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1. INTRODUCTION

In 1951, statistical convergence of real valued sequences was introduced by Fast and Steinhaus [8, 19]. The
idea of statistical convergence is based on asymptotic density of the subset of natural numbers (see [3]).
Let K € Nand K(n) = {k <n: k € K}. Asymptotic density of the subset K is defined by

1
6(K) = lim —|K(n)|,

n-oon
if the limit exists. The symbol |K(n)]| is denote the cardinality of the set K(n). For many years, by using
asymptotic density some concepts in Mathematical analysis are generalized [7], [11], [12], etc.
A real valued sequence x = (x;,) is statistical convergent to the element L, if for every € > 0, the set

Kn,e)=={k<n:|x,—L| = ¢}

has zero asymptotic density, in this case we write

st — lim x;, = L.

n—oo

The concept of statistical convergence has been studied by many authors such as [3], [4], [5], [7], [9], [10],
[11], [12], [18], etc.

Let X be a non-empty set and 7 be a family of subsets of X. The family 7 is called an ideal if it has the
properties

(iAuBeJforall A,B €1,
(iiA€eJandeach B c Aimply B € 7.

An ideal 7 is called non-trivial if 7 # @ and X ¢ 7. A non-trivial ideal 7 ¢ 2% is called admissible if and
only if 7 o {{x} : x € X}.

Let J5 be the class of all A € N with §(A) = 0. Then, J5 is a non-trivial admissible ideal.

A real valued sequence x = (x;) is said to be ideal convergent to L, if for every € > 0, the set

*Corresponding author, e-mail: mkkaslan@gmail.com


http://dergipark.gov.tr/gujs

402 Maya ALTINOK, Mehmet KUCUKASLAN | GU J Sci, 30(1):401-411(2017)

Ke)={k<n:|x,—L|=¢}
belongs to 7 (see [13], [14]). It is denoted by 7 — %im X = L.

A non-empty family of sets F c 2% is a filter on X if F has the properties

(o erF,

(iAnBeFforall A, B € F,

(iii) Foreach A € F andeach B o Aimply B € F,

(see [15] and [17]).

If 7 ¢ 2% is a non-trivial ideal then, F = F(7) = {X \ A : A € 7} is afilter on X.

Ideal limit superior and inferior of a sequence x = (x;) was given in [6] by using any admissible ideal in
the definition of statistical limit superior and inferior which was defined [11]. Some further results about
ideal limit-superior and inferior was given by Lahiri and Das in [16].

The idea in the paper [6] and [11] based on to find biggest and smallest statistical limit points of given
sequence for calculating st-limit supremum st-limit infimum, respectively. Fridy and Orhan showed that
there exists a real valued sequence such that its st-limit superior is not the biggest statistical limit point and
st-limit inferior is not the smallest statistical limit point of the sequence ([4], [11]). This phenomena is also
true for ideal limit superior and ideal limit inferior [6].

One of the aim of this paper is to give an alternative definition such that the claim of Fridy and Orhan
satisfied for any real valued sequences. For this purpose, at first ideal lower and upper bound will be defined
and their some basic properties will be investigated. By using this definition of ideal limit supremum and
ideal limit infimum will be defined.

2. IDEAL UPPER AND IDEAL LOWER BOUND
In this section J-analogue of statistical upper and statistical lower bound, introduced and studied in [1], [2],
will be given.

Definition 2.1. (Ideal Lower Bound) Let x = (x;) be a real valued sequence. A point [ € R is an ideal
lower bound of the sequence x = (xy), if the following

(2.1) {k:x,<l}ed(or{k:x, =1} € FQ))
holds.
The set of all ideal lower bounds of the sequence x = (x;) is denoted by L;(x):
Ly(x) ={leR:{k:x, <1} €I (orfk:x, =1} €F))}
Let us also denote the set of all usual lower bounds of the sequence x = (x;) by L(x):
L(x) ={leR:l<x,forall k € N}.

Theorem 2.1. If [ € R is a lower bound of the sequence x = (x), then [ is an ideal lower bound of the
sequence (xy).

Proof From the definition of usual lower bound we have | < x;, for all k € N. So,
{k:x, <l}=0.
Therefore,
{k:x,<l}ed
holds. That is, L(x) c Ly (x).

Remark 2.1. The converse of Theorem 2.1 is not true, in general.
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Let us consider the sequence (x;) = (— %) andtake [ = —% € R.Itisclearthatl = — % is an ideal lower

bound of the sequence x = (x;,) because {k Py < —%} = {1} € 7 but it is not usual lower bound.

