 1,2, … , 𝑛 and Ω𝑗 > 0 for 𝑗 =

1,2, … , 𝑚, it follows that �̇�(𝑥(𝑡), 𝑦(𝑡)) < 0 for 𝑥(𝑡) ≠

0 or 𝑦(𝑡) ≠ 0. Hence, by the standard Lyapunov-type 

theorem in functional differential equations we can 

conclude that the origin of system (3) is globally 

asymptotically stable. 

 

Theorem 2 : Let the assumptions (H1) and (H2) hold. 

Then, neural system (1) with (2) has a unique 

equilibrium point which is globally asymptotically 

robustly stable if there exist positive constants α and β 

such that 

 

𝜑𝑖 = 𝑚(2𝑎𝑖 − 𝛼ℓ𝑖
2 − 𝛾) −

1

𝛾
𝑛ℓ𝑖

2𝜎𝑚
2 (𝑉)

−
1

𝛼
𝑚2 ∑(𝑤𝑗𝑖

𝜏∗
)

2
𝑚

𝑗=1

> 0, ∀𝑖 

 

𝜗𝑗 = 𝑛(2𝑏𝑗 − 𝛼𝑘𝑗
2 − 𝛽) −

1

𝛽
𝑚𝑘𝑗

2𝜎𝑚
2 (𝑊)

−
1

𝛼
𝑛2 ∑(𝑣𝑖𝑗

𝜏∗
)

2
𝑛

𝑗=1

> 0,          ∀𝑗 

 

where 𝑊 = (𝑤𝑗𝑖),     𝑉 = (𝑣𝑖𝑗),    𝜎𝑚(𝑉) = 𝑚𝑖𝑛{𝜎1(𝑉),

𝜎2(𝑉), 𝜎3(𝑉), 𝜎4(𝑉)}, 𝜎𝑚(𝑊) = 𝑚𝑖𝑛{𝜎1(𝑊), 𝜎2(𝑊),

𝜎3(𝑊), 𝜎4(𝑊)}, 𝑣𝑖𝑗
𝜏∗

= 𝑚𝑎𝑥{|𝑣𝑖𝑗
𝜏 |, |𝑣𝑖𝑗

𝜏
|},   

𝑤𝑗𝑖
𝜏∗

= 𝑚𝑎𝑥{|𝑤𝑗𝑖
𝜏 |,   |𝑤𝑗𝑖

𝜏
|}. 

 

Proof : Define the following positive definite Lyapunov 

functional : 

 

𝑉(𝑥(𝑡), 𝑦(𝑡)) = ∑ 𝑚𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+ ∑ 𝑛𝑦𝑗
2(𝑡)

𝑚

𝑗=1

+ ∑ ∑ ∫ 𝑓𝑗
2(𝑦𝑗())

𝑡

𝑡−𝜏𝑗𝑖

𝑚

𝑗=1

𝑛

𝑖=1
𝑑 

                     +∑ ∑ ∫ 𝑓𝑖
2(𝑥𝑖(𝜉))

𝑡

𝑡−𝑖𝑗

𝑛

𝑖=1

𝑚

𝑗=1
𝑑𝜉 

 

The derivative of  V(x(t), y(t)) along the trajectories of the 

system is obtained as : 

 

�̇�(𝑥(𝑡), 𝑦(𝑡)) = − ∑ 2𝑚𝑎𝑖𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+ ∑ ∑ 2𝑚𝑥𝑖(𝑡)𝑤𝑗𝑖𝑓𝑗(𝑦𝑗(𝑡))

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ ∑ 2𝑚𝑥𝑖(𝑡)𝑤𝑗𝑖
𝜏 𝑓𝑗(𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

𝑛

𝑖=1

+ − ∑ 2𝑛𝑏𝑗𝑦𝑗
2(𝑡)

𝑛

𝑖=1

+ ∑ ∑ 2𝑛𝑦𝑗(𝑡)𝑣𝑖𝑗𝑓𝑖(𝑥𝑖(𝑡))

