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ABSTRACT 

 

Numerical models based on the discrete element method (DEM) have been widely used to predict the 

mechanical behaviors of rocks in rock engineering applications. Nevertheless, calibration of the model 

parameters is done by running numerous simulations and this time-consuming simulation process 

precludes the numerical platforms to be used as a practical tool in such applications. This study aims 

to accelerate the calibration process of the micro-parameters of three-dimensional (3D) numerical 

models built based on DEM and facilitate the generation of an efficient database by using machine 

learning algorithms in the prediction of rock strength. Namely, these algorithms are linear regression 

(LR), decision tree (DT) regression, and random forest (RF) regression. The appropriate methodology 

for predicting the uniaxial compressive strengths (UCS) of certain rock types was investigated using a 

dataset consisting of micro-parameters of 87 DEM-based rock models, generated through an open-

source code, Yade. The performance of such methods was evaluated by using metrics including R-

squared score (R
2
), mean squared error (MSE), root mean squared error (RMSE), and mean absolute 

error (MAE), and then their statistical discrepancies were analyzed. The most accurate prediction of 

UCS was obtained in the LR method and the lowest percentage of performance was derived from the 

RF algorithms. LR method provides the results efficiently during calibration of the micro-parameters 

of a DEM-based rock model. 

 

Keywords: Rock strength, Discrete element method, Numerical model calibration, Machine learning. 

 

1. INTRODUCTION 

 

Determining the failure and deformation processes of rocks under applied stresses has paramount 

importance in rock engineering. While laboratory and analytical methods are used conventionally to 

investigate this process, recently numerical modeling methods have also been commonly used as an 

alternative/supporting and effective technique to these methods. In particular, for discontinuous media 

such as in rocks, numerical models based on the discrete element method (DEM) are mainly preferred 

because of their advantage in reflecting each structural element (e.g. cracks, joints, faults, layers, etc.) 

formed by rock behaviors. Therefore, deformation and damage processes examined through numerical 

modeling, provide useful insights into understanding the extent and magnitude of rock failure 
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characteristics [1-13]. On the other hand, the generation of a numerical model as a representative of 

the real rock domain depends on the accurate and reliable calibration of the model parameters. The 

calibration is done according to the fundamental macro mechanical parameters (i.e uniaxial 

compressive strength, UCS; tensile strength UTS, Young modulus, E and Poisson’s ratio, ν) of the 

rocks obtained by laboratory experiments. As a result, in order to rely on precise calibration, 

numerous simulations are sometimes required to be run, and each simulation cycle can turn into a very 

time-consuming workload depending on the resolution of the generated model. 

 

Machine learning (ML), one of today's artificial intelligence technologies, has become an established 

technique to produce objective and sensitive results within the most efficient timeframe for the 

problems encountered in energy & mining industries, as well as agriculture, finance, education, and 

many other fields. This technology facilitates targeted decision-making or forecasting by focusing on 

building systems that learn and improve performances based on the data type. Therefore, various 

machine learning methods have been developed according to the specific application topic, the 

purpose of the study, and the type of database. The most well-known and widely used methods for 

numerical datasets (e.g. integer, float, etc.) are artificial neural networks (ANN), linear regression 

(LR), decision trees (DT), Naive Bayes (NB), K-nearest neighbors (KNN), and random forest (RF) 

algorithms.  Specifically, ANN has been considered in many studies that aim to predict one of the 

most critical parameters in rock engineering, for instance, the UCS value for revealing the effects of 

various rock properties [14- 26]. Furthermore, these studies [14-26] emphasize the important role of 

laboratory and field measurements and observations regarding rock failure characteristics.  

 

Nevertheless, machine learning attempts on constituting efficient datasets and receiving quick 

responses from numerical modeling in rock deformation which is a robust tool for considering the 

scale effect, have rarely been used [27, 28, 29]. More specifically, machine learning studies focusing 

on the improvement of the calibration process of the DEM-based model parameters to achieve more 

productive and cost-efficient predictions for the rock strength and failure/deformation behaviors are 

very limited [28, 29]. For instance, Waqas [28], used machine learning techniques to provide a faster 

computational time in the discrete analysis of rock properties. However, the results may not be easily 

evaluated because of using only two metrics to measure the performance of the applied machine 

learning method. More recently, considering several statistical metrics to test the accuracy of the 

performances of the predictive models, Fathipour-Azar [29] estimated the UCS values of DEM-based 

models through machine learning approaches. UCS values were predicted according to two micro-

shear properties, cohesion and internal friction angle of discrete elements’ contacts. These attempts 

made by Fathipour-Azar [29] proposed a rapid calibration process through the utilized methods whose 

robustness might further be increased by using more input parameters. 