Definition 2.2. (Ideal Upper Bound) Let x = (x;,) be a real valued sequence. A point m € R is an ideal
upper bound of the sequence x = (x), if the following

(2.2) {k:x,>m}ed(or{k:x, <m}eF(@?))
holds.
The set of all ideal upper bounds of the sequence x = (x;) is denoted by U; (x):
Us(x) = {m ER:{k:x,>m}ed (or{k txp <m}e T(ﬂ))}.
Let us denote the set of usual upper bound of the sequence x = (x;) by U(x):
Ulx)=={meR:x, <mforallk € N}.

Theorem 2.2. If m € R is an usual upper bound of the sequence x = (x;), thenm € Ris an ideal upper
bound.

Proof Since m € R is an usual upper bound of the sequence x = (x;), then we have x; < m for all
k € N. So,

{k:x;,>m}=0.
Therefore,

{k:x,>m}eyd
holds. That is, U(x) c Uy(x).
Remark 2.2. The converse of the Theorem 2.2 is not true, in general.

Let us consider the sequence (xi) = (%) and m = % € R. Itis clear that m = % is an ideal upper bound
of (x;) because {k P Xy > %} = {1} € 7, but it is not usual upper bound for the sequence.

Theorem 2.3. a) If [ € R is an ideal lower bound and I’ < [, then I' € R is also an ideal lower bound of
x = (xg).

b) If m € Risan ideal upper bound and m < m’, thenm’ € R is also ideal upper bound of the sequence
x = (xg).

Proof a) Assume that [ € R is an ideal lower bound of the sequence x = (x;) such that {k : x;, < [} €
J. Since I" < [, then the following inclusion

{k:xi<Uo{k:x, <!}
holds. From the hereditary properties of ideal we have {k : x;, < l'} € 7. This gives the desired result.

b) Since m € R is an ideal upper bound of the sequence x = (x;), then the set {k : x;, > m} € J. Since
m < m/, then the inclusion

{k:xy>m}o{k:x,>m'}
holds. From the definition of ideal we have {k : x;, > m'} € 7. This gives the desired result.

Corollary 2.1. Let x = (x;,) be a real valued sequence. Then, L;(x) N U;(x) = @.

3. IDEAL SUPREMUM AND IDEAL INFIMUM

In this section, we are going to define ideal supremum and ideal infimum by using ideal upper and ideal
lower bound of given sequence.
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Definition 3.1. (Ideal Infimum (7 — inf)) A number s € R is an ideal infimum of a sequence x = (x;)
if s is supremum of L;(x). Thatis, 7 — infx; := sup Ly(x).

Definition 3.2. (Ideal Supremum (7 — sup)) A number S € R is an ideal supremum of a sequence x =
(xg) if Sis infimum of U;(x). That is, 7 — sup x;, = inf U;(x).

Let us consider following sequence

k, if k is an odd square,
)2 if k is an even square,
Xie = 1, if k is an odd nonsquare,
0, if k is an odd nonsquare.

and ideal Js. This sequence will be help us to illustrate the concept just defined. Thus, U;,(x) = (1, %)
and Ly, (x) = (—00,0). So, J5 — sup(x) = 1 and J5 — inf(x) = 0.

Also, it is known that the set of all 75-limit points is {0,1} (see in [11]). This example shows that 75 —
sup(x) equals the biggest 75 limit point and 75 — inf(x) equals the smallest 75 limit points.

Theorem 3.1. Let x = (x;) be a real valued sequence. Then,
(3.1) infx, <7 —infx, <7 —supx <supxy
holds.

Proof From the definition of usual infimum we have {k : infx; > x,} = @ € 7. So, infx, € Ly(x).
Since 7 — infx;,, = sup Ly(x), then we have 7 — infx;, > infx,.

Analoguously,

J — supx, < supxg
hold.
To complete the proof it is enough to show that the inequality

(3.2) I<m
holds for an arbitrary [ € L;(x) and m € U;(x).

Let us assume that (3.2) is not true. So, there exist I € L;(x) and m' € U;(x) such that m" < I’ holds.
Since m' is an ideal upper bound, then from Theorem 2.3 (b), I’ is also ideal upper bound of the
sequence. This is a contradiction.

In the following we give some examples such that the inequality (3.1) is hold.
Example 3.1.i) If x = (x) is a constant sequence, then

infx, =J —infx, =J — supx;, =sup x.
ii) If we consider the sequence x = (x;) as

_{xk, k < ko ko €N
kT q, k> ko,

such that x;, < aforall k € {1,2,3, ..., ko}. Then,
infx, <J—infx, <J — supx;, =sup x.
iii) If we consider the sequence x = (x;) as

_{xk, k < ko ko €N
k= q, k> ko,
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such that x;, > a forall k € {1,2,3, ..., ko}. Then,
infx, =7 —infx, <J —supx;, < sup x.
Theorem 3.2. Let x = (x;) be a real valued sequence. The following statements are true:
(i) If x = (x;) is a monotone increasing sequence, then 7 — infx;, = sup xy.
(i) If x = (x;) is a monotone decreasing sequence, then 7 — sup x;, = infx;,.