𝑛

𝑖=1

𝑚

𝑗=1

+ ∑ ∑ 2𝑛𝑦𝑗(𝑡)𝑣𝑖𝑗
𝜏 𝑓𝑖(𝑥𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

𝑚

𝑗=1

+ ∑ ∑ 𝑓𝑗
2(𝑦𝑗(𝑡))

𝑚

𝑗=1

𝑛

𝑖=1

− ∑ ∑ 𝑓𝑗
2(𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ ∑ 𝑓𝑖
2(𝑥𝑖(𝑡))

𝑛

𝑖=1

𝑚

𝑗=1

− ∑ ∑ 𝑓𝑖
2(𝑥𝑖(𝑡 − 𝜎𝑖𝑗))

𝑛

𝑖=1

  

𝑚

𝑗=1

     (9) 

 

We also note that 
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∑ ∑ 2𝑚𝑥𝑖(𝑡)𝑤𝑗𝑖
𝜏 𝑓𝑗(𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

𝑛

𝑖=1

≤ ∑ ∑
1

𝛼
𝑚2(𝑤𝑗𝑖

𝜏 )
2

𝑥𝑖
2(𝑡)

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ ∑ 𝛼𝑓𝑗
2(𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑚

𝑗=1

𝑛

𝑖=1

  (10) 

 

∑ ∑ 2𝑛𝑦𝑗(𝑡)𝑣𝑖𝑗
𝜏 𝑓𝑖(𝑥𝑖(𝑡 − 𝑖𝑗))

𝑛

𝑖=1

𝑚

𝑗=1

≤ ∑ ∑
1

𝛼
𝑛2(𝑣𝑖𝑗

𝜏 )
2

𝑦𝑗
2(𝑡)

𝑛

𝑖=1

𝑚

𝑗=1

+ ∑ ∑ 𝛼𝑓𝑖
2(𝑥𝑖(𝑡 − 𝑖𝑗))

𝑛

𝑖=1

𝑚

𝑗=1

(11) 

 

Using (5), (6), (10) and (11) in (9) leads to : 

 

�̇�(𝑥(𝑡), 𝑦(𝑡)) ≤ − ∑ 2𝑚𝑎𝑖𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+ 𝑚∑ 𝑥𝑖
2(𝑡)

𝑛

𝑖=1

+ 𝑚
1

𝛽
‖𝑊‖2

2 ∑ 𝑘𝑗
2𝑦𝑗

2(𝑡)

𝑚

𝑗=1

− ∑ 2𝑛𝑏𝑗𝑦𝑗
2(𝑡)

𝑚

𝑗=1

+ 𝑛𝛾 ∑ 𝑦𝑗
2(𝑡)

𝑛

𝑖=1

+ 𝑛
1

𝛾
‖𝑉‖2

2 ∑ 𝑙𝑖
2𝑥𝑖

2(𝑡)

𝑛

𝑖=1

+ 𝛼𝑛 ∑ 𝑘𝑗
2𝑦𝑗

2(𝑡)

𝑚

𝑗=1

+ ∑ ∑
1

𝛼
𝑚2(𝑤𝑗𝑖

𝜏 )
2

𝑥𝑖
2(𝑡)

𝑚

𝑗=1

𝑛

𝑖=1

+ 𝛼𝑚 ∑ 𝑙𝑖
2𝑥𝑖

2(𝑡)

𝑛

𝑖=1

+ ∑ ∑
1

𝛼
𝑛2(𝑣𝑖𝑗

𝜏 )
2

𝑦𝑗
2(𝑡)

𝑛

𝑖=1

𝑚

𝑗=1

 

 

Since ‖𝑊‖2
2 ≤ 𝜎𝑚

2 (𝑊), ‖𝑉‖2
2 ≤ 𝜎𝑚

2 (𝑉)  and   (𝑤𝑗𝑖
𝜏 )2 ≤

(𝑤𝑗𝑖
𝜏∗

)
2

, (𝑣𝑖𝑗
𝜏 )2 ≤ (𝑣𝑖𝑗

𝜏∗
)2 

 

