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Abstract 

Let (𝑋, 𝑑) be a Polish space, 𝒞ℬ(𝑋) the family all nonempty closed and bounded subsets of 𝑋 

and (Ω, Ʃ) be a measurable space. In this paper, a pair of hybrid measurable mappings 𝑓: Ω × X →
X and 𝑇: Ω × X → 𝒞ℬ(𝑋), satisfying non-expansive type condition;   

  𝐻(𝑇(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) ≤ 𝑎(𝜔)𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦)) + 𝑏(𝜔) 𝑚𝑎𝑥{𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥)), 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦))} 

                                 +𝑐(𝜔)[𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) + 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))] 

for every 𝑥, 𝑦 ∈ 𝑋, where 𝑎, 𝑏, 𝑐: Ω → [0,1) are measurable mappings such that for all 𝜔 ∈
Ω, 𝑏(𝜔) > 0, 𝑐(𝜔) > 0 and 𝑎(𝜔) + 𝑏(𝜔) + 2𝑐(𝜔) = 1, are introduced and investigated. It is 

proved that if 𝑋 is complete, 𝑇(𝜔, . ), 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ Ω, 𝑇(. , 𝑥), 𝑓(. , 𝑥) are 

measurable for all 𝑥 ∈ 𝑋 and 𝑇(𝜔, 𝜉(𝜔)) ⊆ 𝑓(𝜔 × 𝑋) and 𝑓(𝜔 × 𝑋) = 𝑋 for each 𝜔 ∈ Ω, , then 

there is a measurable mapping 𝜉: Ω → X such that 𝑓(𝜔, 𝜉(𝜔)) ∈ 𝑇(𝜔, 𝜉(𝜔)) for all 𝜔 ∈ Ω .This 

result generalizes and extends the fixed point theorems of Papageorgiou [21], Ciric et al.[8], Jhade 

et al. [16] and many classical fixed point theorems. We also discuss an illustrative example to 

highlight the realized improvements 
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1. INTRODUCTION  

Let (𝑋, 𝑑) be a metric space and let 𝑇 be a self-mappings on 𝑋. If 𝑇 is such that for all 𝑥, 𝑦 in 𝑋;    

                              𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦)                          (1.1) 

where 0 ≤ 𝜆 < 1, then 𝑇 is said to be a contraction mapping. If 𝑇 satisfies 𝑑(𝑇𝑥, 𝑇𝑦) < 𝑑(𝑥, 𝑦), then 𝑇 is 

called contractive mapping. If 𝑇 satisfie (1.1) with 𝜆 = 1, then 𝑇 is called a non-expansive mapping. If 𝑇 

satisfies any conditions of type 

       𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑎1𝑑(𝑥, 𝑦) + 𝑎2𝑑(𝑥, 𝑇𝑥) + 𝑎3𝑑(𝑦, 𝑇𝑦) + 𝑎4𝑑(𝑥, 𝑇𝑦) + 𝑎5𝑑(𝑦, 𝑇𝑥)          (1.2) 

where 𝑎𝑖 (𝑖 = 1,2,3,4,5) are nonnegative real numbers such that 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 < 1, then T is 

said to be a contractive type mapping. If 𝑇 satisfies (1.2) with 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 = 1, then T is said 

to be a non-expansive type mapping. Similar terminology is used for multi-valued mappings. Fixed point 

theorems for contractive, non-expansive, contractive type and non-expansive type mappings provide 

techniques for solving a variety of applied problems in mathematical and engineering sciences. It is one of 

the reason that many authors have studied various classes of contractive type or non-expansive type 

mappings. For Banach spaces the famous is Gregus’s Fixed Point Theorem [10] for non-expansive type 

single-valued mappings, which satisfy (1.2) with 𝑎4 = 𝑎5 = 0, 𝑎1 < 1. The class of mappings 𝑇 satisfying 

the following non-expansive type condition: 

    𝑑(𝑇𝑥, 𝑇𝑦) ≤ a max {𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦),
𝑑(𝑥,𝑇𝑥)+ 𝑑(𝑦,𝑇𝑦)

2
} + 𝑏 𝑚𝑎𝑥{𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)} 

                      + 𝑐[ 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)]                                                                                                  (1.3) 

for all 𝑥, 𝑦 ∈ 𝑋, where 
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𝑎 = 𝑎(𝑥, 𝑦), 𝑏 = 𝑏(𝑥, 𝑦), 𝑐 = 𝑐(𝑥, 𝑦) 

are nonnegative real numbers such that 𝑏 > 0, 𝑐 > 0 and 𝑎 + 𝑏 + 2𝑐 = 1, was introduced and investigated 

by Ciric [7]. Ciric proved that in a complete metric space such mappings have a unique fixed point. Chandra 

et al. [3] consider the following generalization of (1.3), let 𝑇, 𝑓: 𝑋 → 𝑋 satisfying: 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑎(𝑥, 𝑦)𝑑(𝑓𝑥, 𝑓𝑦) + 𝑏(𝑥, 𝑦)𝑚𝑎𝑥{𝑑(𝑓𝑥, 𝑇𝑥), 𝑑(𝑓𝑦, 𝑇𝑦)} +  𝑐(𝑥, 𝑦)[ 𝑑(𝑓𝑥, 𝑇𝑦) + 𝑑(𝑓𝑦, 𝑇𝑥)]       
(1.4) 

where 

𝑎(𝑥, 𝑦) ≥ 0, 𝛽 = 𝑖𝑛𝑓
𝑥,𝑦∈𝑋

𝑏(𝑥, 𝑦) > 0, 

𝛾 = 𝑖𝑛𝑓
𝑥,𝑦∈𝑋

𝑐(𝑥, 𝑦) > 0 

with  

𝑠𝑢𝑝
𝑥,𝑦∈𝑋

(𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) + 2𝑐(𝑥, 𝑦)) = 1 

Random nonlinear analysis is an important mathematical discipline which is mainly concerned with the 

study of random nonlinear operators and their properties and is much needed for the study of various classes 

of random equations. Of course famously random methods have revolutionized the financial markets. 

