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Abstract

This paper deals with a parabolic-type Kirchhoff equation with variable exponents. Firstly,
we obtain the global existence of solutions by Faedo-Galerkin method. Later, we prove the
decay of solutions by Komornik’s inequality.

1. Introduction

In this work, we study the following parabolic-type Kirchhoff equation with variable exponents
(

1+ |u|p(x)−2
)

ut +∆2u−M
(
‖∇u‖2

)
∆u = |u|q(x)−2 u, in (x, t) ∈Ω× (0,T ) ,

u(x, t) = ∂u
∂v (x, t) = 0, on x ∈ ∂Ω × (0,T ) ,

u(x,0) = u0 (x) , in x ∈Ω,

(1.1)

where Ω is a bounded domain in Rn (n≥ 1) with smooth boundary ∂Ω and

M (s) = 1+ sγ , γ ≥ 1.

The variable exponents p(.) and q(.) are given as measurable functions on Ω satisfying{
2≤ p− ≤ p(x)≤ p+ ≤ p∗,
2≤ q− ≤ q(x)≤ q+ ≤ q∗,

where {
p− = ess infx∈Ω p(x) , p+ = esssupx∈Ω p(x) ,
q− = ess infx∈Ω q(x) , q+ = esssupx∈Ω q(x) ,

and

p∗,q∗ =
{

∞, if n≤ 4,
2n

n−4 if n > 4.
(1.2)

We also suppose that p(.) and q(.) satisfy the log-Hölder continuity condition:

|p(x)− p(y)| ≤ − A
log |x− y|

,

for a.e. x,y ∈Ω, |x− y|< δ with A > 0, 0 < δ < 1.
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• Parabolic type equation: Many phenomena in physics lead up to problems that deal with parabolic type equations, such as; mathematical
description of the reaction-diffusion or diffusion, population dynamic processes and heat transfer [1].

• Kirchhoff equation: The Kirchhoff equation is among the famous wave equation’s model which describe small vibration amplitude of
elastic strings. This equation has been introduced in 1876 by Kirchhoff [2].

• Variable exponent: The problems with variable exponents arises in many branches in sciences such as electrorheological fluids,
nonlinear elasticity theory and image processing [3]-[5].

In [6], Wu et al. established the blow up of solutions with positive initial energy for the following equation

ut −∆u = up(x).

Later, some authors get new results for the same equation to blow up result (see [7]-[10]).
In [11], Qu et al. studied the fourth order parabolic equation as follows

ut +∆
2u = up(x).

The authors studied the asymptotic behavior of solutions.
When there is no fourth-order term ∆2u, (1.1) is reduced to the following equation

ut −M
(
‖∇u‖2

)
∆u+ |u|m(x)−2 ut = |u|r(x)−2 u.

Khaldi et al. [12] studied the global existence and stability of solutions.
Recently, problems with variable exponents have been handled carefully in several papers, some results relating the local existence, global
existence, blow up and stability have been found ([13]-[17]).
In this work, we considered the existence and decay of solutions of the parabolic type Kirchhoff equation with variable exponents, motivated
by above works. To our best knowledge, there is no research, related to the parabolic type Kirchhoff equation (1.1) with fourth-order term
(∆2u) and variable exponent source term (|u|q(x)−2 u), hence, our work is the generalization of the above studies.
This work consists of four parts: Firstly, in part 2, we give some needed theories about Lebesgue and Sobolev space with variable-exponents.
Then, in Section 3, we get the existence result by the Faedo-Galerkin method. Moreover, in Section 4, we obtain the decay of solutions by
the Komornik’s inequality.

2. Preliminaries

Throughout this work, we denote by ‖.‖p the Lp(Ω) norm. Also, we give some needed theories about Lebesgue space and Sobolev space
with variable-exponents (for detailed, see [4, 18, 19]).
Let p : Ω→ [1,∞] be a measurable function. We introduce the Lebesgue space with variable exponent p(.)

Lp(.) (Ω) =
{

u : Ω→ R measurable in Ω, ρp(.) (λu) < ∞, for some λ > 0
}
,

where

ρp(.) (u) =
∫
Ω

|u(x)|p(x) dx.

