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ABSTRACT

The theory of polyhedra and the geometric methods associated with it are interesting not only
in their own right but also have a wide outlet in the general theory of surfaces. Certainly, it is
only sometimes possible to obtain the corresponding theorem on surfaces from the theorem on
polyhedra by passing to the limit. Still, the theorems on polyhedra give directions for searching
for the related theorems on surfaces. In the case of polyhedra, the elementary-geometric basis
of more general results is revealed. In the present paper, we study polyhedra of a particular
class, i.e., without edges and reference planes perpendicular to a given direction. This work is a
logical continuation of the author’s work, in which an invariant of convex polyhedra isometric on
sections was found. The concept of isometry of surfaces and the concept of isometry on sections of
surfaces differ from each other. Examples of isometric surfaces that are not isometric on sections
and examples of non-isometric surfaces that are isometric on sections. However, they have non-
empty intersections, i.e., some surfaces are both isometric and isometric on sections. In this paper,
we prove the positive definiteness of the found invariant. Further, conditional external curvature
is introduced for “basic” sets, open faces, edges, and vertices. It is proved that the conditional
curvature of the polyhedral angle considered is monotonicity and positive definiteness. At the end
of the article, the problem of the existence and uniqueness of convex polyhedra with given values
of conditional curvatures at the vertices is solved.
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1. Introduction

In classical differential geometry, two directions are distinguished. One of them, called geometry "in the
small,” studies the local properties of geometric objects. The second examines geometric objects along their
length and is called geometry "in the large.” In 1813, O. Cauchy proved that two closed polyhedral composed
of congruent faces are equal. This result is one of the first among the solved geometry problems "in the large.”
Many problems in geometry "in the large" are related to the isometry of surfaces. If the surfaces are isometric,
it is possible to select the coordinate lines so that the surfaces have the same metric. In other words, if isometric
surfaces are given, one can choose such parametrizations of surfaces with the same coefficients as the first
quadratic forms. Naturally, the question arises of the metric on the surface to what extent determines the
surface, i.e. if a linear surface element is given, what can be said about the surface? Proceeding from this, G.
Weil posed and outlined the solution to the problem of the existence of a closed convex surface with a given
metric. This problem received an exhaustive solution in the most general formulation for metrics of positive
curvature in the works of A. D. Aleksandrov, A. V. Pogorelov, and their students [1]. In 1951, A.V. Pogorelov
proved that a closed convex surface is uniquely determined by its metric in the class of general closed convex
surfaces. That is, closed isometric convex surfaces are equal. A connection is established between the concept of
convexity of a surface and a metric of positive curvature, and saddle surfaces represent the metric of negative
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curvature. As D. Hilbert showed [2] in 1901, there is no regular complete surface of constant negative curvature
among surfaces in three-dimensional Euclidean space. This result was generalized in the classical work of N.V.
Efimov, who proved that the complete metrics of negative curvature separated from zero do not admit regular
realization "in the large" in Euclidean space. The problem of incomplete realization of a surface of negative
curvature has various applications [3]. Meanwhile, irregular surfaces also deserve attention [4, 5]. For example,
polyhedrons, cones, or sharp-edged lens surfaces are not completely regular. The theory of polyhedra and the
geometric methods associated with it are interesting not only in and of themselves, but they also have wide
access to the general theory of surfaces. Of course, it is not always possible to obtain the corresponding theorem
on surfaces from the theorem on polyhedra by passing to the limit. Still, theorems on polyhedra give directions
for searching for the corresponding theorem on surfaces. In the case of polyhedra, the elementary geometric
basis of more general results is revealed. A. D. Aleksandrov constructed a method that proved [6] that a closed
convex polyhedra is uniquely determined by its metric in the class of closed convex polyhedra. The problem
of the unique definiteness of closed convex polyhedra was finally solved in the work of S. P. Olovyanishnikov
[7]. There are several proofs of this theorem based on entirely different ideas. The first proof is based on the
Cauchy method and is due to A. D. Aleksandrov [6]. Other explanations are from E. P. Senkin [8] and A.V.
Pogorelov [9].