Random fixed point theorems for random contraction mappings on separable complete metric spaces were 

first proved by Spacek [29] and Hans [11-12]. Random fixed point theorems for contraction mappings on 

separable complete metric spaces have been proved by several authors (Chang and Huang [4], Huang [14], 

Itoh [15], Liu [19], Papageorgiou [20-21] Shahzad and Latif [26], Shahzad and Hussian [27], Spacek [29], 

Tan and Yuan [30]). The stochastic version of the well-known Schauder’s fixed point theorem was proved 

by Sehgal and Singh [25]. 

In this paper, we introduced a new class of non-expansive type mappings for a pair of multi-valued and 

single valued mappings which is a stochastic version of Chandra et al. [3] fixed point theorem to find the 

coincidence and fixed points for such class of mappings. This result generalizes and extends the fixed point 

theorems of Papageorgiou [21], Ciric et al. [8], Jhade et al. [16] and many classical fixed point theorems. 

2. PRELIMINARIES 

Let (Ω, Ʃ) be a measurable space with Ʃ a sigma algebra of subsets of Ω and let (𝑋, 𝑑) be a metric space. 

We denote by 2𝑋 the family of all subsets of 𝑋, by 𝒞ℬ(𝑋) the family of all nonempty closed and bounded 

subsets of 𝑋 and by 𝐻 the Hausdorff metric on 𝒞ℬ(𝑋), induced by the metric 𝑑. For any 𝑥 ∈ 𝑋 and 𝐴 ⊆ 𝑋, 

by 𝑑(𝑥, 𝐴) we denote the distance between 𝑥 and 𝐴, i.e.                    

𝑑(𝑥, 𝐴) = 𝑖𝑛𝑓{𝑑(𝑥, 𝑎): 𝑎 ∈ 𝐴}. 

A mapping 𝑇: Ω → 2𝑋 is called Ʃ-measurable if for any open subset 𝑈 of 𝑋,  𝑇−1(𝑈) = {𝜔: 𝑇(𝜔) ∩ 𝑈 ≠
𝜙} ∈ Ʃ. In what follows, when we speak of measurability we will mean Ʃ-measurability. A mapping 𝑓: Ω ×
X → X is called a random operator if for any 𝑥 ∈ 𝑋, 𝑓(. , 𝑥) is measurable. A mapping 𝑇: Ω × X → 𝒞ℬ(𝑋) 

is called a multi-valued random operator if for every 𝑥 ∈ 𝑋, 𝑇(. , 𝑥) is measurable. A mapping  𝑠: Ω → X  is 

called a measurable selector of a measurable multifunction 𝑇: Ω → 2𝑋 if 𝑠 is measurable and 𝑠(𝜔) ∈ 𝑇(𝜔) 

for all 𝜔 ∈ Ω.  

A measurable mapping 𝜉: Ω → X is called a random fixed point of a random multifunction 𝑇: Ω × X →

𝒞ℬ(𝑋) if 𝜉(𝜔) ∈ 𝑇(𝜔, 𝜉(𝜔)) for every 𝜔 ∈ Ω. A mapping 𝜉: Ω → X is called a random coincidence of 

𝑇: Ω × X → 𝒞ℬ(𝑋) and 𝑓: Ω × X → X if 𝑓(𝜔, 𝜉(𝜔)) ∈ 𝑇(𝜔, 𝜉(𝜔)) for every 𝜔 ∈ Ω. 

The aim of this paper is to prove a stochastic analogue of the Chandra et al. [3] fixed point theorem for 

single valued mappings, extended to a coincidence point theorem for a pair of a random operator 𝑓: Ω ×
X → X and a multi-valued random operator 𝑇: Ω × X → 𝒞ℬ(𝑋), satisfying the following non-expansive type 

condition: for each 𝜔 ∈ Ω, 

             𝐻(𝑇(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) ≤ 𝑎(𝜔)𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦)) 
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                                             +𝑏(𝜔) 𝑚𝑎𝑥{𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥)), 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦))} 

                                             +𝑐(𝜔)[𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦))+𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))]                                   (2.1) 

for every 𝑥, 𝑦 ∈ 𝑋, where 𝑎, 𝑏, 𝑐: Ω → [0,1) are measure-able mappings such that for all 𝜔 ∈ Ω, 

                       𝑏(𝜔) > 0, 𝑐(𝜔) > 0                                      (2.2) 

                    𝑎(𝜔) + 𝑏(𝜔) + 2𝑐(𝜔) = 1                        (2.3) 

3. MAIN RESULTS 

Now, we give our main result. 

Theorem 3.1 Let (𝑋, 𝑑) be a complete metric space, (Ω, Ʃ) be a measurable space and 𝑇: Ω × X → 𝒞ℬ(𝑋) 

& 𝑓: Ω × X → X be mappings such that 

1. 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ Ω, 

2. 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable for all 𝑥 ∈ 𝑋, 

3. They satisfy (2.1), where 𝑎(𝜔), 𝑏(𝜔), 𝑐(𝜔): Ω → X  satisfy (2.2) and (2.3). 

If 𝑇(𝜔, 𝜉(𝜔)) ⊆ 𝑓(𝜔 × 𝑋) and 𝑓(𝜔 × 𝑋) = 𝑋 for each ∈ Ω, , then there is a measurable mapping 𝜉: Ω →

X such that 𝑓(𝜔, 𝜉(𝜔)) ∈ 𝑇(𝜔, 𝜉(𝜔)) for all 𝜔 ∈ Ω, i.e. 𝑇 and 𝑓 have a random coincidence point. 