The norm, called Luxemburg’s norm, is defined by

‖u‖p(x) = inf

λ > 0 :
∫
Ω

∣∣∣∣u(x)λ

∣∣∣∣p(x) dx≤ 1

 ,

Lp(.) (Ω) is a Banach space.
Next we define the variable-exponent Sobolev space W m,p(.) (Ω) as

W m,p(.) (Ω) =
{

u ∈ Lp(.) (Ω) such that Dα u exists and Dα u ∈ Lp(.) (Ω) , |α| ≤ m
}
.

Lemma 2.1. [4]. If

1≤ p1 := ess inf
x∈Ω

p(x)≤ p(x)≤ p2 := ess sup
x∈Ω

p(x)< ∞,

then we have

min
{
‖u‖p1

p(.) ,‖u‖
p2
p(.)

}
≤ ρp(.) (u)≤max

{
‖u‖p1

p(.) ,‖u‖
p2
p(.)

}
,

for any u ∈ Lp(.).

Lemma 2.2. (Hölder’s inequality)[4]. Assume that p,q,s≥ 1 are measurable functions defined on Ω such that

1
s(y)

=
1

p(y)
+

1
q(y)

for a.e. y ∈Ω.

If u ∈ Lp(.) (Ω) and v ∈ Lq(.) (Ω) , then uv ∈ Ls(.) (Ω) with

‖uv‖s(.) ≤ c‖u‖p(.) ‖v‖q(.) .
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Lemma 2.3. [4]. If p : Ω→ [1,∞) is a measurable function satisfying (1.2) then the embedding H2
0 (Ω) ↪→ H1

0 (Ω) ↪→ Lp(.) is continuous
and compact.

Lemma 2.4. [20]. Let ϕ : R+→ R+ is a nonincreasing function and suppose that there are two constants α > 0 and c > 0 such that

∞∫
0

ϕ
α+1 (s)ds≤ cϕ

α (0)ϕ (s) ∀t ∈ R+.

Then we have

ϕ (t)≤ ϕ (0)
(

c+αt
c+αc

)−1/α

∀t ≥ c.

3. Existence

In this part, we state and prove the global existence result. Now, let us introduce some functionals as follows:

E (t) =
1
2
‖∆u‖2

2 +
1
2
‖∇u‖2

2 +
1

2(γ +1)
‖∇u‖2(γ+1)

2 −
∫
Ω

1
q(x)

|u|q(x) dx,

I (t) = ‖∆u‖2
2 +‖∇u‖2

2 +‖∇u‖2(γ+1)
2 −

∫
Ω

|u|q(x) dx.

Lemma 3.1. Suppose that (1.2) holds. Then

E
′
(t) =−‖ut‖2

2−
∫
Ω

|u|p(x)−2 |ut |2 dx≤ 0, (3.1)

and

E (t)≤ E (0) .

Proof. We multiply the eq. (1.1) by ut and integrate over Ω, we get

d
dt

1
2
‖∆u‖2

2 +
1
2
‖∇u‖2

2 +
1

2(γ +1)
‖∇u‖2(γ+1)−

∫
Ω

1
q(x)

|u|q(x) dx


= −‖ut‖2

2−
∫
Ω

|u|p(x)−2 |ut |2 dx,

thus

E ′ (t) =−‖ut‖2
2−

∫
Ω

|u|p(x)−2 |ut |2 dx≤ 0.

A simple integration of (3.1) over (0,T ) , yields

E (t)≤ E (0) .

Lemma 3.2. Let assumption (1.2) holds. Further assume that q1 > 2(γ +1) , I (0)> 0 and

β1 +β2 < 1,

where

β1 = max

{
αcq1
∗

(
2q1

q1−2
E (0)

)(q1−2)/2
,αcq2
∗

(
mq1

q1−m
E (0)

)(q2−2)/2
}
,

β2 = max

 (1−α)cq1
∗
(

2(γ+1)q1
q1−2(γ+1)E (0)

)(q1−2(γ+1))/(2(γ+1))

(1−α)cq2
∗
(

2(γ+1)q1
q1−2(γ+1)E (0)

)(q2−2(γ+1))/(2(γ+1))

 ,

with 0 < α < 1 and c∗ is the best embedding constant of H2
0 (Ω) ↪→ Lq(.) (Ω) . Then I (t)> 0 for all t ∈ [0,T ] .
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Proof. Since I (0)> 0, then by continuity there exists T∗ such that

I (t)≥ 0, ∀t ∈ [0,T∗] . (3.2)