Many problems of geometry "in the large" [10, 11] are associated with the existence and uniqueness
of surfaces with given characteristics. The geometric characteristics can be internal curvature, external or
Gaussian curvature, and other functions related to the surface [2]. The existence of a polyhedron with given
curvatures of vertices [6-9], or with a given development [12] is also a problem of geometry "in the large.”
Consequently, the issue of finding the invariants of polyhedra of a certain class and the solution to the problem
of the existence and uniqueness of a polyhedron with given values of the invariants are relevant. Problems
of the immersions and embeddings of manifolds in Euclidean and other spaces are some of the central issues
both in differential geometry as well as in topology [13]. As a result of fundamental research on the problems
of embedding and immersion, several topical issues have been solved in recent years through the studies
of scientists Azeb Alghanemi, Noura M. Al-Houiti, Siraj Uddin (Saudi Arabia), Bang-Yen Chen (USA) and
Mohamed Saleem Lone (India) [14].

The map isometry on sections is a particular case of the isometry of the foliated manifold. In other words,
isometry on sections, in which each section of one surface is associated with a section of another surface, some
results in this direction were obtained [15-18]. The concept of isometric surfaces on sections is equivalent to the
isometry of surfaces in a space with a degenerate metric, particularly the Galilean space [19-21].

In three-dimensional Euclidean R3 space, consider the surface F and the nonzero vector e⃗, which lets us the
surface F is intersected by all possible planes πj perpendicular to the vector e⃗. The set of cross-section points is
denoted by γj = F ∩ πj . The class of surfaces for which the section γj . is homomorphic to a segment, a straight
line, or a circle, we denote by P ∈ W {e⃗} [13].

Definition 1.1. Surfaces Fk ∈ W {−→ek} , k = 1, 2 are called isometric on sections if there is a homeomorphism of
f surfaces satisfying the following conditions [14]:

a) points of the surface F1 belonging to the same section are compared with points belonging to the same
section of the surface F2. Images of points lying on different sections lie on different sections.

b) the distances between the planes containing sections γ1 and γ2 by F1 and the planes containing curves
f
(
γ1
)

and f
(
γ2
)

are equal;
c) the length of the arc between any two points of section γj ⊂ πj by F1 is equal to the length of the arc of the

curve f (γ) between the corresponding points.

A polyhedron means a surface made up of a finite number of polygons [6]. Since a polyhedron is also a
surface, the definition of isometry on the section also applies to polyhedral. In three-dimensional Euclidean
space, we consider a polyhedral surface P ∈ W {e⃗} that does not have edges and support planes perpendicular
to vector e⃗. The planes perpendicular to vector e⃗ can be referenced only at the edge points of the polyhedra.

2. Invariant of polyhedral isometric on sections and conditional curvature

Let us be given a triangle ABC.

Definition 2.1. [13] The defect of the sides of the triangle ABC relative to the angle A is the number

ωABC = AB +AC −BC.
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Fig 1. Nonconvex polygon OA1A2...AnAn+1An+2...Am.

Let us generalize the concept of a side defect for a nonconvex polygon shown in Figure 1. The defect of a
polygon relative to angle O is determined by the formula
ω = OA1 +OAn − PA1A2....An

+OAn+1 +OAm − PAn+1An+2....Am
, when PA1A2....An

is the perimeter of the
polyline A1A2....An, PAn+1An+2....Am

, is the perimeter of the polyline An+1An+2....Am.
Let us consider a trihedron S whose faces lie on the planes

aix+ biy + ciz = 0 (i = 1, 2, 3)

The vertex of the trihedron is at the origin of the coordinates. Assume that the plane x = const is not the
reference plane of the trihedron. The S trihedron is intersected by planes x = ±1. Then one of them intersects
one of the edges of the trihedron, the other intersects the rest two. The intersection points of planes x = ±1
with edges are denoted by A′, B,C. The point A′ is symmetrically displayed relative to the origin and we get
point A. Let us consider triangle ABC.