Proof We shall give only the proof of (i). Other case can be proved by follows (i). Assume that x = (x;)
is a monotone increasing sequence and sup x; < oo holds. From the definition of supremum, the inequality

(3.3) X < sup xp
holds for all k € N and also for everye > Othere exists a k, € N such that
(3.9 sup x — € < X,
holds. From (3.3) and (3.4) we have, sup x;, & Ls(x) and the inclusion
{k:x, <supx, —e} c{1,23,..,ko}
holds for any fixed k, € N. Since {1,2,3, ..., ky} € 7, then sup x, — € € Ly(x).
Therefore, Theorem 2.3 gives that
Ly(x) = (=0, sup x; — €]

forall € > 0. So,

J —infx; = sup Ly(x) = sup x.
Now, assume that sup x; = oo.

It means that, for all [ € R there exists a number ko = kq(x) € N such that [ < x;, and from the
monotonicity of (x;) the inequality x;, < x; holds for all k > k,. So, we have

{k:x, <1} c{1,23,..,ko}k
Since, {1,2,3, ..., ko} € 7, then [ € Ly(x) for an arbitrary point I. Therefore,
Ly(x) = (—00,00) and sup Ly(x) = oo.
This gives the proof.

Corollary 3.1. Let x = (x;) be a real valued bounded sequence. If x = (x;) is a monotone decreasing (or
increasing) sequence then

]li_r){)loxk =J — sup x (or Ili_)rrgoxk =7 - inka).

Theorem 3.3. Let x = (x;) be a real valued sequence and [ € R. Then, 7 — sup x;, = [ if and only if for
every ¢ > 0,

D {k:x,>l+e}ed
and

(@) {k: xp <l—e}eFQ)

hold.
Proof "=" Since 7 — sup x;, = [, then | = inf U;(x). Therefore, we have

(@) L <s, Vs€eU;(x)
and

(b) Ve >0, 3s"' € Us(x) suchthats' <l +¢
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holds. Hence, from (b) in Theorem 2.3 we have [ + ¢ is an ideal upper bound. So, (i) holds. Now assume
that (ii) is not true. That is, there exists an g, > 0 such that {k : [ — &, > x,} € F(J). It means that [ —
£ € U;(x). But this is a contradiction with [ = inf U (x).

"<" Now assume that, (i) and (ii) hold for every ¢ > 0. Then we have [ + ¢ € U;(x) and [ — ¢ & U;(x)
hold, respectively. Its mean that U;(x) = [l + &, o) and infU;(x) = L.

Theorem 3.4. Let x = (x;) be a real valued sequence and m € R. Then, 7 — infx; = m if and only if for
every € > 0,

(@) {k: xp,<m-—e}ey,

and
(i) fk: xp=2m+e} g F(I)

hold.
Proof "=" Assume that 7 — infx; = m. That is, m = sup L;(x). So, we have

(@) s<m, Vs€Lyj(x)
and

(b) Ve >0,3s" € Ly(x) suchthatm — e < s’

holds. Then, from (b) in Theorem 2.3 we have m — ¢ is an ideal upper bound. So, (i) holds. Now assume
that (ii) is not hold for any € > 0. That is, there exists an €, > 0 such that {k : x, > m + &,} € F (7).

This means that m + &, € Ly(x). Since m < m + &, this is a contradiction to assumption on m.

"<" Now assume that, (i) and (ii) hold for every € > 0. Itis clear that m — € € L;(x) and m + € & Ly(x).
Therefore, Ly(x) = (—oo,m — €], for all € > 0. So, we have sup L;(x) = m.

Corollary 3.2. Let x = (x;) be a real valued sequence. Then,

(3.5) {k:x; €7 —infx,, T —supx]} €7,
and

(3.6) {k : x; € [T —infx;,7 —supx;]} € F(T)
hold.

Theorem 3.5. Let x = (x;,) and y = (yy) be any real valued sequences. Then,
J —sup(xx +yr) =T —supxy +3J — sup yg,
and
J —inf(x + yr) = —infx, +J —infy,,
hold.