Now, we have for all t ∈ [0,T ] that

E (t) =
1
2
‖∆u‖2

2 +
1
2
‖∇u‖2

2

+
1

2(γ +1)
‖∇u‖2(γ+1)

2 −
∫
Ω

1
q(x)

|u|q(x) dx

≥ 1
2
‖∆u‖2

2 +
1
2
‖∇u‖2

2 +
1

2(γ +1)
‖∇u‖2(γ+1)

2

− 1
q1

(
‖∆u‖2

2 +‖∇u‖2
2 +‖∇u‖2(γ+1)

2 − I (t)
)

≥ q1−2
2q1

(
‖∆u‖2

2 +‖∇u‖2
2

)
+

q1−2(γ +1)
2(γ +1)q1

‖∇u‖2(γ+1)
2 +

1
q1

I (t) .

Using (3.2), we have

q1−2
2q1

(
‖∆u‖2

2 +‖∇u‖2
2

)
+

q1−2(γ +1)
2(γ +1)q1

‖∇u‖2(γ+1)
2 ≤ E (t) .

By the definition of E, we obtain

‖∆u‖2
2 +‖∇u‖2

2 ≤ 2q1

q1−2
E (t)

≤ 2q1

q1−2
E (0) , (3.3)

and

‖∇u‖2(γ+1)
2 ≤ 2(γ +1)q1

q1−2(γ +1)
E (t)

≤ 2(γ +1)q1

q1−2(γ +1)
E (0) . (3.4)

On the other hand, by Lemma 2.1, we get∫
Ω

|u|q(x) dx ≤ max
{
‖u‖q1

q(.) ,‖u‖
q2
q(.)

}
= α max

{
‖u‖q1

q(.) ,‖u‖
q2
q(.)

}
+(1−α)max

{
‖u‖q1

q(.) ,‖u‖
q2
q(.)

}
.

By the embedding of H2
0 (Ω) ↪→ H1

0 (Ω) ↪→ Lq(.) (Ω) , we have∫
Ω

|u|q(x) dx ≤ α max
{

cq1
∗ ‖∆u‖q1

2 ,cq2
∗ ‖∆u‖q2

2
}

+(1−α)max
{

cq1
∗ ‖∇u‖q1

2 ,cq2
∗ ‖∇u‖q2

2
}

≤ α max
{

cq1
∗ ‖∆u‖q1−2

2 ,cq2
∗ ‖∆u‖q2−2

2

}
‖∆u‖2

2

+(1−α)max
{

cq1
∗ ‖∇u‖q1−2(γ+1)

2 ,cq2
∗ ‖∇u‖q2−2(γ+1)

2

}
‖∇u‖2(γ+1)

2

≤ α max
{

cq1
∗ ‖∆u‖q1−2

2 ,cq2
∗ ‖∆u‖q2−2

2

}(
‖∆u‖2

2 +‖∇u‖2
2

)
+(1−α)max

{
cq1
∗ ‖∇u‖q1−2(γ+1)

2 ,cq2
∗ ‖∇u‖q2−2(γ+1)

2

}
‖∇u‖2(γ+1)

2 .

By (3.3) and (3.4), we obtain ∫
Ω

|u|q(x) dx≤ β1

(
‖∆u‖2

2 +‖∇u‖2
2

)
+β2 ‖∇u‖2(γ+1)

2 . (3.5)

Since β1 +β2 < 1, then ∫
Ω

|u|q(x) dx < ‖∆u‖2
2 +‖∇u‖2

2 +‖∇u‖2(γ+1)
2 . (3.6)

This implies that

I (t)> 0, ∀t ∈ [0,T∗] .

Repeating the above procedure, we can extend T∗ to T.
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Theorem 3.3. (Existence of weak solution). Suppose that (1.2) holds. Let u0 ∈ L2 (Ω) be given. Then the problem (1.1) admits a weak local
solution

u ∈ L∞
(
(0,T ) ,H2

0 (Ω)
)
, ut ∈ L2

(
(0,T ) ,L2 (Ω)

)
.