 

In this study, LR, DT, and RF methods of machine learning technology were applied to the micro-

parameters of three-dimensional (3D) numerical rock models based on DEM by considering the time, 

storage space, and optimization of the data processing, and thereupon, rock strength (UCS) values 

were predicted. The dataset has 87 rows and 7 columns consisting of 6 micro-parameters and UCS 

values that were derived from the numerical models assigned in accordance with these parameters. As 

the most common split ratio, 80% of the dataset goes into the training set and 20% of the dataset goes 

into the testing set. The performances of the methods were evaluated through the coefficient of 
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determination (R
2
), mean squared error (MSE), mean absolute error (MAE), and root mean squared 

error (RMSE) metrics. The results present findings that contribute to the users acquiring data much 

faster in rock engineering applications where the DEM modeling technique is used. 

 

2. METHODOLOGY 

 

2.1. 3D-DEM Rock Model 

The numerical rock models used in this study were generated using a 3D open-source DEM code, 

Yade [30]. It is fundamentally based on the bounded particle model (BPM) which was first proposed 

by Potyondy and Cundall [3] and then modified by Scholtès and Donzé [9] to be used in the DEM 

platform. A rock material is a structure/assembly consisting of bonded, rigid, and spherical particles of 

different sizes (Figure 1a). Particles are also called discrete elements (DEs) and these elements are 

bonded together (Figure 1b) in an interaction ratio (γint) based on the elastic-brittle contact law (Eq.1). 

This ratio is determined before the numerical model is generated. 

 

Deq ≤ γ
int

 * (Rx + Ry)                        (1) 

 

Here, γint is the parameter that controls the initial number of interacting bonds (N). Deq is the initial 

distance between the particles x and y with radii of Rx and Ry, respectively. This parameter as 

irrespective of the number of particles in the rock model is assigned before the simulation starts. It 

represents the average number of bonds per particle (N). Therefore, the rigidity of rock is controlled 

by decreasing or increasing the γint (or N) value according to the ratio of UCS to UTS of relevant rock 

material. For instance, for modeling a relatively weak rock material, γint is selected to be close to 1 

which shows poor interlocking among the particles. Moreover, the greater γint values (γint >1) indicate 

a rock with a higher UCS/UTS ratio and a more rigid domain (see Scholtès and Donzé [9] for more 

details). 

 

Interaction forces between particles are subdivided into two components such as normal (Fn) and shear 

(Fs) forces (Figure 1c). Along the normal axis, Fn is calculated; 

 

Fn = kn * un                                            (2) 

 

with kn, the normal stiffness computed as a function of an equivalent elastic modulus Y (in Pa) (Eq. 3), 

and un is the normal relative displacement. 

 

  kn = 2Y * 
Rx*Ry

Rx+Ry
                     (3)  

    

Under compression, Fn can increase indefinitely while under tension, Fn increases up to a threshold 

value, Fn,max = t * Aint. Here, t is the interparticle tensile strength (in Pa), and Aint is the surface area 

that depends on the particle sizes (Aint = π * [ min (RX; Ry)
2

]). When Fn ≥ Fn,max, the bond breaks, 

and a mode I (tensile) crack forms at the bond location. 
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Fs as the driving force along the shear axis is computed incrementally from the equation of 

 Fs = Fs, t-∆t + ks*∆us. ks is the shear stiffness obtained from ks= P * kn (Figure 1b). P is a model 

constant and it varies between 0 and 1.  Δus is the relative incremental displacement and Fs, t−Δt is the 

shear force at the previous timestep. So, the maximum admissible shear force, Fs,max  is determined by 

Mohr-Coulomb criteria such as;  

 

Fs,max = c * Aint + Fn * tan(φ)                          (4) 

 

where c is the interparticle cohesion (in Pa) and φ is the interparticle friction angle (in °). When Fs ≥ 

Fs,max, the bond breaks and a mode II (shear) crack forms at the bond location.  

 

 

Figure 1. a) Configuration of 3D-DEM model sample (based on BPM technique) under UCS test 

simulation, b) Interparticle bonds, c) Interaction forces between the particles and rock failure 

mechanisms (modified from Scholtès and Donzé [9]). 

 

It is worth noting that similar to the laboratory experiments, all simulations here were carried out 

under quasi-static conditions. Moreover, a global viscous damping ratio, chosen as 0.4 was used to 

reduce the kinetic energy during the simulations. 