Proof LetJ —supx, =mandJ — supy, = L. So, from Theorem 3.3 we have
& &
{k:xk>l+§}eﬂ and {k:yk>m+5}eﬂ
for any € > 0. Therefore,
{k:xk>l+§}u{k:yk>m+§}:{k=xk+yk>l+m+e}€7.

Consequently, 7 — sup(xy + y) = m + L.
The other one can be proved by using Theorem 3.4.
Theorem 3.6. Let x = (x) be a real valued sequence. Then, the equality

J —inf(—xy) = —(J — sup xi)
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holds.

Proof Let 7 — sup x;, = I. From Theorem 3.3 we have
{fk:—x,<—-l—¢e}={k:x,>1+e} €.

So, we have J — inf(—x;) = —I. Therefore, 7 — sup x;, = —(J — inf(—xy)) holds.

Definition 3.3. (Peak Point [12]) A point x; is called upper (or lower) peak point of the sequence x = (xy)
if the inequality x; = x;, (or x; < x) holds for all k > 1.

Theorem 3.7. Let x = (x;) be a real valued sequence. If x; is an upper (or lower) peak point of (x;),
then x,, is an ideal upper (or an ideal lower) bound of the sequence.

Proof Assume that x is an upper peak point of the sequence x = (x;) such that x; < x; holds for all
k = ko. So, the inclusion {k : x; > x; } © {1,2,3,...,ko} holds. Since 7 is an admissible ideal, then
{k : x} > x;,} € 7. This gives that x,, is an ideal upper bound of x = (x;).

Theorem 3.8. If ’}im X =1, thend —supx, =7 —infx, = L.

Proof Assume Ilim x, = L. That is, for any € > 0, there exists k, = k(&) € N such that

(3.7 lx, —ll <&
holds for every k = k. So, it is clear from (3.7) that following inclusions
(3.8) {k:xp<l—e}c{1,23,....ko}, {k:x, >1+e}c{1,23,..,ko}

hold. By using (3.8) we obtain {k : x;, <l —e}€e€Jand {k : x, > 1+ ¢} €J.So, forany e > 0,
l—¢e€Ly(x), l+e€U;x)
hold. Also, from Theorem 2.3 we have
Ly(x) = (=oo,1) and Uj(x) = (I, ).
Therefore,
J —infx; = sup(—o,l) =1 and 7 — sup x; = inf(l,0) =1
are obtained.
Remark 3.1. The converse of Theorem 3.8 is not true, in general.
Let us consider a sequence x = (x;) as follows:

v = {1, k=n’>n=1.2,..,
k 0, otherwise

and the ideal Js. It is clear that 75 — infx;, = J5 — sup x;, = 0, but it is not convergent to 0.
Theorem 3.9.7 — Jim x, =1 ifand only if 7 —supx, =7 —infx, = L.
Proof'=" Assume that 7 — Illlgo x; = L. S0, we have
(3.9) {k:|lx,—1ll=¢c}ed
for any € > 0. From (3.9) and
{fk:lxy—llzel={k:x,=l+e}Ufk:x, <l—¢}
then we have
(3.10) {k:x,=>1+¢€}eq],
and
(3.11) {k:x,<l—¢€}eq.
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Also, from (3.10) and (3.11) we have

(3.12) {k:x,>l+e}ed
and
(3.13) {k:x,<l—¢€}eq.

The equation (3.12) gives [ + ¢ is an ideal upper bound and (3.13) gives [ — ¢ is an ideal lower bound.
Therefore,

Ly(x) = (=o0,1) and U;(x) = (I, )
for all € > 0. So, we have
sup Ly(x) =1, infU;(x) =L
"<" Assume that
J—supx, =9 —infx, =L
That is,
[ = sup Ly(x) = inf Uy (x).

From the definition of usual supremum and infimum for any £ > 0, there exists ' € Ly(x) and I"" € U;(x)
such that the inequalities

l—e<land " <1+ ¢

hold.
Since "’ is an ideal upper bound, then the following inclusion

{k:x,=l+elcik:x=21"}
holds. So, we have
(3.14) {k:x,=>1+¢e}eq.
Since I’ is an ideal lower bound, then the following inclusion

{fk:x,<l—-¢e}clk:x, <1}
holds. So, we have
(3.15) {k:x, <l—¢€}eq.
From the facts (3.14)-(3.15) and

{fk:lxy -l =zel={k:x,=l+e}uik:x, <l—¢}
we have
{k:lxpx -1 =¢€}eq.

Consequently, the sequence x = (x;) is ideal convergentto [ € R.

Definition 3.4. Two real valued sequence x = (x,) and y = (y,) are called ideal equivalent if
{k : x; # y,} € 7. Itisdenoted by x = y.