Proof. Let ψ = {𝜉: Ω → X}  be a family of measurable mappings. Define a function 𝑔: Ω × X → ℛ+ as 

follows: 

    𝑔(𝜔, 𝑥) = 𝑑(𝑥, 𝑇(𝜔, 𝑥)).                         (3.1) 

Since 𝑥 → 𝑇(𝜔, 𝑥) is continuous for all 𝜔 ∈ Ω, we conclude that 𝑔(𝜔, . ) is continuous for all 𝜔 ∈ Ω. Also, 

since 𝜔 → 𝑇(𝜔, 𝑥)is measurable for all 𝑥 ∈ 𝑋,we conclude that 𝑔(. , 𝑥) is measurable (see Wagner [31], p 

868) for all 𝜔 ∈ Ω .Thus 𝑔(𝜔, 𝑥) is the Caratheodory function. Therefore, if 𝜉: Ω → X is a measurable 

mapping, then 𝜔 → 𝑔(𝜔, 𝜉(𝜔)) is also measurable (see Rockafellar [24]). Now we shall construct a 

sequence of measurable mappings {𝜉𝑛} in ψ and a sequence {𝑓(𝜔, 𝜉𝑛(𝜔))} in 𝑋 as follows. Let 𝜉0 ∈ ψ be 

arbitrary. Then the multifunction 𝐺: Ω → 𝒞ℬ(𝑋) defined by 𝐺(𝜔) = 𝑇(𝜔, 𝜉0(𝜔)) is measurable. From the 

Kuratowski-Nardzewski [18] Selector Theorem, there is a measurable selector 𝜇1: Ω → X  such that 

𝜇1(𝜔) ∈ 𝑇(𝜔, 𝜉0(𝜔)) for all 𝜔 ∈ Ω. Since 𝜇1(𝜔) ∈ 𝑇(𝜔, 𝜉0(𝜔)) ⊆ 𝑋 = 𝑓(𝜔 × 𝑋), let 𝜉1 ∈ ψ be such that 

(𝜔, 𝜉1(𝜔)) = 𝜇1(𝜔). Thus 𝑓(𝜔, 𝜉1(𝜔)) ∈ 𝑇(𝜔, 𝜉0(𝜔)) for all 𝜔 ∈ Ω. Let 𝑘: Ω → (1, +∞) defined by 

                           𝑘(𝜔) = 1 +
𝑏(𝜔)𝑐(𝜔)

2
                            (3.2) 

for all 𝜔 ∈ Ω. Then 𝑘(𝜔) is measurable. Since 𝑘(𝜔) > 1 and 𝑓(𝜔, 𝜉1(𝜔)) is a selector of 

𝑇(𝜔, 𝜉0(𝜔)),from Lemma 2.1 of Papageorgiou [21] there is a measurable selector 𝜇1(𝜔) =

𝑓(𝜔, 𝜉1(𝜔)); 𝜉2 ∈ ψ, such that for all 𝜔 ∈ Ω, 𝑓(𝜔, 𝜉2(𝜔)) ∈ 𝑇(𝜔, 𝜉1(𝜔)) and 

         𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) ≤ 𝑘(𝜔)𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔)))                    (3.3) 

Similarly, as 𝑓(𝜔, 𝜉2(𝜔)) is a selector of 𝑇(𝜔, 𝜉1(𝜔)), there is a measurable selector 𝜇3(𝜔) = 𝑓(𝜔, 𝜉3(𝜔)) 

of 𝑇(𝜔, 𝜉2(𝜔)) ⊆ 𝑓(Ω × 𝑋) such that 

𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑓(𝜔, 𝜉3(𝜔)))  ≤ 𝑘(𝜔)𝐻 (𝑇(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) 

Continuing in this way, we can construct a sequence of measurable mappings 𝜇𝑛: Ω → X, 𝜇𝑛(𝜔) =

𝑓(𝜔, 𝜉𝑛(𝜔)); 𝜉𝑛 ∈ ψ, such that for all 𝜔 ∈ Ω, 

𝑓(𝜔, 𝜉𝑛+1(𝜔)) ∈ 𝑇(𝜔, 𝜉𝑛(𝜔)) 

and 



 

272 Manoj UGHADE et al./ GU J Sci, 30(1):269-281(2017)  

     𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑓(𝜔, 𝜉𝑛+1(𝜔))) ≤ 𝑘(𝜔)𝐻 (𝑇(𝜔, 𝜉𝑛−1(𝜔)), 𝑇(𝜔, 𝜉𝑛(𝜔)))   (3.4) 

Applying (2.1), we have 

 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) ≤ 𝑎(𝜔)𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

                                             +𝑏(𝜔) 𝑚𝑎𝑥 {𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉0(𝜔))) , 𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉1(𝜔)))} 

                   +𝑐(𝜔) [𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) +𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉0(𝜔)))]                                                                                         

                                                                                                                                                                  (3.5) 

Since 𝑓(𝜔, 𝜉1(𝜔)) ∈ 𝑇(𝜔, 𝜉0(𝜔)), then 

                                 𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉0(𝜔))) = 0, 

𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉0(𝜔))) ≤ 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))), 

𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) ≤ 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))). 

Thus from (3.5), we have 

 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) ≤ 𝑎(𝜔)𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

                                    +𝑏(𝜔) 𝑚𝑎𝑥 {𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) , 𝐻 (𝑇(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉1(𝜔)))} 

                                         +𝑐(𝜔) [𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) +𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔)))]    (3.6) 

If assume that 

𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) > 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))). 

