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Abstract 

Parabolic equations in which advection-diffusion transports are coupled to reactions terms arise 

in different science and engineering fields, including physical and biological systems. Usually, in 

practical applications the unknowns are concentration of chemical compounds or population sizes 

being positive also from their physical nature as well. Widely used schemes such as classical 

finite difference may produce numerical drawbacks such as spurious oscillations and negative 

values in the solution because of truncation errors and may then become unstable. By using the 

nonstandard finite difference (NSFD) method, a better finite difference model is constructed. The 

proposed NSFD scheme, guarantees the positivity of the solutions and returns spurious 

oscillations free, solutions. 
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1. INTRODUCTION  

In order to solve advection-diffusion reaction equation, analytical and numerical solution techniques are 

used. Analytical solution of this equation may be carried out when simple and idealized conditions are 

satisfied. However, if the solution parameters change in time, use of the numerical solution techniques is 

necessary for the solution of advection-diffusion reaction equation. It is desirable that the numerical 

solutions satisfy the same properties as the exact solution such as positivity, total variation dimensioning 

or monotonicity [4, 8, 11, 12]. The standard advection-diffusion reaction model deals with the physical and 

biological phenomena such as heat transfer, transport, reaction of chemical species, population density in 

biology and adsorption of pollutants in soil [1, 3, 20, 21]. In these cases, the components of the unknown 

can denote concentrations of chemical species, population sizes which are quantities and they need to 

remain positive, so we need to develop numerical techniques that preserve the positivity of solution. One 

of the shortcomings of the standard finite difference method is that the above mentioned qualitative 

properties of the exact solution usually are not transferred to the numerical solution. Furthermore, many 

problems may affect the stability properties of the standard approach. One way of avoiding this 

disadvantage is to imply finite difference schemes that are nonstandard in the sense of Mickens’ definition 

[15]. The present work which is motivated by many successful papers on the matter [2, 9, 10, 13, 14, 16, 

17, 18, 19], introduces a family of NSFD schemes to approximate consistent solutions of the standard 

advection-diffusion reaction equations, which is an equation for which the existence of non-negative 

solutions is a well-known fact. The proposed methods satisfy property of positivity, and they are stable for 

appropriate choice of the model parameter. 

The rest of the paper is organized as follows: In Section 2, we propose the new method and investigate the 

positivity and stability requirements. In Section 3, we apply the method to four problems and compared 

with standard finite difference schemes. Finally, we end the paper with some conclusions in Section 4. 

2.    SCHEME CONSTRUCTION 

Consider the standard advection-diffusion reaction equation 

     
     

2

max2

, , ,
, , 0, 0, ,

C x t C x t C x t
P Q RC x t x T

t x x

  
     

  
                (1) 
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where  ,n

j j nC C x t , and the solution domain of the problem is covered by a mesh of grid-lines 

jx j x  and nt n t  , such that 0,1,2, ,j M an  0,1,2, ,n N , where jx  and nt  

are parallel to the space and time coordinate axes. The constant spatial and temporal grid spacing are 

maxx
x

M
   and 

T
t

N
  . 

In order to derive an accurate NSFD scheme for (1) which is positivity preserving, we replace the reaction 

term in (1) by 

    1

1 1 1 2 ,n n n

j j ja C C a C 

                                                         (2) 

here a  is arbitrary parameter to be determined below. Therefore, by using the central second order finite 

difference approximation schemes for the spatial operators (first and second order derivatives), the 

discretization of (1) can be considered as: 

  11
1 2 ,n na R C AC

t

 
   

 
                                                    (3) 

where 
nC  is the transpose of vector 

0 1, , ,n n n

MC C C  
and A  is the following tridiagonal matrix 

2 2 2

1 2
; ; .

2 2

P Q Q P Q
A tridiag Ra Ra

x x xx x x

 
       

     
                              (4) 

The parameter a  is chosen according to the following theorem: 

Theorem 1. Sufficient for scheme (3) to be positive is, 

22 2 , .
2

Q P

xxxa t
R Q


                                    (5) 

Proof. From (3) it is enough to show that 0A  , then we have to put 

2
0

2

P Q
Ra

x x
  

 
,                                                                     (6) 

2
0

2

P Q
Ra

x x
   

 
,                                                                     (7) 

2

1 2
0

Q

x x
 

 
,                                                                                (8) 

 

from (6) and (7), we have 2 2

Q P

x xa
R


  and from (8), we can derive

2

2

x
t

Q


  , with conditions (5), 

we have  
1

1 2 0a R
t
  


, then the solution is positive. 