Theorem 3.10. If x = (x;) and y = (y;,) are ideal equivalent sequences, then
J—infx, =7 —infy, and 7 —supx, =J —supyy
are hold.

Proof Since the sequence x = (x;) and y = () are equivalent, then the set A = {k : x; # y,} belongs
to ideal. Take into consider an arbitrary element [ € L,(x). Since [ is an ideal lower bound of the sequence
x = (xy), then we have

{k:x,<l}eT.
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Since
(k:ype<U={k:x,#zy <UPQUlk:x, =y, <l}c
CcAU{k:x, =y, <l},
then we have
(3.16) {k:y, <l}e.

From (3.16) that, the element [ € R is an ideal lower bound of the sequence y = (y,). That is, Ly(x) c
L4 (y). If we consider arbitrary point [ € L;(y), it can be obtained easily [ € L;(x) suchthat L;(y) c L;(x).
Therefore,

(3.17) Ly(y) = Ly(x)

holds. Since sup Ly(y) = sup Ly(x), then 7 — infx;, = 7 — infy, is obtained. By using the same idea as
given for 7 — inf above 7 — sup x;, = 7 — sup y;, can be obtained easily.

Remark 3.2. The converse of Theorem 3.10 is not true, in general.

Let us consider Js as an ideal and sequences x = (x;) and y = (y;) as follows:

1 1
xkzzl—E, yk::1+E

for all k € N. It is clear from Theorem 3.8 that
J—infx, =9 —infy, =1 and 7 —supx, =J —supy, = 1.
But, the set
A={k:x, #y} =N¢1Js.
So, x = (x;) and y = (y;,) are not ideal equivalent.

4. IDEAL LIMIT INFIMUM AND IDEAL LIMIT SUPREMUM

In this section, we will define 7 — limsup x;, and J — liminfx; by using 7 — sup x; and 7 — inf x,.
Definition 4.1. Let x = (x;,) be a sequence of real numbers and 7 be an admissible ideal. Then

J —liminfx, :=J — sup y,

k—)OO k

and

J —limsupxy =7 — igfﬁk

k—c0

where y; =7 — in£{xn, Xp+1, -} and By =T — sup{xp, xp41, ...} for k € N.
nz nzk

Lemma4.l. Letx = (x;) be areal valued sequence and (n,,) be an arbitrary monotone increasing sequence
of positive natural numbers. Then, the following statements are true:

(i) If 3 —supxy, =1, thenJ —supx,, =1,
(ii) If 7 —infx, =m,thenJ —infx,, =m.

Proof We shall prove only (i) here. Assume that 7 — sup x;, = [. From Definiton 3.1 and Theorem 3.2 we
have

{k:x,>l+e}€Td and {k:x, <l—¢e} & F()

for every & > 0. Since {ny : xp, >l +e}c{k:x,>1+etand {ng:x, <l-¢e}c{k:x, <l—¢}
then {ny, : x,, >1+e} €T and {ny : x,, <1—e}&F@.

Therefore, 7 — sup x,, = L.
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Lemma 4.2. Let x = (x;) be sequence of real numbers.

(i) If B, =T — sup{xy, xg 41, ..} foralln € N, then (B8, )nen IS a constant sequence and 8, :== 7 — sup x
kzn

foralln € N.

(i) Ify, =79 - ]i(nf{xk,xkﬂ, ..} forall n € N, then (y;,)en IS @ constant sequence and y,, = J — infx;
2n
foralln € N.

Theorem 4.1. Let x = (x;) be a sequence of real numbers. Then, the following statements are true:

(i) 73— I;Cminka =J —infx;, = sup Ly(x),

(ii) 7 —limsupx, = J — sup x;, = inf U;(x).

k— o

Proof (i) Since

J— l}criloréka =7 —sup (7 — érzllgxk),

then
J—- l}(minka =J —sup(y,) =J —sup(J —infxy) = J — infx,.
—00 n
Since
J —limsupx, =7 — inf(ﬂ — sup xk>,
k—o0 k=2n
then

J —limsupx; =7 —inf(B,) =T —inf(J — sup x) = T — sup x.
n

k—o0

Corollary 4.1. Let x = (x;,) be a real valued sequence. Then,
(i) 3 —liminfx, < J — limsup xy,

(ii) liminfx, < J —liminfx;, < J — limsup x;, < limsup xy,
(iii) 3 — liminf(x, + y;) = J — liminfx;, + 7 — liminfy,,
(iv) 7 —limsup(x, + yi) = 7 — limsup xj, + 7 — limsup yy,
(v) 7 —liminf(—x) = —(7 — limsup xy).
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