 

The parameters (Y, P, t, c, φ, and N) mentioned above are the micro-parameters of a 3D numerical 

DEM model and calibrated according to the macro mechanical strength parameters (UCS, UTS) and 

deformation parameters (E, Young modulus, and v, Poisson’s ratio) by performing a series of 

laboratory test simulations. The calibration process is repeated until the model represents accurately 

the stress-strain behaviors and mechanical properties of the real rock. Therefore, this process may take 
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longer and it requires many iterations and simulations. The type of simulation (tensile strength test, 

uniaxial compressive strength test, triaxial compressive strength test, etc.) is selected according to the 

parameter to be calibrated.  For example, t as the tensile strength of the particles controls the UTS 

value and is derived from the UTS test simulation [12]. Furthermore, the calibration of some model 

parameters is done by running various test simulations. For example, c affects the UCS value while Y 

directly controls the E value of the rock material. P as the ratio of ks to kn has an influence on ν value 

of the rock. To calibrate these three macro-parameters, both uniaxial and triaxial compressive strength 

test simulations are required to run. φ controls the slope of the rock failure envelope and is determined 

directly in the triaxial compressive test simulations. As is different from others, the N parameter is 

assigned according to the UCS/UTS ratio of the real rock before the simulation starts. The details of 

the effects and roles of each micro-parameter on macro mechanical properties can also be followed in 

Dinç Göğüş [31]. 

 

Similar to other numerical rock modeling techniques, the duration of the calibration of a numerical 

DEM model is primarily dependent on the resolution of the generated model. For the sake of clarity 

and reducing complexity, all rock models here were built in 1x2x1 model unit sizes and they consist 

of 10,000 particles to obtain the results to be irrespective of the model resolution.  

 

The dataset used in the study has 87 rows and 7 columns consisting of 6 micro-parameters (Y, P, t, c, 

φ, and N) with different values as well as the UCS values (as the peak/maximum stress that the model 

can resist) of the 3D-DEM model samples formed by such parameters (Figure 2). The parameters 

belong to 6 different rock types, from the weak to the strong rock material: claystone, ignimbrite, 

marble, andesite, diabase, and granite.  

 

The details of the machine learning methods on the dataset are given in the following section. 

 

 

Figure 2. Under the uniaxial loading condition, the stress-strain response of a 3D-DEM model sample 

formed by 6 micro-parameters. 
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2.2. Machine Learning Methods 

Machine learning, which teaches the existing data or information to the machine and extracts a 

function from this information is a subfield of artificial intelligence systems. The term machine 

learning was first introduced to the literature by Arthur Samuel an IBM employee, in 1959, and has 

been implemented in geotechnical and rock mechanical applications since the 1990s. The operation of 

the system, in which training data sets are used to obtain the targeted results and the user does not 

need to control the model, is based on the principle of using a known input dataset (training data). 

Further, the corresponding outputs are used to produce the most appropriate outputs for the new data 

(test data) that the algorithm has never seen before. (Figure 3). The flow chart of the machine learning 

process is presented in Figure 3. In this study, 20% of the total data is used for testing, and the 

remaining 80% is applied for training. 

 

 

Figure 3. The general flow chart of the machine learning process. 

 

The process of applying machine learning methods to the dataset consists of 3 stages. The first step is 

data preparation, called data preprocessing, transforming the data and making it suitable for models. 

All data in this study is numerical (e.g. integer, float, etc.), and there is no missing data or data with a 

value of 0 (zero). The second stage consists of model selection, and in the third stage, the model is 

trained/developed and the first-order parameters that affect the predictions are determined. The 

quantiles of the micro-parameters and the UCS values are presented in Table 1 and the UCS values 

range from 17.8 to 111 MPa, presenting different rock types. 

 

Table 1. Quantities of micro-parameters and estimated UCS parameter. 

Parameter Ave Std Min %25 %50 %75 Max 

N (-) 9.92 1.03 8.00 9.00 10.00 11.00 12.00 

Y (GPa) 11.99 2.45 9.00 10.00 12.00 14.00 17.00 

φ (°) 2.48 2.55 1.00 1.00 1.00 5.00 15.00 

P (-) 0.43 0.05 0.30 0.40 0.40 0.50 0.50 

t (MPa) 7.50 2.36 4.00 5.00 7.00 9.00 13.00 

c (MPa) 77.69 29.23 25.00 59.00 74.00 90.00 180.00 
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UCS (MPa) 57.24 24.05 17.80 38.50 47.00 83.25 111.00 

*N: coordination number, Y: equivalent elastic modulus, φ: friction angle of particles, P: stiffness ratio, t: tensile strength of 
particles, c: cohesion of particles, and UCS: uniaxial compressive rock strength  

 

LR (linear regression), DT (decision tree regression), and RF (random forest regression) methods 

were chosen respectively from the machine learning methods to predict the UCS values of the DEM 

model samples. LR is a well-known method for continuous and linear variables in the supervised 

machine learning technique. A linear curve is obtained by using one or more independent variables 

that accurately predict the value of the dependent variable (Figure 4a). The coefficient of the equation 

of this curve gives information about the reliability of the prediction. Since it uses a formulation that 

is relatively more practical to interpret, it is mostly preferred in statistical studies in various fields.  