Then from (3.6) and (2.3), we obtain, as 𝑐(𝜔) > 0 and  

 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) ≤ 𝑎(𝜔)𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) 

                 +𝑏(𝜔)𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) 

                                                    +2𝑐(𝜔)𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) 

                                                    = (𝑎(𝜔) + 𝑏(𝜔) + 2𝑐(𝜔)) × 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) 

                                                    = 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) 

a contradiction. Therefore, we have 

𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) ≤ 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

Since  

𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) ≤ 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) 

we have 

𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) ≤ 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

By induction, we can show that 

 𝐻 (𝑇(𝜔, 𝜉𝑛(𝜔)), 𝑇(𝜔, 𝜉𝑛+1(𝜔))) ≤ 𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑓(𝜔, 𝜉𝑛+1(𝜔))),                     (3.7) 
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 𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑇(𝜔, 𝜉𝑛(𝜔))) ≤ 𝑑 (𝑓(𝜔, 𝜉𝑛−1(𝜔)), 𝑓(𝜔, 𝜉𝑛(𝜔)))                      (3.8) 

for all 𝑛 ≥ 1 and for all 𝜔 ∈ Ω. 

From (3.4) and (3.7), we have 

 𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑓(𝜔, 𝜉𝑛+1(𝜔))) ≤ 𝑘(𝜔)𝑑 (𝑓(𝜔, 𝜉𝑛−1(𝜔)), 𝑓(𝜔, 𝜉𝑛(𝜔)))                  (3.9) 

From (3.6), we get 

  𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) ≤ 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) + 𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) 

≤ (1 + 𝑘(𝜔))𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑓(𝜔, 𝜉2(𝜔)))                                    (3.10) 

Again from (2.1), we have 

 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) ≤ 𝑎(𝜔)𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) 

             +𝑏(𝜔) 𝑚𝑎𝑥 {𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉0(𝜔))) , 𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑇(𝜔, 𝜉2(𝜔)))} 

                +𝑐(𝜔) [𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) +𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑇(𝜔, 𝜉0(𝜔)))]              (3.11) 

Using (3.7), (3.8), (3.9), (3.10) and triangle inequality, we have 

𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑇(𝜔, 𝜉0(𝜔))) ≤ 𝐻 (𝑇(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉0(𝜔))) ≤ 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

and 

𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) ≤ 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) + 𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) 

                                                  +𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) 

                                                  ≤ (1 + 𝑘(𝜔))𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

                                                  +𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) 

                                                  ≤ (1 + 2𝑘(𝜔))𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

Now from (3.11), (3.10), (3.9), and (2.3), we have 

 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) ≤ 𝑎(𝜔)(1 + 2𝑘(𝜔))𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

              +𝑏(𝜔)𝑘(𝜔)𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) + 2𝑐(𝜔)(1 + 2𝑘(𝜔))𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔)))               

              = [𝑎(𝜔)(1 + 2𝑘(𝜔)) + 𝑏(𝜔)𝑘(𝜔)+2𝑐(𝜔)(1 + 2𝑘(𝜔))]𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

              = [(1 + 𝑘(𝜔))(𝑎(𝜔) + 𝑏(𝜔) + 2𝑐(𝜔)) − 𝑏(𝜔)]𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

              = [1 + 𝑘(𝜔) − 𝑏(𝜔)]𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

As 1 + 𝑘(𝜔) ≤ 2𝑘(𝜔), we have 

 𝐻 (𝑇(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) ≤ [2𝑘(𝜔) − 𝑏(𝜔)]𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔)))             (3.12) 

From (2.3) and (2.1), as 𝑓(𝜔, 𝜉2(𝜔)) ∈ 𝑇(𝜔, 𝜉1(𝜔)), we have 

  𝐻 (𝑇(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉2(𝜔)))  ≤ 𝑎(𝜔)𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) 
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               +𝑏(𝜔) 𝑚𝑎𝑥 {𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))) , 𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) 

               +𝑐(𝜔) [𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) +𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑇(𝜔, 𝜉1(𝜔)))] 

  ≤ 𝑎(𝜔)𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) 

  +𝑏(𝜔) 𝑚𝑎𝑥 {𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉1(𝜔))), 𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑇(𝜔, 𝜉2(𝜔)))} 

               +𝑐(𝜔)𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉2(𝜔)))                                                                                    (3.13) 

Also by (3.12), since 𝑓(𝜔, 𝜉1(𝜔)) ∈ 𝑇(𝜔, 𝜉0(𝜔)), we have 

          𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) ≤ 𝐻 (𝑓(𝜔, 𝜉0(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) 

                                                             ≤ [2𝑘(𝜔) − 𝑏(𝜔)]𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔)))        

Thus from (3.13), (3.8) and (2.3), we have 

 𝐻 (𝑇(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) ≤ 𝑎(𝜔)𝑘(𝜔)𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

           +𝑏(𝜔)𝑘(𝜔)𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) + 𝑐(𝜔)[2𝑘(𝜔) − 𝑏(𝜔)]𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

           = [𝑘(𝜔)(𝑎(𝜔) + 𝑏(𝜔) + 2𝑐(𝜔)) − 𝑏(𝜔)𝑐(𝜔)] × 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

implies that 

 𝐻 (𝑇(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) ≤ [𝑘(𝜔) − 𝑏(𝜔)𝑐(𝜔)]𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔)))        (3.14) 

From (3.4) and (3.14), we get 

𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑓(𝜔, 𝜉3(𝜔))) ≤ 𝑘(𝜔)𝐻 (𝑇(𝜔, 𝜉1(𝜔)), 𝑇(𝜔, 𝜉2(𝜔))) 

≤ 𝑘(𝜔)[𝑘(𝜔) − 𝑏(𝜔)𝑐(𝜔)] × 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔)))           (3.15) 

As 𝑘(𝜔) = 1 +
𝑏(𝜔)𝑐(𝜔)

2
, we have 

         𝑘(𝜔)[𝑘(𝜔) − 𝑏(𝜔)𝑐(𝜔)] = (1 +
𝑏(𝜔)𝑐(𝜔)