�̇�(𝑥(𝑡), 𝑦(𝑡)) ≤ ∑ {𝑚(−2𝑎𝑖 + 𝛼ℓ𝑖
2 + γ) +

1

𝛾
𝑛ℓ𝑖

2𝜎𝑚
2 (𝑉)

𝑛

𝑖=1

+
1

𝛼
𝑚2 ∑(𝑤𝑗𝑖

𝜏∗
)

2
𝑚

𝑗=1

} 𝑥𝑖
2(𝑡)

+ ∑ {𝑛(−2𝑏𝑗 + 𝛼𝑘𝑗
2 + 𝛽)

𝑚

𝑗=1

+
1

𝛽
𝑚𝑘𝑗

2𝜎𝑚
2 (𝑊) +

1

𝛼
𝑛2 ∑(𝑣𝑖𝑗

𝜏∗
)2

𝑛

𝑖=1

} 𝑦𝑗
2(𝑡)

= − ∑ 𝜑𝑖

𝑛

𝑖=1

𝑥𝑖
2(𝑡) − ∑ 𝜗𝑗

𝑚

𝑗=1

𝑦𝑗
2(𝑡) 

 

in which �̇�(𝑥(𝑡), 𝑦(𝑡)) < 0 for all 𝑥(𝑡) ≠ 0 or 𝑦(𝑡) ≠ 0. 

Hence, the origin of system (3) is globally asymptotically 

stable. 

 

The following corollaries are the direct results of Theorems 

1 and 2 : 

 

Corollary 1: Let 𝑎𝑚 = 𝑚𝑖𝑛{𝑎𝑖},  𝑏𝑚 = 𝑚𝑖𝑛{𝑏𝑗}, ℓ𝑀 =

𝑚𝑎𝑥{𝑙𝑖},  𝑘𝑀 = 𝑚𝑎𝑥{𝑘𝑗}.  

 

𝜙𝑖 = 𝑚(2𝑎𝑚 − 𝛼 − 𝛾) −
1

𝛾
𝑛ℓ𝑀

2 𝜎𝑚
2 (𝑉)

−
1

𝛼
𝑛2ℓ𝑀

2 ∑(𝑣𝑖𝑗
𝜏∗

)2

𝑚

𝑗=1

> 0,   ∀𝑖 

 

𝜓𝑗 = 𝑛(2𝑏𝑚 − 𝛼 − 𝛽) −
1

𝛽
𝑚𝑘𝑀

2 𝜎𝑚
2 (𝑊)

−
1

𝛼
𝑚2𝑘𝑀

2 ∑(𝑤𝑗𝑖
𝜏∗

)
2

𝑛

𝑖=1

> 0,   ∀𝑗 

 

where 𝑊 = (𝜔𝑗𝑖), 𝑉 = (𝑣𝑖𝑗), 𝜎𝑚(𝑉) = min{𝜎1(𝑉),

𝜎2(𝑉), 𝜎3(𝑉), 𝜎4(𝑉)},      𝜎𝑚(𝑊) = min  {𝜎1(𝑊), 𝜎2(𝑊),

𝜎3(𝑊), 𝜎4(𝑊)} , 𝑣𝑖𝑗
𝜏∗

= 𝑚𝑎𝑥{|𝑣𝑖𝑗
𝜏 |, |𝑣𝑖𝑗

𝜏
|} and 𝑤𝑗𝑖

𝜏∗
=

𝑚𝑎𝑥{|𝜔𝑗𝑖
𝜏 |, |𝜔𝑗𝑖

𝜏
|}. 

 

Corollary 2: Let 𝑎𝑚 = 𝑚𝑖𝑛{𝑎𝑖}, 𝑏𝑚 = 𝑚𝑖𝑛{𝑏𝑗}, ℓ𝑀 =

𝑚𝑎𝑥{ℓ𝑖}, 𝑘𝑀 = 𝑚𝑎𝑥{𝑘𝑗}.  