Definition 2.2. The defect of the sides of the triangle ABC relative to the angle A is called the whole conditional
angle of the triangular angle in the direction −→e (OX) .

Obviously ωABC > 0. Using the definition of the whole conditional angle for a triangular angle, we find the
whole conditional angle for a tetrahedral angle. Let the vertex of the tetrahedron be at the origin and have no
reference planes and edges perpendicular to vector e⃗ (OX). We intersect the polyhedron by planes x = ±1.

Let’s generalize the concept of a total conditional angle in the direction of e⃗ for any polyhedral angle from
the class W {e⃗}.

Let us be given a polyhedral angle, the vertex at the origin, without edges and reference planes perpendicular
to the vector e⃗. We intersect the polyhedron by planes x = ±1. The points of intersection of the planes with the
edges will be denoted by A′

1, A
′
2, ..., A

′
m−1, A

′
m, A′

m+1, ..., A
′
n.

Connecting points A′
1, A

′
2, ..., A

′
m−1, A

′
m, we get a polyline with boundary points A′

1 and A′
m. Polyline

A′
m+1, A

′
m+2, ..., A

′
n is constructed in the same way. The polyline with boundary points A′

1, A
′
m is

symmetrically displayed relative to the origin of coordinates and we get a polygon as in case 4 in [13]. Then
the total conditional angle corresponds to the defect of the sides of the polygon and is calculated by the
formula ω = OA1 +OAm +OAm+1 +OAn − P1 − P2, when P1 and P2 are the length of the broken lines with
the beginning A1 and Am+1 and with the ends Am and An, respectively, here O is the intersection point of the
segments A1An and AmAm+1.

It is easy to prove the following theorem.

Theorem 2.1. [13] The total conditional angle ω is invariant under transformations of the form: x′ = x+ a
y′ = αx+ y cosφ− z sinφ+ b
z′ = βx+ y sinφ+ z cosφ+ c

To determine the geometric value of the total conditional angle, we will consider a development that
preserves the isometry on sections of the trihedral angle. Let the development of the trihedral angle be as
in Figure 2.
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Figure 2. The development of the trihedral angle

Since the total conditional angle is calculated using the formula ω = AB +AC −BC, then considering that
AB = A1B,AC = A2C when A1 and A2 are symmetric points to the glued points A′

1 and A′
2 relative to point

O, we get ω = A1B +A2C −BC = A1A2 from here. Therefore, A1A2 is the length of the solution of the edges
to be glued, spaced from the top of the trihedron at a unit distance in the direction e⃗, is the total conditional
angle of the trihedron in the direction e⃗.

3. Existence and uniqueness of polyhedra with given values of the conditional curvature at
the vertices

So, if a polyhedron from class W {e⃗} is given, then the total conditional angles at the vertices of the
polyhedron determine the opening of the edges of the development of the polyhedron spaced from the vertices
at a unit distance in the direction e⃗ at the corresponding vertices.

We define curvature as a function of a set, i. e. the set M on the convex polyhedra is associated with some
number µ (M) - the conditional curvature of the set M on the polyhedra P . Let’s start by defining conditional
curvature for three "basic" sets: open faces, edges, and vertices. An open face is a face of a polyhedron with
excluded vertices and sides; an open edge is an edge with excluded ends.

Let Γ be the open face of the polyhedra. The conditional curvature of the open face of the polyhedron is taken
to be zero:

µ (M) = 0.

The conditional curvature of the open edge L of the polyhedron is taken to be zero:

µ (L) = 0.

Let M be the inner vertex of the polyhedron and ω (M) - the total conditional angle in the direction of e⃗ of the
polyhedral angle with the vertex M , the faces coinciding with the faces of the polyhedron passing through the
point M . For the conditional curvature of the vertex M of the polyhedron P we take the number µ (M) = ω (M),
i.e. conditional full angle of a polyhedral angle with apex M and polyhedron faces passing through point M .
If the vertex M belongs to the edge of the polyhedron, the conditional curvature is assumed to be zero.