 

The second method, DT, used in classification and regression problems, consists of tree-structured 

algorithms. Since the target variable in this study is continuous (numerical), the algorithms are called 

DT regression trees here. A dataset is divided into smaller subsets as forming decision and leaf nodes 

according to feature and target (Figure 4b). It is worth noting that since DT regression is not 

continuous like other regression models but is discrete, it can produce the same results for the targeted 

predictions in a certain range.  

 

The third method of the study, RF, is a regression method based on the principle of generating a 

random forest using more than one DT algorithm (Figure 4c). In other words, the average value of all 

DT predictions gives the result of RF. Because it uses DT algorithms, it is discrete and therefore can 

also produce the same results for the targeted predictions in a certain interval that care must be taken. 
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Figure 4. Configurations of the used machine learning methods a) LR (linear regression) b) DT 

(decision tree regression) and c) RF (random forest regression). 

 

The coefficient of determination (R
2
), mean squared error (MSE), mean absolute error (MAE), and 

root mean squared error (RMSE) metrics were used to evaluate the performance of the methods 

presented above. R
2
 is a statistical measure of how close the model result is to the regression line, and 
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it is specifically used in the LR method (Eq. 5). In other words, if the R
2
 value is close to 1, the data is 

close to the linear line. R
2
 is calculated such that; 

 

R2  =  1 − 
∑(yi−yi′)2

∑(yi−yio)2                                                                                                                              (5) 

 

where yi, yio, yi’ are the actual, mean, and predicted values, respectively. 

 

The second metric, MSE, is the mean square error, which measures the average squared difference 

between the yi’ and the yi values and is derived from Eq. 6.  

 

MSE = 
1

N
∑ (yi − yi′)2N

i=1                                                                                                                        (6) 

 

The lower the MSE value the more accurate the model is. In other words, a value close to zero 

represents better quality of the predictor (regression model). However, since errors are squared when 

using this metric, exaggerated results can be produced in case of large deviations in the data. 

 

RMSE is a square root of value gathered from the MSE function, shown in Eq. 7. It is used when the 

MSE is too large to be compared. The RMSE value can range from 0 to ∞. 

 

RMSE = √∑
(yi−yi′)2

N

N
i=1                                                                                                                          (7) 

 

It indicates how dense the data is around the line that best fits the data.  

 

As the last metric used here, MAE measures the absolute difference between the yi’ and yi values. 

Similar to MSE, the closer MAE is to 0, the more accurate the model is. In particular, MAE values of 

less than 10% show that the prediction models have high accuracy. It is calculated from Eq. 8 and is 

one of the most preferred metrics besides RMSE in the evaluation of model performances in 

regression methods. 

 

MAE = 
1

N
∑ |yi − yi′|N

i=1                                                                                                                          (8) 

 

3. RESULTS AND DISCUSSION 

 

Three different machine learning methods (LR, DT, and RF) described above were applied to estimate 

the UCS values of rocks obtained from 3D-DEM numerical models and the performances of the 

methods were evaluated according to R
2
, MSE, RMSE, and MAE metrics (Table 2). The results 

showed that the highest performance estimation was obtained from the LR method for all metrics. 

Especially based on the MSE results, the LR method provides better estimation/prediction than that of 

other methods. However, considering the relationship between the actual and predicted UCS values, 

regardless of the metrics, it is observed that all three methods’ results are close to each other (Figure 

5). 
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Table 2. Performance of the machine learning methods in UCS prediction according to the R
2
, MSE, 

RMSE, and MAE metrics. 

Method R
2
 MSE RMSE MAE 

LR 0.981 8.487 2.913 2.289 

KA 0.895 41.221 6.420 5.398 

RO 0.849 80.844 8.991 6.655 

 

 

Figure 5. The relationship between the actual and estimated UCS values according to the LR, DT, and 

RF methods. 