Theorem 2. The new scheme is conditionally stable and convergent with local truncation error 

 2,O t x  . 

Proof.  Under condition (5), we have 

 

1
0

1
1 2a R

t



 


. In the other hand we have  

1
|| || 2A Ra

t
  


, and for spectral radius,   of the iteration matrix we derive 
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     
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Ra
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    
            

                      

    (9) 

 

therefore the scheme is stable and then via the Lax-theorem [22] convergent with local truncation error: 

1 1 1( , t ) ( , t ) ( , t ) ( , t )

2

j n j n j n j nn

j

C x C x C x C x
T P

t x

   
 

 
 

1 1

2

( , t ) 2 ( , t ) ( , t )j n j n j nC x C x C x
Q

x

  



 

    1 1 1( , t ) ( , t ) 1 2 ( , t ) ,j n j n j nR a C x C x a C x                             (10) 

by Taylor’s expansion 

2 3
2 3

1 2 3

1 1
( , t ) ( , t ) ( , t ) ( , t ) ( , t ) ,

2 6
j n j n j n j n j n

C C C
C x C x t x t x t x

t t t


      
           

       
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( , t ) ( , t ) ( , t ) ( , t ) ( , t ) ,

2 6
j n j n j n j n j n

C C C
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

      
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by substitution into (10) we have 

 

2

2

2 2
2

2 2

( , t )

1
1 2 ( , t ) ( , t ) ( , t ) ,

2

n

j j n

j n j n j n

C C C
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C C C
R a t x t x Ra x x

t t x

   
    

   

      
           

       

     (11) 

hence the scheme is consistent with (1) and  2, .n

jT O t x    

3.    NUMERICAL SIMULATIONS 

To test the proposed method with respect to positivity and stability, developed in previous section, we have 

integrated several problems of different applications nature. We validate the method by comparing it to 

exact solutions and also with solutions obtained from the other methods. 

3.1. Example 1: Exponential traveling wave 

The first example consists of equation (1) for 1P  , 1Q  and 1R  : 

     
2

max2

( , ) ( , ) ( , )
( , ), , 0, 0, ,

C x t C x t C x t
C x t x t x T

t x x

  
     

  
                  (12) 

with initial condition: 

 max( ,0) exp( ), 0, ,C x x x x                                               (13) 

and boundary conditions: 
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 

 max

max

(0, ) exp( ), 0, ,

( , )
( , ), 0, .

C t t t T

C x t
C x t t T

x

 


  



                                           (14) 

The exact solution is given by 

( , ) exp( )C x t t x                                                                          (15) 

In order to show the advantages of the proposed new method, we numerically solve (12) for max 10x 

and 0.85T  using 0.1x  and 0.005t  . In addition to comparing the solution of the new 

scheme with the exact solution, we also compare it to the numerical solution produced by a standard upwind 

forward Euler finite difference method (EE): 

1

1 1 1

2

2
,

n n n n n n n

j j j j j j j n

j

C C C C C C C
C

t x x



     
   

  
                                      (16) 

and the nonstandard finite-difference (NSFD) method, proposed by Mickens in [16]: 

1

1 1 1 1

2

2
,

n n n n n n n

j j j j j j j n

j

C C C C C C C
C

t x x



   
   

   
  

                                      (17) 

using the same values for the parameters. As can be seen from Figure 1, the proposed method is stable and 

produces a solution that is very close to the exact solution, but both EE and NSFD methods are unstable for 

this choice of a time step 0.005t  and larger. The parameters used in this simulation are taken from 

[2]. 

 

 

Figure 1. Solutions for the exponential traveling wave model. 