 

𝜁𝑖 = 𝑚(2𝑎𝑚 − 𝛼ℓ𝑀
2 − 𝛾) −

1

𝛾
𝑛ℓ𝑀

2 𝜎𝑚
2 (𝑉)

−
1

𝛼
𝑚2 ∑(𝑤𝑗𝑖

𝜏∗
)

2
𝑚

𝑗=1

> 0,   ∀𝑖 

 

𝜉𝑗 = 𝑛(2𝑏𝑚 − 𝛼𝑘𝑀
2 − 𝛽) −

1

𝛽
𝑚𝑘𝑀

2 𝜎𝑚
2 (𝑊)

−
1

𝛼
𝑛2 ∑(𝑣𝑖𝑗

𝜏∗
)

2
𝑛

𝑖=1

> 0,   ∀𝑗 
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where 𝑊 = (𝜔𝑗𝑖), 𝑉 = (𝑣𝑖𝑗), 𝜎𝑚(𝑉) = min{𝜎1(𝑉),

𝜎2(𝑉), 𝜎3(𝑉), 𝜎4(𝑉)},             𝜎𝑚(𝑊) = min  {𝜎1(𝑊),

𝜎2(𝑊), 𝜎3(𝑊), 𝜎4(𝑊)} , 𝑣𝑖𝑗
𝜏∗

= 𝑚𝑎𝑥{|𝑣𝑖𝑗
𝜏 |, |𝑣𝑖𝑗

𝜏
|} and 

𝑤𝑗𝑖
𝜏∗

= 𝑚𝑎𝑥{|𝜔𝑗𝑖
𝜏 |, |𝜔𝑗𝑖

𝜏
|}. 

 

Corollary 3: Let 𝛾 = ℓ𝑀𝜎𝑚(𝑉), 𝛽 = 𝑘𝑀𝜎𝑚(𝑊). 

 

𝜙𝑖 = 𝑚(2𝑎𝑚 − 𝛼) − (𝑚 + 𝑛)(ℓ𝑀𝜎𝑚(𝑉))

−
1

𝛼
𝑛2ℓ𝑀

2 ∑(𝑣𝑖𝑗
𝜏∗

)
2

𝑚

𝑗=1

> 0,   ∀𝑖 

 

𝜓𝑗 = 𝑛(2𝑏𝑚 − 𝛼) − (𝑚 + 𝑛)(𝑘𝑀𝜎𝑚(𝑊))

−
1

𝛼
𝑚2𝑘𝑀

2 ∑(𝑤𝑗𝑖
𝜏∗

)
2

𝑛

𝑖=1

> 0,   ∀𝑗 

 

where 𝑊 = (𝜔𝑗𝑖), 𝑉 = (𝑣𝑖𝑗), 𝜎𝑚(𝑉) = min{𝜎1(𝑉),

𝜎2(𝑉), 𝜎3(𝑉), 𝜎4(𝑉)},             𝜎𝑚(𝑊) = min  {𝜎1(𝑊),

𝜎2(𝑊), 𝜎3(𝑊), 𝜎4(𝑊)} , 𝑣𝑖𝑗
𝜏∗

= 𝑚𝑎𝑥{|𝑣𝑖𝑗
𝜏 |, |𝑣𝑖𝑗

𝜏
|} and 

𝑤𝑗𝑖
𝜏∗

= 𝑚𝑎𝑥{|𝜔𝑗𝑖
𝜏 |, |𝜔𝑗𝑖

𝜏
|}. 

 

Corollary 4: Let 𝛾 = ℓ𝑀𝜎𝑚(𝑉), 𝛽 = 𝑘𝑀𝜎𝑚(𝑊). 