Let P be a convex polyhedron without edges and support planes perpendicular to the vector e⃗ and let

P =
n∑

i=1

Bi be its representation as a sum of base sets without common points. For the conditional curvature of

the polyhedron P we take the number µ (P ) =
n∑

i=1

µ (Bi) .

Theorem 3.1. The conditional curvature of a polyhedral angle is a monotonically increasing function of the argument h.

First, we prove a lemma about a property of the perimeter of a nonconvex polygon on the plane Y OZ, Figure
1. Similar nonconvex polygons arise when considering the conditional curvature of a convex polyhedron. On
plane Y OZ, consider a non-convex polygon as in case 4 in [14]. That is, the vertex angles are vertical, and the
closed polygons A1A2...An and An+1An+2...Am are convex, while the polygons A1A2...An and An+1An+2...Am

are one-to-one projected onto the axis OY .
Let’s make the following amount

ω1 (h) = OA1cos
2φ1 +OAncos

2φn+1 −
n∑

i=2

Ai−1Aicos
2φi
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when φ1, φ2, ..., φn+1 are the angles between the axis OZ and the sides of the polygon.

Lemma 3.1. The quantity ω1 = ω1 (h) is a positive function.

Proof of Lemma 3.1. We use mathematical induction. At n = 2, the triangle OA1A2 obtained.
Let

OA2cos
2φ3 = OA1cos

2φ1 +A1A2cos
2φ2

since
OA1cos

2φ1 ≥ 0

it follows that

OA2cos
2φ3 ≥ A1A2cos

2φ2

Considering
0 ≤ φ3 < φ2 ≤ π

2

we get that
OA2cos

2φ3 > A1A2cos
2φ2

hence follows
OA2cos

2φ3 +OA1cos
2φ1 −A1A2cos

2φ2 > 0

Let’s assume that n = 3. Then we get a quadrilateral OA1A2A3, quadrilateral ABDC. With the help of parallel
translation, the origin of coordinates will be transferred to point A2. The value ω1 for the quadrangle OA1A2A3

is:
ω1 = OA1cos

2φ1 +OA3cos
2φ4 −A1A2cos

2φ2 −A2A3cos
2φ3 =

=
(
OA1cos

2φ1 −A1A2cos
2φ2

)
+
(
OA3cos

2φ4 −A2A3cos
2φ3

)
Arguing in the same way as in the case of n = 2, we obtain the positivity of both expressions in parentheses.
Hence ω1 > 0.

Let n = 4. Then the figure consists of an angle A1OA4 inside which there is a convex broken line A1A2A3A4

with a convexity Z < 0. The axis OY will be transferred in parallel until it touches the broken line A1A2A3A4

and the point of contact will be taken as the origin.
Let us suppose that the point of contact is the vertex A3. Therefore, we write the expression

ω1 = OA1cos
2φ1 +OA4cos

2φ5 −A1A2cos
2φ2 −A2A3cos

2φ3 −A3A4cos
2φ4 =

=
(
OA1cos

2φ1 −A1A2cos
2φ2 −A2A3cos

2φ3

)
+
(
OA4cos

2φ5 −A3A4cos
2φ4

)
.

Let us prove that the expressions in both parentheses are positive.

OA1 cosφ1 > A1A2 cosφ2 +A2A3 cosφ3

Since
0 ≤ φ1 < φ2 < φ3 ≤ π

2

then we get
OA1cos

2φ1 > A1A2cos
2φ2 +A2A3cos

2φ3

i.e.
OA1cos

2φ1 > A1A2 cosφ2 cosφ1 +A2A3 cosφ3 cosφ1 > A1A2cos
2φ2+2A3cos

2φ3

because
φ1 > cosφ2 > cosφ3.

Similarly, it can be proved that
OA4cos

2φ5 > A3A4cos
2φ4

hence
ω1 > 0.
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If the axis OY with a parallel translation touches the broken line A1A2A3A4 at point A2, then the following
expressions can be proved in the same way:

OA1cos
2φ1 −A1A2cos

2φ2 > 0

OA4cos
2φ5 −A2A3cos

2φ3 −A3A4cos
2φ4 > 0

Hence
ω1 > 0.