2
) [1 +

𝑏(𝜔)𝑐(𝜔)

2
− 𝑏(𝜔)𝑐(𝜔)] 

                                                    = 1 +
𝑏2(𝜔)𝑐2(𝜔)

4
 

Thus from (3.15), we obtain 

𝑑 (𝑓(𝜔, 𝜉2(𝜔)), 𝑓(𝜔, 𝜉3(𝜔))) ≤ (1 +
𝑏2(𝜔)𝑐2(𝜔)

4
) 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔))) 

Similarly 

𝑑 (𝑓(𝜔, 𝜉3(𝜔)), 𝑓(𝜔, 𝜉4(𝜔))) ≤ (1 +
𝑏2(𝜔)𝑐2(𝜔)

4
) 𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) 

Hence by induction 

            𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑓(𝜔, 𝜉𝑛+1(𝜔))) ≤ (1 +
𝑏2(𝜔)𝑐2(𝜔)

4
)

[
𝑛

2
]

 

                      max {𝑑 (𝑓(𝜔, 𝜉1(𝜔)), 𝑓(𝜔, 𝜉2(𝜔))) , 𝑑 (𝑓(𝜔, 𝜉0(𝜔)), 𝑓(𝜔, 𝜉1(𝜔)))}                   (3.16) 
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where [
𝑛

2
] stands for the greatest integer not exceeding  

𝑛

2
. Also, since 𝑏(𝜔)𝑐(𝜔) > 0 for all 𝜔 ∈ Ω, from 

(3.16), we have {𝑓(𝜔, 𝜉𝑛(𝜔))} is a Cauchy sequence in 𝑓(𝜔 × 𝑋). Since 𝑓(𝜔 × 𝑋) = 𝑋 is complete, there 

is measurable mapping  𝑓(𝜔, 𝜉(𝜔)) ∈ 𝑓(𝜔 × 𝑋) such that 

              lim
𝑛→+∞

𝑓(𝜔, 𝜉𝑛(𝜔)) = 𝑓(𝜔, 𝜉(𝜔))                                                      (3.17) 

Now, we prove that 𝑓(𝜔, 𝜉(𝜔)) ∈ 𝑇(𝜔, 𝜉(𝜔)). By triangle inequality, we have 

        𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) ≤ 𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑓(𝜔, 𝜉𝑛+1(𝜔))) + 𝑑 (𝑓(𝜔, 𝜉𝑛+1(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) 

                                                        ≤ 𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑓(𝜔, 𝜉𝑛+1(𝜔))) + 𝐻 (𝑇(𝜔, 𝜉𝑛(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) 

Taking limit as 𝑛 → +∞  in above inequality, we have 

    𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) ≤  lim
𝑛→+∞

𝐻 (𝑇(𝜔, 𝜉𝑛(𝜔)), 𝑇(𝜔, 𝜉(𝜔)))                    (3.18) 

Again from (2.1), we have 

𝐻 (𝑇(𝜔, 𝜉𝑛(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) ≤ 𝑎(𝜔)𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑓(𝜔, 𝜉(𝜔))) 

                                             +𝑏(𝜔) 𝑚𝑎𝑥 {𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑇(𝜔, 𝜉𝑛(𝜔))) , 𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑇(𝜔, 𝜉(𝜔)))} 

                                             +𝑐(𝜔) [𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) +𝑑 (𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝜉𝑛(𝜔)))]               

                                             ≤ 𝑎(𝜔)𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑓(𝜔, 𝜉(𝜔))) 

                                            +𝑏(𝜔) 𝑚𝑎𝑥 {𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑓(𝜔, 𝜉𝑛+1(𝜔))) , 𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑇(𝜔, 𝜉(𝜔)))} 

                                            +𝑐(𝜔) [𝑑 (𝑓(𝜔, 𝜉𝑛(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) +𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑓(𝜔, 𝜉𝑛+1(𝜔)))] 

Taking limit as 𝑛 → +∞  in above inequality, we have 

    lim
𝑛→+∞

𝐻 (𝑇(𝜔, 𝜉𝑛(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) ≤ [𝑏(𝜔) + 𝑐(𝜔)]𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑇(𝜔, 𝜉(𝜔)))          (3.19) 

Hence from (3.18) and (3.19), we have 

𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) ≤ [𝑏(𝜔) + 𝑐(𝜔)]𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) 

≤ [1 − 𝑎(𝜔) − 𝑐(𝜔)]𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑇(𝜔, 𝜉(𝜔)))                    

Implies that 𝑑 (𝑓(𝜔, 𝜉(𝜔)), 𝑇(𝜔, 𝜉(𝜔))) = 0 as 1 − 𝑎(𝜔) − 𝑐(𝜔) < 1 and for all 𝜔 ∈ Ω. Hence as 

𝑇(𝜔, 𝜉(𝜔)) is closed, 𝑓(𝜔, 𝜉(𝜔)) ∈ 𝑇(𝜔, 𝜉(𝜔)) for all 𝜔 ∈ Ω. 

Corollary 3.2 (Theorem 1, Ciric et al. [8]) Let (𝑋, 𝑑) be a complete metric space, (Ω, Ʃ) be a measurable 

space and 𝑇: Ω × X → 𝒞ℬ(𝑋) & 𝑓: Ω × X → X be mappings such that 

1. 𝑇(𝜔, . ) and 𝑓(𝜔, . )are continuous for all 𝜔 ∈ Ω, 

2. 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable for all 𝑥 ∈ 𝑋, 

3. They satisfy the following condition;  

 𝐻(𝑇(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) ≤ 𝑎(𝜔) max{𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦)), 𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥)), 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦))                                

                                      ,
1

2
[𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) + 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))]} 

                                   +𝑏(𝜔) 𝑚𝑎𝑥{𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥)), 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦))} 

                                   +𝑐(𝜔)[𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦))+𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))]                                                         (3.20) 
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where 𝑎(𝜔), 𝑏(𝜔), 𝑐(𝜔): Ω → X  satisfy (2.2) and (2.3). If 𝑇(𝜔, 𝜉(𝜔)) ⊆ 𝑓(𝜔 × 𝑋) and 𝑓(𝜔 × 𝑋) = 𝑋 for 

each ∈ Ω, , then there is a measurable mapping 𝜉: Ω → X such that 𝑓(𝜔, 𝜉(𝜔)) ∈ 𝑇(𝜔, 𝜉(𝜔)) for all 𝜔 ∈ Ω, 
i.e. 𝑇 and 𝑓 have a random coincidence point. 