 

𝜁𝑖 = 𝑚(2𝑎𝑚 − 𝛼ℓ𝑀
2 ) − (𝑚 + 𝑛) (ℓ𝑀𝜎𝑚(𝑉))

−
1

𝛼
𝑚2 ∑(𝑤𝑗𝑖

𝜏∗
)

2
𝑚

𝑗=1

> 0,   ∀𝑖 

 

𝜉𝑗 = 𝑛(2𝑏𝑚 − 𝛼𝑘𝑀
2 ) − (𝑚 + 𝑛)(𝑘𝑀𝜎𝑚(𝑊))

−
1

𝛼
𝑛2 ∑(𝑣𝑖𝑗

𝜏∗
)

2
𝑛

𝑖=1

> 0,   ∀𝑗 

where 𝑊 = (𝜔𝑗𝑖), 𝑉 = (𝑣𝑖𝑗), 𝜎𝑚(𝑉) = min{𝜎1(𝑉),

𝜎2(𝑉), 𝜎3(𝑉), 𝜎4(𝑉)},             𝜎𝑚(𝑊) = min  {𝜎1(𝑊),

𝜎2(𝑊), 𝜎3(𝑊), 𝜎4(𝑊)} , 𝑣𝑖𝑗
𝜏∗

= 𝑚𝑎𝑥{|𝑣𝑖𝑗
𝜏 |, |𝑣𝑖𝑗

𝜏
|} and 

𝑤𝑗𝑖
𝜏∗

= 𝑚𝑎𝑥{|𝜔𝑗𝑖
𝜏 |, |𝜔𝑗𝑖

𝜏
|}. 

 

5. Comparisons and Examples 
 

In this section, the results obtained in this paper will be 

compared with the previous global robust stability 

results of BAM neural networks derived in the literature. 

In order to make the comparison precise, first the 

previous results will be restated : 

 

Corollary 5 [40] : Let the activation functions satisfy 

assumptions (H1) and (H2). Then, neural system (1) 

with (2) has a unique equilibrium point which is globally 

asymptotically robustly stable if there exist positive 

constants α, β and γ such that the network parameters of 

the system satisfy the following conditions 

 

𝛿𝑖 = 𝑚(2𝑎𝑖 − 𝛼 − 𝛾)

−
1

𝛾
𝑛ℓ𝑖

2(‖𝑉∗‖2
2 + ‖𝑉∗‖2

2 + 2‖𝑉∗
𝑇|𝑉∗|‖2)  

−
1

𝛼
𝑛2ℓ𝑖

2 ∑(𝑣𝑖𝑗
𝜏∗

)
2

𝑚

𝑗=1

> 0, ∀𝑖 > 0 

Ω𝑗 = 𝑛(2𝑏𝑗 − 𝛼 − 𝛽)

−
1

𝛽
𝑚𝑘𝑗

2(‖𝑊∗‖2
2 + ‖𝑊∗‖2

2

+ 2‖𝑊∗
𝑇|𝑊∗|‖2)       

−
1

𝛼
𝑚2𝑘𝑗

2 ∑(𝑤𝑗𝑖
𝜏∗

)
2

𝑛

𝑖=1

> 0, ∀𝑗 > 0 

 

where 𝑊 = (𝑤𝑗𝑖), 𝑉 = (𝑣𝑖𝑗), 𝑊∗ =
1

2
(𝑊 + 𝑊),   𝑊∗ =

1

2
(𝑊 − 𝑊),   𝑉∗ =

1

2
(𝑉 + 𝑉),   𝑉∗ =

1

2
(𝑉 − 𝑉), 𝑣𝑖𝑗

𝜏∗
=

𝑚𝑎𝑥{|𝑣𝑖𝑗
𝜏 |, |𝑣𝑖𝑗

𝜏
|} and 𝑤𝑗𝑖

𝜏∗
= 𝑚𝑎𝑥{|𝑤𝑗𝑖

𝜏 |, |𝑤𝑗𝑖
𝜏

|}. 