 

3.2. Example 2: Colonization of Europe by oaks 

In the second example, we deal with the model for the recolonization by oaks of Europe after the last 

glaciation. The model assumes Malthusian growth and a standard advection-diffusion reaction equation for 

the local density ( , )C x t  of oaks at time t : 
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     
2

max2

( , ) ( , ) ( , )
( , ), , 0, 0, ,

C x t C x t C x t
u D rC x t x t x T

t x x

  
    

  
              (18) 

where r  is the reproduction rate, u  is an advection parameter taking into account the displacement of 

acorns by squirrels, and D  is the diffusivity. If the population size at time 0  is M  and is concentrated 

at the origin, the exact solution of this equation is 

 
2

( , ) exp ,
42

x utM
C x t rt

DtDt

 
  

 
 

                                                (19) 

for more details see [2, 5]. In Figure 2 numerical solutions for (18) are shown with 1u  , 1D  , 

0.1r  , 
max 10x  , 2T  , 0.1x  and 0.005t  , which are taken from [2]. Comparing the 

proposed new method with the upwind EE method: 

1

1 1 1

2

2
,

n n n n n n n

j j j j j j j n

j

C C C C C C C
u D rC

t x x



     
  

  
                                     (20) 

we observe that the new method performs very well. Furthermore, NSFD method for (18), proposed by 

Mickens in [16], is the same as the EE method. 

 

 

Figure 2. Solutions for the oak propagation model. 

3.3. Example 3: Catalytic particle 

As our third example we consider (1) with P Pe , 1Q  and 
2R   
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     
2

2

max2

( , ) ( , ) ( , )
( , ), , 0, 0, ,

C x t C x t C x t
Pe C x t x t x T

t x x


  
     

  
              (21) 

with initial and boundary conditions 

( ,0) 0, (0, t) 1, (1, t) 1.C x C C                                       (22) 

The unknown ( , t)C x corresponds to the normalized concentration and endowed, Pe is the Peclet 

number, which denotes the relationship between the advective and diffusive transport and  is Thiele 

modulus, which relates chemical reaction rate and the diffusive transport; the dimensionless parameters 

 0,1x and 0t  denote the spatial coordinate and time, respectively. 

In traditional FD schemes, the spatial operators of (21) can be discretized in different ways. By method of 

lines (MOL) approach, we replace the spatial derivatives 
xC  and 

xxC  by a finite difference approximation 

to arrive at a semi-discrete system where (t) ( , t)i iC C x . According to the MOL approach, fully 

discrete approximation ( , t )n

i i nC C x are now obtained by applying some suitable ordinary differential 

equations (ODEs) solver. For instance, for an equidistant grid  1 1, , , ,N a N bX x x x x  where 

0ax  and 1bx  , with 
1i ix x x   and For the advective operator, it is also possible to use 

backward or forward approximations for obtaining the following schemes 

 Forward finite difference (FFD) scheme 

   1 1 2

2

(t) 2 (t) 1 (t)(t)
(t),

i i ii

i

C Pe x C Pe x CdC
C

dt x


      
 


                        (23) 

 Backward finite difference (BFD) scheme 

   1 1 2

2

1 (t) 2 (t) (t)(t)
(t).

i i ii

i

Pe x C Pe x C CdC
C

dt x


      
 


                         (24) 

To obtain a reference solution of (21) the Laplace transform was applied and for the analytical 

solution we found 

 
       

   
2 1 1 2

1 2

exp exp 1 exp 1 exp
(x,s) ,

exp exp

m x m m x m
C LC x t

m m

         
 


                 (25) 

With 

   2 2 2 2

1 2

4 4
, ,

2 2

Pe Pe s Pe Pe s
m m

      
                        (26) 

where ( ,s)C x


is the Laplace transform of ( , t)C x . Unfortunately, the inverse Laplace transform for

( ,s)C x


is not available. In order to determinate the solution in the time-domain, we have used the 

numerical inversion by Zakians algorithm [23, 24]. 

We apply new scheme to (21) with 1Pe  and 0.1  . Figure 3(a) shows the concentration profile for 

new scheme. A comparison with the FFD and BFD schemes one can find that new scheme performs well, 

see Figure 3(b). 
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Figure 3. Solution of the new method (a) and logarithm of absolute errors (b) with 1Pe  and 0.1  . 

