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Abstract 

In this paper, a known theorem on | , |n kN p  summability factors of infinite series have been 

generalized for | , |n kA   summability factors. Using this theorem, some new results dealing with 

Fourier series have been obtained. 
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1. INTRODUCTION  

Let  na be a given infinite series with the partial sums )( ns  and ( )np  be a sequence of positive numbers 

such that  
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The sequence –to-sequence transformation  
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(2)  

defines the sequence ( )nT
 
of the Riesz mean or simply the ( , )nN p mean of the sequence )( ns generated 

by the sequence of coefficients )( np  (see [7]). The series  na is said to be summable | , |n kN p , 1,k   

if (see [1]) 
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In the special case when 1np
 
for all values of n (resp. 1k  ), | , |n kN p

 
summability is the same as 

| ,1|kC
 
(resp. | , |nN p ) summability.  
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Let f
 
be a periodic function with period 2  and Lebesgue integrable over ( , )  . Without any loss of 

generality we may assume that the constant term in the Fourier series of ( )f t  is zero, so that 

 

             ( ) 0f t dt





  
(4)    

and 
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(5)  

We write 
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(6)  

Given a normal matrix ( )nvA a , we associate two lower semimatrices )( nvaA   and )ˆ(ˆ
nvaA  as 

follows: 
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(7)  

and  

 
00 00 00
ˆ ˆ, , 1,2,...nv nva a a a a n     (8)  

It may be noted that A  and Â  are the well-known matrices of series-to-sequence and series-to-series 

transformations, respectively. Then, we have  
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(10)  

Let ( )n  be any sequence of positive real numbers. The series  na  is said to be summable | , |n kA  , 

1k , if (see [10]) 
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where 

 
1( ) ( ) ( ).n n nA s A s A s     
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Remark. If we take n
n

n

P

p
  , then | , |n kA   summability reduces to | , |n kA p  summability (see [11]). 

Also, if we take n
n

n

P

p
   and 

n

v
nv

P

p
a  , then we get 

knpN ,  summability. Furthermore, if we take 

, v
n nv

n

p
n a

P
    and 1np for all values of n, then | , |n kA   reduces to 

k
C 1,  summability (see [6]). 

Finally, if we take 
n n  and

n

v
nv

P

p
a  , then we get , n k

R p  summability (see [3]). 

2.THE KNOWN RESULTS 

The following theorems are known dealing with Fourier series (see [2]). 

Theorem 2.1. Let )( np
 
be a sequence of positive numbers such that 

 )( nn pnOP   as ,n   (12)  
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(13)  

If 
1( )t  is of bounded variation in (0, )  and ( )n  is a sequence such that  

 

1

1
| |kn

n n






   
(14)  
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then the series ( ) n n
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P
C t

np




 

is summable 
knpN , , 1k . 

Theorem 2.2. If the sequences ( )np  and ( )n  satisfy the conditions (12)-(15) of Theorem 2.1 and  
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then the series n n
n

n

P
a

np


  is summable 

knpN , , 1k . 

3. THE MAIN RESULTS 

Many studies have been done for Riesz summability and matrix generalization of infinite series and Fourier 

series (see [4], [5], [9], [12]). The aim of this paper is to generalize Theorem 2.1 and Theorem 2.2 under 

suitable and different conditions using general summability factors for | , |n kA   summability methods. 

Now, we shall prove the following theorems. 
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Theorem 3.1. Let )( nvaA  be a positive normal matrix such that  

 ,...,1,0,10  nan
 (17)  
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(18)  
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(20)  

Let 
1( )t  be of bounded variation in (0, )  and ( )n nna  be a non-increasing sequence. If the conditions 

(12), (13), (15) of Theorem 2.1 are satisfied and ( )n  is any sequence of positive constants such that  
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then the series ( ) n n
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  is summable , , 1.n k

A k   

Theorem 3.2. If the conditions (12), (13) and (15-21) are satisfied and ( )n nna  is a non increasing 

sequence, then the series n n
n

n

P
a

np


  is summable , , 1.n k

A k 
 

Remark. It should be noted that in the above theorems, if we take n
n

n

P

p
  and 

n

v
nv

P

p
a  , then we get 

Theorem 2.1 and Theorem 2.2. In this case, condition (21) reduces to condition (14).  

We need the following lemmas for the proof of our theorems. 

Lemma 3.3 [8] If 
1( )t  is of bounded variation in (0, ) , then 
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(22)  

Lemma 3.4 [2] If the sequence ( )np  such that conditions (12) and (13) of Theorem 2.1 are satisfied, then 
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4. PROOF OF THEOREM 3.2. 

Let ( )nI  
denotes the A-transform of the series 

1( ) .n n n na P np   Then, by (9) and (10), we have 
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Applying Abel's transformation to this sum, we get that 
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To complete the proof of Theorem 3.2, by Minkowski inequality, it is sufficient to show that 
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Firstly, we have that 
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by virtue of the hypotheses of Theorem 3.2. Now, applying Hölder’s inequality, we have that 
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by virtue of the hypotheses of Theorem 3.2. On the other hand, since 
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by virtue of the hypotheses of Theorem 3.2 and Lemma 3.3. Finally, we get  
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by virtue of the hypotheses of Theorem 3.2. 

This completes the proof of Theorem 3.2.  

Proof of Theorem 3.1. Theorem 3.1 is a direct consequence of Theorem 3.2 and Lemma 3.3. 

5. CONCLUSIONS 

If we take n
n

n

P

p
   in Theorem 3.1 and Theorem 3.2, then we get two theorems dealing with , n k

A p  

summability (see [13]). Also, if we take n
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a  , then we get Theorem 2.1 and Theorem 

2.2. Additionally, if we take 
n n   and 
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a  , then we get a theorem dealing with , n k

R p  

summability. Finally, if we take 
n n  , 
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p
a   and 1np  for all values of n , then we get a result 

for ,1
k

C  summability. 
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