Proof. We shall use the Faedo-Galerkin method of approximation. Let {vl}∞

l=1 be a basis of H2
0 (Ω) which forms a complete orthonormal

system in L2 (Ω) . Denote by

Vk = span{v1,v2, ...,vk} ,

the subspace generated by the first k vectors of the basis {vl}∞

l=1 . After normalization, we get ‖vl‖ = 1 and for any given integer k, we
consider the approximate solution

uk (t) =
k

∑
l=1

ulk (t)vl ,

where uk are the solutions to the problem(
u
′

k (t) ,vl

)
+
(

∆
2uk (t) ,vl

)
−

M

∫
Ω

|∇uk (t)|2 dx

∆uk (t) ,vl

+
(
|uk (t)|p(x)−2 u

′

k (t) ,vl

)
=

(
|uk (t)|q(x)−2 uk (t) ,vl

)
, l = 1,2, ...,k, (3.7)

uk (0) = u0k =
k

∑
l=1

(uk (0) ,vl)vl → u0 in L2 (Ω) . (3.8)

Note that we can solve the system (3.7) and (3.8) by Picard’s iterative method for ordinary differential equations. Therefore, there exists a
solution in [0,T∗) for some T∗ > 0 and we can extend this solution to the whole interval [0,T ] for any given T > 0 by making use of the a
priori estimates below. We multiply the equation (3.7) by u

′

lk (t) and summing over l from 1 to k, we have

d
dt

 1
2 ‖∆uk (t)‖2

2 +
1
2 ‖∇uk (t)‖2

2 +
1

2(γ+1) ‖∇uk (t)‖2(γ+1)

−
∫
Ω

1
q(x) |uk (t)|q(x) dx


= −

∥∥ut,k (t)
∥∥2

2−
∫
Ω

|uk (t)|p(x)−2 ∣∣ut,k (t)
∣∣2 dx. (3.9)

Then

E ′ (uk (t)) =−
∥∥ut,k (t)

∥∥2
2−

∫
Ω

|uk (t)|p(x)−2 ∣∣ut,k (t)
∣∣2 dx≤ 0.

Integrating (3.9) over (0,T ), we get

1
2
‖∆uk (t)‖2

2 +
1
2
‖∇uk (t)‖2

2 +
1

2(γ +1)
‖∇uk (t)‖2(γ+1)−

∫
Ω

1
q(x)

|uk (t)|q(x) dx

+

t∫
0

∥∥ut,k (s)
∥∥2

2 ds+
t∫

0

∫
Ω

|uk (s)|p(x)−2 ∣∣ut,k (s)
∣∣2 dxds

≤ E (0) . (3.10)

Then, from (3.6), the inequality (3.10) becomes

q1−2
2q1

sup
t∈(0,T )

‖∆uk (t)‖2
2 +

q1−2
2q1

sup
t∈(0,T )

‖∇uk (t)‖2
2

+
q1−2(γ +1)
2(γ +1)q1

sup
t∈(0,T )

‖∇uk (t)‖
2(γ+1)
2 +

t∫
0

∥∥ut,k (s)
∥∥2

2 ds

+

t∫
0

∫
Ω

|uk (s)|p(x)−2 ∣∣ut,k (s)
∣∣2 dxds

≤ E (0) . (3.11)

From (3.11), we conclude that {
{uk} is uniformly bounded in L∞

(
[0,T ] ,H2

0 (Ω)
)
,{

u
′

k

}
is uniformly bounded in L2 ([0,T ] ,L2 (Ω)

)
.

(3.12)
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Furthermore, we have from Lemma 2.3 and (3.12) that
{
|uk|q(x)−2 uk

}
is uniformly bounded in L∞

(
[0,T ] ,L2 (Ω)

)
,{

|uk|p(x)−2 u
′

k

}
is uniformly bounded in L∞

(
[0,T ] ,L2 (Ω)

)
.

(3.13)

By (3.12) and (3.13) we infer that there exist a subsequence of uk and a function u such that
uk ⇀ u weakly star in L∞

(
[0,T ] ,H2

0 (Ω)
)
,

u
′

k ⇀ u
′

weakly star in L2 ([0,T ] ,L2 (Ω)
)
,

|uk|q(x)−2 uk ⇀ |u|q(x)−2 u weakly star in L∞
(
[0,T ] ,L2 (Ω)

)
,

|uk|p(x)−2 u
′

k ⇀ |u|
p(x)−2 u

′
weakly star in L∞

(
[0,T ] ,L2 (Ω)

)
.