3.4. Example 4: Adsorption of contaminants 

Ground water is subject to pollution. Pollutants present on the surface may be carried by water percolating 

into the ground. The pollutants may come from garbage dumps, septic tanks, industrial or mining waste or 

even fertilizers, pesticides and herbicides from agricultural or domestic use. Part or all of these pollutants 

may be adsorbed by the soil before reaching groundwater aquifers. We assume that a nonvolatile trace 

element is transported by the water phase. Let C be the concentration of the element in the water phase 

and let q be the concentration in the solid matrix. Following [1], the two balance equations involving C

and q , for a nonstationary Langmuir isotherm, are: 

                                       

 

2

2

,

f b

C C C q
u D

t x x t

q
k C b q k q

t





   
      


   

 

                                                         (27) 

where 
fk  is the sorption rate constant, b  is the maximum solid phase concentration, and 

bk  is the 

desorption rate constant, /u u  is the pore water velocity, 
s s   is the bulk density of the 

porous medium,   ,   is the volumetric water content, u  is the water-phase velocity, D  is the 

dispersion coefficient, 
s  is the volumetric content of the solid matrix, and 

s  is the density of the solid 

matrix. An exact solution for the system (27) given by [7] is the following: 

 

1

2

1

( , ) ,
1 exp

a

a
C x t

a x ut




    

                                                     (28) 

Where 

1 20.8428 , 0.1876 , 0.1329.a a      

The values of the parameters, 40.1u  , 36.09D  , 1.64  , 0.41  , 2.0fk  , 

0.643bk  and 7.85b  , used in our simulation are also taken from [6]. 

The proposed nonstandard explicit method for system (27) is: 
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2

(1 2 ) 0,
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C C C C C C C
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k bC k C q k q

t






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
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


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
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  
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                       (29) 

the system (29) can be written as: 

1

12 2

12

1

1 1 2
(1 2 )

.

1 1

n n n

f j f j j

n n n n

f j f j j b j

n n n n
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u D u D
bk a C bk a C C

t x t xx x

D
bk a C k C q k q

x

k C q k q bk C
t t

 

 

  
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







     
                      

  
     

 
   

      
    

                 (30) 

The upwind explicit Euler (EE) scheme is: 

 
1

1 1 1

2

1

1

2
0

,

n n n n n n n

j j j j j j j n n n n

f j f j j b j

n n

j j n n n n

f j f j j b j

C C C C C C C
u D k bC k C q k q

t x x

q q
k bC k C q k q

t







  





    
     

   



   

                 (31) 

and the NSFD scheme, proposed by Mickens in [6], is: 

 
1

1 1 1 1

2

1

1 1 1 1

2
0

.

n n n n n n n

j j j j j j j n n n n

f j f j j b j

n n

j j n n n n

f j f j j b j

C C C C C C C
u D k bC k C q k q

t x x

q q
k bC k C q k q

t







   



   

    
     

   



   

               (32) 

The values used for these calculations are 0.1x  , 0.0002t  , the model was solved in 

   ( , ) 20,60 0,x t T    and 0.008T  . In Figure 4 numerical approximations of the (27) have 

been shown with the proposed scheme. The new scheme is stable and positive at time T , while the 

approximations obtained by the EE (31) and NSFD (32) methods are unstable. 
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Figure 4. Solutions for the adsorption model. 

4.    CONCLUSIONS AND DISCUSSION 

Schemes preserving the positivity are great importance. Such schemes can be employed to prevent the 

occurrence of negative values where even very small negative values are unacceptable. Within the strategy 

suggested by Mickens, consisting of a combined use of different finite difference schemes in order to satisfy 

all the severe requirements of the problem, we have presented a family of NSFD scheme that is positivity 

preserving. We have presented thenew method for an advection-diffusion reaction equation with constant 

velocity and diffusion and different reactions in one spatial dimension. Comparisons with a standard 

explicit upwind Euler (EE) method and with the Mickens’ NSFD method, show that our NSFD method 

performs very well and it is stable under conditions for which the other methods are very unstable. We 

studied the suffusion conditions on positivity for the new method. A future work can be investigate the 

necessity of condition for positivity in Theorem 1. 
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