 

Corollary 6 [40]: Let the activation functions satisfy 

assumptions (H1) and (H2). Then, neural system (1) with (2) 

has a unique equilibrium point which is globally 

asymptotically robustly stable if there exist positive 

constants α, β and γ such that the network parameters of the 

system satisfy the following conditions 

 

𝜑𝑖 = 𝑚(2𝑎𝑖 − 𝛼ℓ𝑖
2 − 𝛾)

−
1

𝛾
𝑛ℓ𝑖

2(‖𝑉∗‖2
2 + ‖𝑉∗‖2

2 + 2‖𝑉∗
𝑇|𝑉∗|‖2)

−
1

𝛼
𝑚2 ∑(𝑤𝑗𝑖

𝜏∗
)

2
𝑚

𝑗=1

> 0, ∀𝑖 

 

ϑ𝑗 = 𝑛(2𝑏𝑗 − 𝛼𝑘𝑗
2 − 𝛽)

−
1

𝛽
𝑚𝑘𝑗

2(‖𝑊∗‖2
2 + ‖𝑊∗‖2

2

+ 2‖𝑊∗
𝑇|𝑊∗|‖2)                 

−
1

𝛼
𝑛2 ∑(𝑣𝑖𝑗

𝜏∗
)

2
𝑛

𝑖=1

> 0, ∀𝑗 

 

where 𝑊 = (𝑤𝑗𝑖), 𝑉 = (𝑣𝑖𝑗), 𝑊∗ =
1

2
(𝑊 + 𝑊),   𝑊∗ =

1

2
(𝑊 − 𝑊),      𝑉∗ =

1

2
(𝑉 + 𝑉),       𝑉∗ =

1

2
(𝑉 − 𝑉),     𝑣𝑖𝑗

𝜏∗
=

𝑚𝑎𝑥{|𝑣𝑖𝑗
𝜏 |, |𝑣𝑖𝑗

𝜏
|} and 𝑤𝑗𝑖

𝜏∗
= 𝑚𝑎𝑥{|𝑤𝑗𝑖

𝜏 |, |𝑤𝑗𝑖
𝜏

|}. 

 

We can write the following results for Corollary 5 and 

Corollary 6 : 

 

Corollary 7: Let ℓ𝑀 = 𝑚𝑎𝑥{ℓ𝑖},   𝑘𝑀 = 𝑚𝑎𝑥{𝑘𝑗},          

𝛾 = ℓ𝑀√‖𝑉∗‖2
2 + ‖𝑉∗‖2

2 + 2‖𝑉∗
𝑇|𝑉∗|‖2, 𝛽 =

𝑘𝑀√‖𝑊∗‖2
2 + ‖𝑊∗‖2

2 + 2‖𝑊∗
𝑇|𝑊∗|‖2. 

 

𝛿𝑖 = 𝑚(2𝑎𝑖 − 𝛼) 

         −(𝑚 + 𝑛)(ℓ𝑀 √‖𝑉∗‖2
2 + ‖𝑉∗‖2

2 + 2‖𝑉∗
𝑇|𝑉∗|‖2)

−
1

𝛼
𝑛2ℓ𝑀

2 ∑(𝑣𝑖𝑗
𝜏∗

)
2

𝑚

𝑗=1

> 0, ∀𝑖 
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Ω𝑗 = 𝑛(2𝑏𝑗 − 𝛼)                                    

       −(𝑚 + 𝑛)(𝑘𝑀 √‖𝑊∗‖2
2 + ‖𝑊∗‖2

2 + 2‖𝑊∗
𝑇|𝑊∗|‖2)

−
1

𝛼
𝑚2𝑘𝑀

2 ∑(𝑤𝑗𝑖
𝜏∗

)
2

𝑛

𝑖=1

> 0,      ∀𝑗 

 

Corollary 8: Let ℓ𝑀 = 𝑚𝑎𝑥{ℓ𝑖},   𝑘𝑀 = 𝑚𝑎𝑥{𝑘𝑗}, 𝛾 =

ℓ𝑀√‖𝑉∗‖2
2 + ‖𝑉∗‖2

2 + 2‖𝑉∗
𝑇|𝑉∗|‖2,  

𝛽 = 𝑘𝑀√‖𝑊∗‖2
2 + ‖𝑊∗‖2

2 + 2‖𝑊∗
𝑇|𝑊∗|‖2. 