(3.14)

By the Aubin-Lions compactness lemma (see [21]), we conclude from (3.14) that

uk ⇀ u strongly in C
(
[0,T ] ,H2

0 (Ω)
)
,

yields

uk ⇀ u everywhere in Ω× [0,T ] . (3.15)

It follows from (3.14) and (3.15) that{
|uk|q(x)−2 uk ⇀ |u|q(x)−2 u weakly in L∞

(
[0,T ] ,L2 (Ω)

)
,

|uk|p(x)−2 u
′

k ⇀ |u|
p(x)−2 u

′
weakly in L∞

(
[0,T ] ,L2 (Ω)

)
.

Letting k→ ∞ and passing to the limit in (3.7) we have

(
u
′
(t) ,vl

)
+
(

∆
2u(t) ,vl

)
−

M

∫
Ω

|∇u(t)|2 dx

∆u(t) ,vl


+
(
|u(t)|p(x)−2 u

′

k (t) ,vl

)
,

=
(
|u(t)|q(x)−2 u(t) ,vl

)
, l = 1,2, ...,k.

Since {vl}∞

l=1 is a basis of H2
0 (Ω) , we deduce that u satisfies equation (1.1). From (3.14) and Lemma 3.1.7 of [22] with B = L2 (Ω) we infer

that

uk (0)⇀ u(0) weakly in L2 (Ω) . (3.16)

We get from (3.8) and (3.16) that u(0) = u0. The proof of the Theorem is now finished.

Theorem 3.4. Let the assumptions of Lemma 3.2 hold. Then the local solution of (1.1) is global.

Proof. We have

E (u(t)) =
1
2
‖∆u‖2

2 +
1
2
‖∇u‖2

2 +
1

2(γ +1)
‖∇u‖2(γ+1)

2 −
∫
Ω

1
q(x)

|u|q(x) dx,

≥ q1−2
2q1

‖∆u‖2
2 +

q1−2
2q1

‖∇u‖2
2 +

q1−2(γ +1)
2(γ +1)q1

‖∇u‖2(γ+1)
2 ,

which implies that

‖∆u‖2
2 +‖∇u‖2

2 +‖∇u‖2(γ+1)
2 ≤CE (t) . (3.17)

By Lemma 3.1, we get

‖∆u‖2
2 +‖∇u‖2

2 +‖∇u‖2(γ+1)
2 ≤CE (0) .
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4. Decay

In this part, we state and prove the decay of solutions. Firstly, we give the following lemma.

Lemma 4.1. Let the assumptions of Lemma 3.2 hold. Then

∫
Ω

|u|p(x) dx≤ cE (t) ,

where c > 0.

Proof.

∫
Ω

|u|p(x) dx = max
{
‖u‖p1

p(.) ,‖u‖
p2
p(.)

}
,

≤ max
{

cp1
∗ ‖∆u‖p1

2 ,cp2
∗ ‖∆u‖p2

2
}
,

≤ max
{

cp1
∗ ‖∆u‖p1−2

2 ,cp2
∗ ‖∆u‖p2−2

2

}
‖∆u‖2

2 .

Using (3.3), we have

∫
Ω

|u|p(x) dx≤ cE (t) .

Theorem 4.2. Let the assumptions of Lemma 3.2 hold. Then

E (t)≤ E (0)
(

c+ rt
c+ rc

)−1/r
, ∀t ≥ c,

where c > 0.

Proof. Multiplying the equation (1.1) by u(t)Eq (t) (q > 0) and then integrating over Ω× (S,T ) , we get

T∫
S

∫
Ω

Eq (t)

u∆
2u+uut −u

M

∫
Ω

|∇u|2 dx

∆u+uut |u|p(x)−2

dxdt

=

T∫
S

Eq (t)
∫
Ω

|u|q(x) dxdt.

Then

T∫
S

∫
Ω

Eq (t)
(
|∆u|2 +uut + |∇u|2 +‖∇u‖2γ

2 |∇u|2 +uut |u|p(x)−2
)

dxdt

=

T∫
S

Eq (t)
∫
Ω

|u|q(x) dxdt.