Let us suppose that inequality ω1 > 0 is true in case m = k − 1. In this case, it will also hold for m = k.
We have

ω
(k−1)
1 = OA1cos

2φ1 +OAk−1cos
2φk −A1A2cos

2φ2−

−A2A3cos
2φ3 − ...−Ak−2Ak−1cos

2φk−1 = OA1cos
2φ1 −OAk−1cos

2φk−

−
k−1∑
i=2

Ai−1Aicos
2φi > 0.

Let all the vertices remain unchanged and add a point Ak to them so that the convexity of the closed polygon
A1A2A3...AkAk−1 is preserved. Through points Ak−2 and Ak we draw straight lines parallel to the axis OY and
the points of intersection of lines with the segment OAk−1 we denote A′

k−2, A
′
k.

ωk
1 = ω

(k−1)
1 +Ak−2Ak−1cos

2φk−1 −Ak−2Akcos
2φk1

−AkAk−1cos
2φk2

,

when φk1
, φk2

are the angles between the OZ axis with links Ak−2Ak and AkAk−1, respectively.
Using

Ak−2Ak cosφk1
≤ A′

k−2A
′
k cosφk

and
φk1

> φk

we get
Ak−2Ak cosφk1

< A′
k−2A

′
k cosφk.

Similarly, one can prove that
Ak−2Ak cosφk2

< A′
k−2A

′
k cosφk

when φk2
> φk, adding the last inequalities, we obtain

Ak−2Ak−1cos
2φk −Ak−2Akcos

2φk1
−AkAk−1cos

2φk2
> 0

Hence ωk
1 > 0. Lemma 3.1 is proved.

Now we prove the stated theorem in the class of pyramids with common boundary γ.
Proof of Theorem 3.1 . Let γ be a convex polygon on the plane XOY that has no vertices on the axis OY and

contains the origin. Consider convex pyramids P1 and P2 with a common edge γ, convex towards Z > 0 in the
sense of [18] and whose vertices lie on the axis OZ. Then one of the pyramids is completely contained in the
other. Suppose P1 has a height of 1 and P2 has a height of h. If h > 1 then P2 contains P1, and at h < 1 then P2

is contained in P1.
First, we prove the theorem for triangular pyramids. For a triangular pyramid, the conditional curvature is:

µ (p2) =
√

y21 + h2z21 +
√

y22 + h2z22 −
√

y23 + h2z23 = OA1 +OA2 −A1A2

Let us find the derivative µ (p2) with respect to variable h

µ′ (p2) =
hz21√

y21 + h2z21
+

hz22√
y22 + h2z22

− hz23√
y23 + h2z23

=

=
1

h

(
OA1cos

2φ1 +OA2cos
2φ3 −A1A2cos

2φ2

)
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By the above lemma, the expression in parentheses is positive and since h > 0, it follows that the conditional
curvature for a triangular pyramid is a monotonically increasing function. For the case of a quadrangular
pyramid:

µ′(p2) =
1

h
(OA1cos

2φ1 −A1A2cos
2φ2)(OA3cos

2φ4 −A3A2cos
2φ3)

or
µ′ (p2) =

1

h

[(
OA1cos

2φ1 +OA2cos
2φ3 −A1A2cos

2φ2

)
+

+
(
OA3cos

2φ3 +OA4cos
2φ1 −A3A4cos

2φ4

)
.

Considering the positivity of h and the expressions in brackets, we obtain the theorem for the case of a
quadrangular pyramid. In a similar way, let us prove for n - coal pyramid, i.e., calculate the derivative with
respect to h conditional curvature µ (p2)

µ′(p2) =
1

h
[OA1cos

2φ1 +OAncos
2φn+1 −A1A2cos

2φ2 − ...−An−1Ancos
2φn].

Referring to Lemma 3.1, we obtain the positiveness of the derivative with respect to variable h, which proves
the monotonicity of the conditional curvature. Theorem 3.1 is completely proved.