Proof We shall show that (3.20) is contained in (2.1). Define 

Δ𝑓,𝑇(𝑥, 𝑦, 𝜔) = max{𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦)), 𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥)), 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦)) 

,
1

2
[𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) + 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))]} 

For each 𝑥, 𝑦 ∈ 𝑋 such that  

Δ𝑓,𝑇(𝑥, 𝑦, 𝜔) = 𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦)), 

define 𝑎(𝜔), 𝑏(𝜔), 𝑐(𝜔): 𝛺 → (0,1). 

For each 𝑥, 𝑦 ∈ 𝑋 such that  

Δ𝑓,𝑇(𝑥, 𝑦, 𝜔) = max{𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥)), 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦))}, 

define 𝑎(𝜔) = 0, 𝑏(𝜔) = 𝑎(𝜔) + 𝑏(𝜔), 𝑐(𝜔) = 𝑏(𝜔). 

For each 𝑥, 𝑦 ∈ 𝑋 such that  

Δ𝑓,𝑇(𝑥, 𝑦, 𝜔) =
1

2
[𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) + 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))], 

define 𝑎(𝜔) = 0, 𝑏(𝜔) = 0, 𝑐(𝜔) = 𝑎(𝜔) + 2𝑐(𝜔). 

Thus, condition (2.1) is an extension of condition (3.20). All conditions of Theorem 3.1 hold and 𝑇 and 𝑓 

have a random coincidence point. 

Corollary 3.3 (Theorem 3.1, Jhade et al. [16]) Let (𝑋, 𝑑) be a complete metric space, (Ω, Ʃ) be a measurable 

space and 𝑇: Ω × X → 𝒞ℬ(𝑋) & 𝑓: Ω × X → X be mappings such that 

1. 𝑇(𝜔, . ) and 𝑓(𝜔, . )are continuous for all 𝜔 ∈ Ω, 

2. 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable for all 𝑥 ∈ 𝑋, 

3. They satisfy the following condition;  

             𝐻(𝑇(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) ≤ 𝑎(𝜔) max{𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦)), 𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦))} 

                                               +𝑏(𝜔) 𝑚𝑎𝑥{𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥))𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦)), 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))} 

                                               +𝑐(𝜔)[𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦))+𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))]                                   (3.21) 

where 𝑎(𝜔), 𝑏(𝜔), 𝑐(𝜔): Ω → X  satisfy (2.2) and (2.3). If 𝑇(𝜔, 𝜉(𝜔)) ⊆ 𝑓(𝜔 × 𝑋) and 𝑓(𝜔 × 𝑋) = 𝑋 for 

each ∈ Ω, , then there is a measurable mapping 𝜉: Ω → X such that 𝑓(𝜔, 𝜉(𝜔)) ∈ 𝑇(𝜔, 𝜉(𝜔)) for all 𝜔 ∈ Ω, 
i.e. 𝑇 and 𝑓 have a random coincidence point. 

Proof Since 

𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦)) ≤ max{𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦)), 𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦))} 

and 

                           𝑚𝑎𝑥{𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥)) , 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦))} 

                           ≤ 𝑚𝑎𝑥{𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥)) , 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦)) , 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))} 

All conditions of Theorem 3.1 hold and 𝑇 and 𝑓 have a random coincidence point. 

If in Theorem 3.1, 𝑓(𝜔, 𝑥) = 𝑥 for all 𝜔 ∈ Ω,  then we get the following random fixed point theorem. 



 

Manoj UGHADE et al./ GU J Sci, 30(1):269-281(2017)                                                          277 

  

Corollary 3.4 Let (𝑋, 𝑑) be a separable complete metric space, (Ω, Ʃ) be a measurable space and 𝑇: Ω ×
X → 𝒞ℬ(𝑋) be mapping such that 𝑇(𝜔, . ) is continuous for all 𝜔 ∈ Ω, 𝑇(. , 𝑥) is measurable for all 𝑥 ∈
X and 

      𝐻(𝑇(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) ≤ 𝑎(𝜔)𝑑(𝑥, 𝑦) + 𝑏(𝜔) 𝑚𝑎𝑥{𝑑(𝑥, 𝑇(𝜔, 𝑥)), 𝑑(𝑦, 𝑇(𝜔, 𝑦))} 

                     +𝑐(𝜔)[𝑑(𝑥, 𝑇(𝜔, 𝑦))+𝑑(𝑦, 𝑇(𝜔, 𝑥))]                                                          (3.22) 

∀ 𝑥, 𝑦 ∈ 𝑋, where 𝑎, 𝑏, 𝑐: Ω → [0,1) are measurable mappings satisfying (2.2) and (2.3) for all 𝜔 ∈ Ω, then 

there is a measurable mapping 𝜉: Ω → X such that 𝜉(𝜔) ∈ 𝑇(𝜔, 𝜉(𝜔)) for all 𝜔 ∈ Ω. 