We adding and substracting the term

T∫
S

Eq (t)
∫
Ω

(
β1

(
|∆u|2 + |∇u|2

)
+β2 ‖∇u‖2γ

2 |∇u|2
)

dxdt,
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and use (3.5), we obtain

(1−β1)

T∫
S

Eq (t)
∫
Ω

(
|∆u|2

)
dxdt

+(1−β1)

T∫
S

Eq (t)
∫
Ω

|∇u|2 dxdt

+(1−β2)

T∫
S

Eq (t)
∫
Ω

(
‖∇u‖2γ

2 |∇u|2
)

dxdt

+

T∫
S

Eq (t)
∫
Ω

(uut)dxdt

+

T∫
S

Eq (t)
∫
Ω

(
uut |u|p(x)−2

)
dxdt

= −
T∫

S

Eq (t)
∫
Ω

(
β1 |∆u|2 +β1 |∇u|2 +β2 ‖∇u‖2γ

2 |∇u|2−|u|q(x)
)

dxdt

≤ 0. (4.1)

It is clear that

ξ

T∫
S

Eq (t)
∫
Ω

( 1
2 |∆u|2 + 1

2 |∇u|2

+ 1
2(γ+1) ‖∇u‖2γ

2 |∇u|2− |u(t)|
q(x)

q(x)

)
dxdt

≤ (1−β1)

T∫
S

Eq (t)
∫
Ω

|∆u|2 dxdt

+(1−β1)

T∫
S

Eq (t)
∫
Ω

|∇u|2 dxdt

+(1−β2)

T∫
S

Eq (t)
∫
Ω

‖∇u‖2γ

2 |∇u|2 dxdt, (4.2)

where

ξ = min{(1−β1) ,(1−β2)} .
By (4.1), (4.2) and the definition of E (t) , we otain

ξ

T∫
S

Eq+1 (t)dt ≤ −
T∫

S

Eq (t)
∫
Ω

uutdxdt (4.3)

−
T∫

S

Eq (t)
∫
Ω

uut |u|p(x)−2 dxdt.

We estimate the terms on the right-hand side of (4.3). For the first term, we use the Young’s inequality

AB≤ ε

η1
Aη1 +

1
η2εη2/η1

Bη2 , A,B≥ 0, ε > 0 and
1

η1
+

1
η2

= 1,

and get

−
T∫

S

Eq (t)
∫
Ω

uutdxdt ≤
T∫

S

Eq (t)
∫
Ω

(
εc |u|2 + cε |ut |2

)
dxdt. (4.4)

We use again the Young’s inequality to get

−
T∫

S

Eq (t)
∫
Ω

uut |u|p(x)−2 dxdt

= −
T∫

S

Eq (t)
∫
Ω

|u|(p(x)−2)/2 ut |u|(p(x)−2)/2 udxdt

≤
T∫

S

Eq (t)
∫
Ω

(
εc |u|p(x)+ cε |ut |p(x)−2 u2

t

)
dxdt. (4.5)



40 Journal of Mathematical Sciences and Modelling

By (4.4) and (4.5) the inequality (4.3) becomes

ξ

T∫
S

Eq+1 (t)dt ≤
T∫

S

Eq (t)
∫
Ω

(
εc |u|2 + cε |ut |2

)
dxdt

+

T∫
S

Eq (t)
∫
Ω

(
εc |u|p(x)+ cε |ut |p(x)−2 u2

t

)
dxdt

≤ εc
T∫

S

Eq (t)
∫
Ω

(
|u|2 + |u|p(x)

)
dxdt

+cε

T∫
S

Eq (t)
∫
Ω

(
|ut |2 + |u|p(x)−2 u2

t

)
dxdt.

We use (3.17) , Lemma 4.1 and definition of E
′
(t) to obtain

ξ

T∫
S

Eq+1 (t)dt ≤ εc
T∫

S

Eq+1 (t)dt + cε

T∫
S

Eq (t)
(
−E

′
(t)
)

dt.

This implies

ξ

T∫
S

Eq+1 (t)dt ≤ εc
T∫

S

Eq+1 (t)dt + cε

(
Eq+1 (s)−Eq+1 (T )

)

≤ εc
T∫

S

Eq+1 (t)dt + cε Eq (0)E (s) .

Choosing ε so small such that ξ > εc, we arrive at

T∫
S

Eq+1 (t)dt ≤ cEq (0)E (s) .

By taking T → ∞, we obtain

∞∫
S

Eq+1 (t)dt ≤ cEq (0)E (s) .

Thus, Komornik’s Lemma implies the desired result.
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