It is also easy to prove the following theorem.

Theorem 3.2. The conditional curvature of a polyhedral angle is a positive definite function.

Let us consider a convex polygon G on the plane XOY . We fix points A1, A2, ..., An inside G. Let γ be a
closed polyline in space, which by straight lines parallel to axis OZ is uniquely projected onto plane XOY into
a convex polyline γ̄ bounding polygon G, and vertices of polyline γ correspond to vertices γ̄. Let g1, g2, ..., gn
be any finite system of straight lines parallel to the axis OZ and intersecting polygon G at points A1, A2, ..., An,
respectively, ω1, ω2, ..., ωn - any positive numbers, µ - the conditional curvature of the polyhedron, convex
towards Z > 0 and vertices A′

k on straight lines gk. Let us denote by Ωp the set of polyhedra P with edge
γ, uniquely projecting onto the plane XOY , convex towards Z > 0 and with vertices on straight lines gk (it
is assumed that the polyhedron has no other vertices). Let us consider the following: If positive numbers
ω1, ω2, ..., ωn are given, does there exist a convex polyhedron such that ω1, ω2, ..., ωn would be the conditional
curvatures of the vertices of the convex polyhedron in the direction e⃗, lying on the straight lines g1, g2, ..., gn,
respectively. And to what extent is the polyhedron determined by the conditions that the vertices lie on the
given lines and have the given conditional curvatures? The answer to this question is given by the following.

Theorem 3.3. Let the conditions formulated above in the formulation of the problem in the class of convex polyhedra
be satisfied. Then, there is a convex polyhedra F ∈ Ωp with conditional curvatures equal to ωi in the direction e⃗ at the
vertices A′

i, respectively.

The proof of the theorem follows from A.V. Pogorelov [10], where this theorem is proved for any function of
a vertex of a polyhedron with the property of monotonicity. The monotonicity of the conditional curvature we
have defined is proved in the following lemmas:

Lemma 3.2. Let P ∈ Ωp be a convex polyhedra and ω1, ω2, ..., ωn are the conditional curvatures of the vertices of the
polyhedra. If the vertex A′

k with curvature ωk will be deformed towards Z > 0 along the straight line ωk so that new
vertices do not appear, then ωk increases and the conditional curvatures of other vertices do not increase.

Lemma 3.3. Let us consider convex polyhedral angles P1 and P2 ∈ W {e⃗} with common vertex O. If P1 is contained in,
P2 then µ (P1) > µ (P2).

Proof of Lemma 3.3. We will prove this lemma step by step. Let us suppose that convex polyhedral angles
P1 and P2 have a common vertex O and P1 is contained in P2, and all edges P1 except OAk coincide with edges
P2. The edges differing from OAk are denoted by OA′

k polyhedral angles P1. The axis OX will be directed along
the vector e⃗ and the vertex O will be taken as the origin. Then the points of intersection of the x = ±1 planes of
the edges of the polyhedral angles P1 and P2, except for Ak, coincide. Therefore, the vertices of the polygons
obtained by calculating the conditional curvature, except for one, coincide, and the polygon corresponding to
the polyhedron P1 contains the polygon corresponding to the polyhedron P2. From here

µ (m1) = A1An +AmAm+1 −
n−1∑
i=1

AiAi+1
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when i ̸= m.
Hence

µ (m2) = µ (P1) +Ak−1Ak +AkAk+1 −Ak−1A
′
k −A′

kAk+1

considering that,
Ak−1Ak +AkAk+1 −Ak−1A

′
k −A′

kAk+1 < 0

we get
µ (P1) > µ (P2) .

If polyhedral angle P1 has one fewer edge than P2, then

µ (P2) = µ (P1) +Ak−1Ak −Ak−1A
′
k −A′

kAk.

From the triangle inequality
Ak−1Ak −Ak−1A

′
k −A′

kAk < 0

hence it follows that
µ (P1) > µ (P2) .