 

𝜑𝑖 = 𝑚(2𝑎𝑖 − 𝛼ℓ𝑀
2 ) 

     −(𝑚 + 𝑛) (ℓ𝑀  √‖𝑉∗‖2
2 + ‖𝑉∗‖2

2 + 2‖𝑉∗
𝑇|𝑉∗|‖2)   

      −
1

𝛼
𝑚2 ∑(𝑤𝑗𝑖

𝜏∗
)

2
𝑚

𝑗=1

> 0, ∀𝑖 

 

 

ϑ𝑗 = 𝑛(2𝑏𝑗 − 𝛼𝑘𝑀
2 ) 

−(𝑚 + 𝑛)(𝑘𝑀  √‖𝑊∗‖2
2 + ‖𝑊∗‖2

2 + 2‖𝑊∗
𝑇|𝑊∗|‖2)

−
1

𝛼
𝑛2 ∑(𝑣𝑖𝑗

𝜏∗
)

2
𝑛

𝑖=1

> 0, ∀𝑗 

 

Example 1: Assume that the network parameters of 

neural system (1) are given as follows : 

 

𝑊 = 𝑉 = [

0 2𝑎
−2𝑎 −2𝑎

2𝑎 2𝑎
2𝑎 2𝑎

2𝑎 −2𝑎
−2𝑎 2𝑎

2𝑎 −2𝑎
2𝑎 −2𝑎

],    

 

𝑊 = 𝑉 = [

0 2𝑎
−2𝑎 −2𝑎

2𝑎 2𝑎
2𝑎 2𝑎

2𝑎 −2𝑎
−2𝑎 2𝑎

2𝑎 −2𝑎
2𝑎 0

],  

 

𝑊𝑇 = 𝑉𝑇 = [

−2𝑎 −2𝑎
−2𝑎 −2𝑎

−2𝑎 −2𝑎
−2𝑎 −2𝑎

−2𝑎 −2𝑎
−2𝑎 −2𝑎

−2𝑎 −2𝑎
−2𝑎 −2𝑎

] 

 

𝑊
𝑇

= 𝑉
𝑇

= [

2𝑎 2𝑎
2𝑎 2𝑎

2𝑎 2𝑎
2𝑎 2𝑎

2𝑎 2𝑎
2𝑎 2𝑎

2𝑎 2𝑎
2𝑎 2𝑎

] 

 

𝐴 = 𝐴 = 𝐴 = 𝐵 = 𝐵 = 𝐵 = 𝐼, 
ℓ1 = ℓ2 = ℓ3 = ℓ4 = 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 1, 
Where 𝑎 > 0    is real number. The matrices  𝑊∗, 𝑊∗,
𝑉∗, 𝑉∗, 𝑊∗

𝑇|𝑊∗|, 𝑉∗
𝑇|𝑉∗|, �̂�  and  �̂�  are obtained as 

follows 

 

𝑊∗ = 𝑉∗ = [

0 2𝑎
−2𝑎 −2𝑎

2𝑎 2𝑎
2𝑎 2𝑎

2𝑎 −2𝑎
−2𝑎 2𝑎

2𝑎 −2𝑎
2𝑎 −𝑎

],    

𝑊∗ = 𝑉∗ = [

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 𝑎

],  

 

𝑊∗
𝑇|𝑊∗| = 𝑉∗

𝑇|𝑉∗| = [

0     0
0     0

0     0
0     0

0 0
2𝑎2 2𝑎2

0   0
2𝑎2 𝑎2

],  

 