Corollary 3.5 (Corollary 1, Ciric et al. [8]) Let (𝑋, 𝑑) be a separable complete metric space, (Ω, Ʃ) be a 

measurable space and 𝑇: Ω × X → 𝒞ℬ(𝑋) be mapping such that 𝑇(𝜔, . ) is continuous for all 𝜔 ∈ Ω, 𝑇(. , 𝑥) 

is measurable for all 𝑥 ∈ X and 

           𝐻(𝑇(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) ≤ 𝑎(𝜔) max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇(𝜔, 𝑥)), 𝑑(𝑦, 𝑇(𝜔, 𝑦)) 

                                                ,
1

2
[, 𝑑(𝑥, 𝑇(𝜔, 𝑦))+, 𝑑(𝑦, 𝑇(𝜔, 𝑥))]} 

                                             +𝑏(𝜔)𝑚𝑎𝑥{𝑑(𝑥, 𝑇(𝜔, 𝑥)) , 𝑑(𝑦, 𝑇(𝜔, 𝑦))} 

                                             +𝑐(𝜔)[𝑑(𝑥, 𝑇(𝜔, 𝑦))+𝑑(𝑦, 𝑇(𝜔, 𝑥))]                                                        (3.23) 

for every 𝑥, 𝑦 ∈ 𝑋, where 𝑎, 𝑏, 𝑐: Ω → [0,1) are measurable mappings satisfying (2.2) and (2.3) for all 𝜔 ∈

Ω, then there is a measurable mapping 𝜉: Ω → X such that 𝜉(𝜔) ∈ 𝑇(𝜔, 𝜉(𝜔)) for all 𝜔 ∈ Ω. 

Corollary 3.6 (Corollary 3.3, Jhade et al. [16]) Let (𝑋, 𝑑) be a separable complete metric space, (Ω, Ʃ) be 

a measurable space and 𝑇: Ω × X → 𝒞ℬ(𝑋) be mapping such that 𝑇(𝜔, . ) is continuous for all 𝜔 ∈ Ω, 
𝑇(. , 𝑥) is measurable for all 𝑥 ∈ X and 

              𝐻(𝑇(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) ≤ 𝑎(𝜔) max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇(𝜔, 𝑦))} 

                                                +𝑏(𝜔) 𝑚𝑎𝑥{𝑑(𝑥, 𝑇(𝜔, 𝑥)) , 𝑑(𝑦, 𝑇(𝜔, 𝑦)), 𝑑(𝑦, 𝑇(𝜔, 𝑥))} 

                                                +𝑐(𝜔)[𝑑(𝑥, 𝑇(𝜔, 𝑦)) +𝑑(𝑦, 𝑇(𝜔, 𝑥))]                                                   (3.24) 

∀ 𝑥, 𝑦 ∈ 𝑋,where 𝑎, 𝑏, 𝑐: Ω → [0,1) are measurable mappings satisfying (2.2) and (2.3) for all 𝜔 ∈ Ω, then 

there is a measurable mapping 𝜉: Ω → X such that 𝜉(𝜔) ∈ 𝑇(𝜔, 𝜉(𝜔)) for all 𝜔 ∈ Ω. 

Corollary 3.7 (Corollary 2, Ciric et al. [8]) Let (𝑋, 𝑑) be a complete metric space, (Ω, Ʃ) be a measurable 

space and 𝑇: Ω × X → 𝒞ℬ(𝑋) & 𝑓: Ω × X → X be mappings such that 

1. 𝑇(𝜔, . ) and 𝑓(𝜔, . )are continuous for all 𝜔 ∈ Ω, 

2. 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable for all 𝑥 ∈ 𝑋, 

3. They satisfy the following condition;  

     𝐻(𝑇(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) ≤ 𝜆(𝜔) max{𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦)), 𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑥)), 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑦)) 

,
1

2
[𝑑(𝑓(𝜔, 𝑥), 𝑇(𝜔, 𝑦)) + 𝑑(𝑓(𝜔, 𝑦), 𝑇(𝜔, 𝑥))]}                              (3.25) 

where 𝜆(𝜔) ∶ Ω → X is a measurable function. If 𝑇(𝜔, 𝜉(𝜔)) ⊆ 𝑓(𝜔 × 𝑋) and 𝑓(𝜔 × 𝑋) = 𝑋 for each ∈

Ω, then there is a measurable mapping 𝜉: Ω → X such that 𝑓(𝜔, 𝜉(𝜔)) ∈ 𝑇(𝜔, 𝜉(𝜔)) for all 𝜔 ∈ Ω, i.e. 𝑇 

and 𝑓 have a random coincidence point. 

Proof It is clear that if 𝑓 and 𝑇 satisfy (3.25), then 𝑓 and 𝑇 satisfy (3.20) with 

𝑎(𝜔) = 𝜆(𝜔), 𝑏(𝜔) =
1 − 𝜆(𝜔)

2
, 𝑐(𝜔) =

1 − 𝜆(𝜔)

4
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Remark 3.8  

1. The non-expansive type condition (2.1) includes (3.20) (condition 1.2 of Ciric et al. [8]) and (3.21) 

(condition 2.1 of Jhade et al. [16]). Thus, Theorem 3.1 is an extension of Theorem 1 of Ciric et al. 

[8] and Theorem 3.1 of Jhade et al. [16]. 

2. The non-expansive type condition (3.22) includes (3.23) (condition 2.17 of Ciric et al. [8]) and 

(3.24) (condition 3.16 of Jhade et al. [16]). Thus, Corollary 3.4  is an extension of Corollary 3.5 

(Corollary 1 of Ciric et al. [8]) and Corollary 3.6 (Corollary 3.3 of Jhade et al. [16]) 

3. If in Corollary 3.7, 𝑓(𝜔, 𝑥) = 𝑥 for all 𝜔 ∈ Ω then we obtain the corresponding theorems of Hadzic 

[32] and Papageorgiou [21]. 