 

Doğan and Doğan [32] pointed out that since the R
2
 metric estimates the combined distribution 

against the individual distributions of the observed and predicted variables, a model with 

systematically over- or under-estimates can produce R
2
 values close to 1, even if all of the predicted 

values are incorrect. Therefore, three more metrics (MSE, RMSE, MAE) were considered in this 

study, since it is not sufficient to test a model’s performance only with the R
2
 value. Furthermore, it is 

highlighted in the literature that the mean error can produce misleading results in the performance 

evaluations of the methods in which the RMSE is considered [33]. It is noted that because the criteria 

based on the sum of squares of error are generally considered uncertain indicators, such as mean 

deviation, mean error, and mean variability, it can cause misinterpretations of the predictions [32]. 

Although it is suggested that MAE is generally a better criterion for such interpretations [33], one can 
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clearly realize that the use of these metrics strongly depends on the content, property, and usage area 

of the data. 

 

Besides the comparison of the performance of machine learning methods in estimating the numerical 

UCS value, the most effective micro-parameters on this estimation were also determined. For this 

purpose, the feature/parameter selection process was applied to the dataset. In fact, this process is 

generally used in studies where too many variables are taken for estimation/prediction, and a faster 

and less complex model is created by eliminating the variables that have very little influence on the 

results. Because of the few numbers of parameters used in this study, there was no need to eliminate 

any variable (parameter). The UCS prediction was done by using all 6 micro-parameters.  

 

Therefore here, the feature selection methodology was applied to reveal which micro-parameters play 

the most effective role in the prediction of the UCS value. For this purpose, a criterion called mutual 

information (MI), which measures the non-linear relation between random variables in probability and 

information theories, was used [34, 35]. It is the measure of how much knowledge one can acquire of 

a significant variable by knowing the value of another variable. 

 

For two discrete variables x and y whose joint probability distribution is P(x,y), the mutual 

information between them MI(X;Y) is calculated such that; 

 

MI (X;  Y) = ∑ xϵX ∑ yϵYp(x, y)Log(
p(x,y)

p(x)−p(y)
                                                                                      (9) 

 

MI ranges from 0 to 1. MI values that are close to 1 indicate relatively more effective parameters over 

the estimated/predicted feature (parameter) (Figure 6). As expected, MI results show that Y 

(equivalent elastic modulus), t (micro-tensile strength), and c (micro-cohesion) parameters play a 

more effective role on the UCS value than the others. 
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Figure 6. The most effective parameters in UCS prediction according to MI evaluation. 

 

Although the metric results show that the applied machine learning methods produce good 

performances as well as predictions close to each other, the highest performance is obtained from the 

LR method. For this reason, the LR method was applied to the DEM model samples by assigning 

values for 6 micro-parameters and then the UCS value was predicted for validation. For instance, for 

the values of N= 9, Y= 12 GPa, φ= 1°, P= 0.4, t= 6 MPa, and c= 60 MPa, the LR method gives the 

UCS value as 32.1 MPa, close to the calculated one. In general, this process took approximately about 

36 minutes with a 3-core processor speed, whereas the estimation of the UCS value with the LR 

method took only a few seconds after running the script. Therefore, machine learning approaches can 

be used as reliable and practical tools in the calibration problems of particle-based DEM models that 

were also pointed out by Fathipour-Azar [29]. 

 

In the calibration of the numerical UCS value according to the real UCS value of a rock, the method 

suggested here provides extremely fast information in which values or at least ranges of the 

parameters should be selected before the simulation starts. This insight provides the user significant 

amount of time, especially in engineering applications where the high model resolution needs to be 

configured. 

 

4. CONCLUSIONS 

 

DEM-based numerical models provide important information for predicting the failure and 

deformation behaviors of rocks that host engineering structures. The reliability of this information is 

precisely based on the accuracy of the model generated. Therefore, the calibration process is critical to 



      
    

 
 

 

 
 
 

Dinç-Göğüş, Ş. Ö., Journal of Scientific Reports-A, Number 52, 311-326, March 2023. 
 

 
 

323 
 

implicitly represent the mechanical characteristics of real rock. This process sometimes takes an 

extremely long time, depending on the model resolution as well as the experience of the user.  

 

In this study, the UCS values of 3D-DEM models calibrated with 6 micro-parameters were predicted 

by using machine learning methods, which became widely used in the field of rock mechanics 

recently. In the present research, LR, DT, and RF methods were tested in terms of their robustness, 

and the highest estimation performance for R
2
, MSE, RMSE, and MAE metrics was obtained from the 

LR method. Furthermore, the most effective parameters on the UCS value were determined as Y, c, 

and t micro-parameters with the feature selection methodology. The results show that machine 

learning methods can be used effectively in shortening and facilitating the calibration time of a 3D 

numerical DEM model and producing reliable results for the calibration process of micro-parameters 

of the model domain. 
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