�̂� = �̂� = [

0 2𝑎
2𝑎 2𝑎

2𝑎 2𝑎
2𝑎 2𝑎

2𝑎 2𝑎
2𝑎 2𝑎

2𝑎 2𝑎
2𝑎 2𝑎

] 

 

     We calculate 

 

𝜎1(𝑉) = √‖|𝑉∗𝑇𝑉∗| + 2|𝑉∗𝑇|𝑉∗ + 𝑉∗
𝑇𝑉∗‖2 = 5,0364𝑎 

𝜎2(𝑉) = ‖𝑉∗‖2 + ‖𝑉∗‖2 = 5,8399𝑎 

𝜎3(𝑉) = √‖𝑉∗‖2
2 + ‖𝑉∗‖2

2 + 2‖𝑉∗
𝑇|𝑉∗|‖2 = 5,6245𝑎 

𝜎4(𝑉) = ‖�̂�‖
2

= 7,1231𝑎 

 

𝜎1(𝑊) = 𝜎1(𝑉), 𝜎2(𝑊) = 𝜎2(𝑉),  𝜎3(𝑊) = 𝜎3(𝑉),
𝜎4(𝑊) = 𝜎4(𝑉).  Hence 

 

𝜎𝑚(𝑉) = min{𝜎1(𝑉), 𝜎2(𝑉), 𝜎3(𝑉), 𝜎4(𝑉)} = 5,0364𝑎 

𝜎𝑚(𝑊) = min{𝜎1(𝑊), 𝜎2(𝑊), 𝜎3(𝑊), 𝜎4(𝑊)} = 5,0364𝑎 
 

      For the network parameters of this example, the 

conditions of Corollary 3 and Corollary 4 are obtained as 

follows: 

 

𝜙1 = 𝜙2 = 𝜙3 = 𝜙4 = 𝜓1 = 𝜓2 = 𝜓3 = 𝜓4=𝜁1 = 𝜁2 =
𝜁3 = 𝜁4 = 𝜉1 = 𝜉2 = 𝜉3 = 𝜉4 = 8 − 4𝛼 − 8(5,0364𝑎) −
256𝑎2

𝛼
 

 

       Let 𝛼 = 8𝑎.  Hence, if 𝑎 <
8

104,2912
  holds, then the 

conditions of Corollaries 3 and 4 are satisfied. 

      We will now check the results of Corollary 7 and 

Corollary 8 for the same network parameters. The conditions 

of Corollary 7 and Corollary 8 are obtained as follows: 

 

𝛿1 = 𝛿2 = 𝛿3 = 𝛿4 = Ω1 = Ω2 = Ω3 = Ω4 = 𝜑1 = 𝜑2 =
𝜑3 = 𝜑4 = ϑ1 = ϑ2 = ϑ3 = ϑ4 = 8 − 4𝛼 − 8(5,6245𝑎) −
256𝑎2

𝛼
 

 

Let 𝛼 = 8𝑎. Hence, if 𝑎 <
8

108,996
 holds, then the conditions 

of Corollaries 7 and 8 are satisfied. 

 

Remark: For the parameters in this example, our results 

require that 𝑎 <
8

104,2912
 . However, the results of Corollaries 

7 and 8 require that 𝑎 <
8

108,996
 . Therefore, for 

8

108,996
≤ 𝑎 <

8

104,2912
  , our conditions obtained in Corollary 3 and 

Corollary 4 are satisfied but the results of Corollary 7 and 

Corollary 8 do not hold. 
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6. Conclusions 
 

In this paper, by using the Lyapunov stability 

theorems and the norm properties of the interconnection 

matrices of the neural system, some novel sufficient 

conditions for the existence, uniqueness and the global 

robust asymptotic stability of the equilibrium point have 

been obtained for the class of bidirectional associative 

memory (BAM) neural networks with multiple time 

delays. We have also compared our results with the most 

recent corresponding stability results, implying that our 

results establish a new set of global robust asymptotic 

stability criteria for BAM neural networks with multiple 

time delays. 
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