4. Corollary 3.7 is a stochastic generalization and improvement of the corresponding fixed point 

theorems for contractive type multi-valued mappings of Ciric [5], Ciric and Ume [9], Kubiaczyk 

[33], Kubiak [34], Ray [35] and several other authors.  

5. Theorem 3.1 generalizes and extends the corres-ponding fixed point theorems for non-expansive 

type single-valued mappings of Ciric [7] and Rhoades [22]. 

Finally, we give a simple example in support of Theorem 3.1 and Corollary 3.4 which shows that these 

results are actually an improvement of the result of Itoh [15]. 

Example 3.9 Let (𝑋, 𝑑) be any measurable space and  𝐾 = {0,1,2,4,6} be the subset of the real line. Let 

the mappings 𝑓: Ω × K → 𝐾 and 𝑇: Ω × K → 𝐾 be defined such that for each 𝜔 ∈ Ω; 

          𝑓(𝜔, 0) = 2,           𝑓(𝜔, 1) = 4,        𝑓(𝜔, 2) = 6,          𝑓(𝜔, 4) = 0,           𝑓(𝜔, 6) = 1,            

 and 

          𝑇(𝜔, 0) = 1,           𝑇(𝜔, 1) = 2,        𝑇(𝜔, 2) = 4,        𝑇(𝜔, 4) = 0,         𝑇(𝜔, 6) = 0. 

Then 𝑓 and 𝑇 do not satisfy the contractive type condition (2.18). Indeed, for 𝑥 = 1 and 𝑦 = 2, we have 

               𝑑(𝑇(𝜔, 1), 𝑇(𝜔, 2)) = ‖2 − 4‖ = 2 

and    

   max{𝑑(𝑓(𝜔, 1), 𝑓(𝜔, 2)), 𝑑(𝑓(𝜔, 1), 𝑇(𝜔, 1)), 𝑑(𝑓(𝜔, 2), 𝑇(𝜔, 2))                         

          ,
1

2
[𝑑(𝑓(𝜔, 1), 𝑇(𝜔, 2)) + 𝑑(𝑓(𝜔, 2), 𝑇(𝜔, 1))]} 

          = max{‖4 − 6‖, ‖4 − 2‖, ‖6 − 4‖,
1

2
[0 + ‖6 − 2‖]}  = 2 

Hence for any 𝜆(𝜔) < 1, we have 

       𝑑(𝑇(𝜔, 1), 𝑇(𝜔, 2)) > 𝜆(𝜔) max{𝑑(𝑓(𝜔, 1), 𝑓(𝜔, 2)) , 𝑑(𝑓(𝜔, 1), 𝑇(𝜔, 1)), 𝑑(𝑓(𝜔, 2), 𝑇(𝜔, 2))  

                                           ,
1

2
[𝑑(𝑓(𝜔, 1), 𝑇(𝜔, 2)) + 𝑑(𝑓(𝜔, 2), 𝑇(𝜔, 1))]} 

On the other hand, if we take 

𝑎(𝜔) =
4

5
, 𝑏(𝜔) =

1

10
, 𝑐(𝜔) =

1

20
, 

we have 

            
4

5
𝑑(𝑓(𝜔, 1), 𝑓(𝜔, 2)) +

1

10
𝑚𝑎𝑥{𝑑(𝑓(𝜔, 1), 𝑇(𝜔, 1)), 𝑓(𝜔, 2), 𝑇(𝜔, 2)} 

                         +
1

20
[𝑑(𝑓(𝜔, 1), 𝑇(𝜔, 2))+𝑑(𝑓(𝜔, 2), 𝑇(𝜔, 1))] 

                        =
4

5
‖4 − 6‖ +

1

20
𝑚𝑎𝑥{‖4 − 2‖, ‖6 − 4‖} +

1

20
[0 + ‖6 − 2‖] 

                        =
4

5
. 2 +

1

10
. 2 +

1

20
. 4 = 2 
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                       = 𝑑(𝑇(𝜔, 1), 𝑇(𝜔, 2)) 

Thus, for 𝑥 = 1 and 𝑦 = 2, 𝑓 and 𝑇 satisfy (2.1) with 𝑎(𝜔) + 𝑏(𝜔) + 2𝑐(𝜔) = 1. It is easy to show that 𝑓 

and 𝑇 satisfy (2.1) for all 𝑥, 𝑦 ∈ 𝐾 with the same 𝑎(𝜔), 𝑏(𝜔) and 𝑐(𝜔).  

Also, the rest of the assumptions of Theorem 3.1 is satisfied and for 𝜉(𝜔) = 4, we have 𝑓(𝜔, 𝜉(𝜔)) = 0 =

𝑇(𝜔, 𝜉(𝜔)). 

Note that if 𝑓(𝜔, 𝑥) = 𝑥, 𝑇 does not satisfy (3.17) either, as for instance, for 𝑥 = 2 and 𝑦 = 4, we have 

  𝑎(𝜔)𝑑(2,4) + 𝑏(𝜔) 𝑚𝑎𝑥{𝑑(2, 𝑇(𝜔, 2)), 𝑑(4, 𝑇(𝜔, 4))} +𝑐(𝜔)[𝑑(2, 𝑇(𝜔, 4)) + 𝑑(4, 𝑇(𝜔, 2))] 

         = 𝑎(𝜔)‖2 − 4‖ + 𝑏(𝜔) 𝑚𝑎𝑥{‖2 − 4‖, ‖4 − 0‖} + 𝑐(𝜔)[‖2 − 0‖ + ‖4 − 4‖] 

         = 2𝑎(𝜔) + 4𝑏(𝜔) + 2𝑐(𝜔) < 4(𝑎(𝜔) + 𝑏(𝜔) + 2𝑐(𝜔))  = 4 = ‖4 − 0‖ 

         = 𝑑(𝑇(𝜔, 2), 𝑇(𝜔, 4))   
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