Let us suppose that two edges P1 do not coincide with two edges P2, and the other edges coincide. We construct
an intermediate polyhedral angle P ′

1, all of whose edges except one coincide with the edges P1 and P2 and it
contains P1 and is contained in P2. By the above statement

µ (P1) > µ (P ′
1) > µ (P2) .

Hence
µ (P1) > µ (P2) .

We will continue this process until four edges remain, i.e., OA1, OAm, OAm+1, OAn.
Now let the edges OAm and OAm+1 of the polyhedral angle do not coincide with the edges of the polyhedral

angle P2, and the remaining edges P1 coincide with the edges P2. Considering that P1 is contained in P2, we
will calculate the conditional curvatures and compare them.

Obviously, the vertices Am and Am+1 of the polygon obtained by cutting the polyhedral angle P2 do not
coincide with the vertices A′

m and A′
m+1 of the polygon obtained by cutting the polyhedral angle P1. Since P1

is contained in P2, we get the following expression: if the intersection point of the segments A1An and AmAm+1

is denoted by O and this point coincides with the intersection of the segments A1An and A′
mA′

m+1, then we
have the following:

AmA′
m cosφ0 = OA′

m cosφ1 −OAm cosφ2,

0 < φ1 < φ2 <
π

2
,

AmA′
m cosφ0 = Am−1A

′
m cosφ′

1 −Am−1Am cosφ′
2,

0 < φ′
1 < φ′

2 <
π

2

when φ0, φ1, φ2, φ
′
1, φ

′
2 are the angles between the axis OZ and the segments AmA′

m, OA′
m,

OAm, Am−1A
′
m, Am−1Am, respectively, and from the condition that P1 is contained in P2, we obtain

φ1 < φ′
1, φ2 < φ′

2.

From here
OA′

m −OAm +Am−1Am −Am−1A
′
m ≥ OA′

m cosφ1 −OAm cosφ1+

+Am−1Am cosφ1 −Am−1A
′
m cosφ1 > OA′

m cosφ1 −OAm cosφ1+

+Am−1Am cosφ1 −Am−1A
′
m cosφ′

1 = 0

Therefore, we get that
OA′

m−1 −OAm +Am−1Am −Am−1A
′
m > 0.

It is proved in a similar way that

OA′
m+1 −OAm+1 +Am+1Am+2 −Am+2A

′
m+1 > 0.
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Now we calculate the conditional curvature of polyhedral angles and make sure that

µ (P2) < µ (P1) .

Really,
µ (P1) = µ (P2) + (OA′

m −OAm +Am−1Am −Am−1A
′
m)+

+(OA′
m+1 −OAm+1 +Am+1Am+2 −Am+2A

′
m+1) > µ(P2).

In exactly the same way, it can be proved that if the edges of the polyhedral angle P2OA1 and OAn do
not coincide with the edges OA′

1 and OA′
n of the polyhedral angle P1, respectively, then it is also true

µ (P1) > µ (P2). So we have proved that, step by step, you can achieve the fact that when no edges P1 and
P2 coincide and when P1 is contained in P2, µ (P1) > µ (P2) is true. Lemma 3.3 is proved.

Proof of Lemma 3.2. Let P ∈ Ωp be a convex polyhedra and ω1, ω2, ..., ωn are the conditional curvatures of
the vertices of the polyhedra. Vertex A′

k with curvature ωk will be deformed towards Z > 0 along straight line
gk so that no new vertices appear. The resulting polyhedra is denoted by P0 ∈ Ωp. We move the polyhedra
P0 along the straight line gk towards Z > 0 so that the vertex lying on the straight line gk coincides with
the point A′

k, which is k the vertex of the polyhedron P . Since the polyhedral angle of the polyhedron P0

with the vertex A′
k is contained in the polyhedral angle with the vertex A′

k of the polyhedron P , it follows
that µP (A′

k) > µP0 (A
′
k). Since the other vertices P0 and P coincide and the polyhedral angles P0 contain the

polyhedral angles P , then by Lemma 3.3 the conditional curvatures of the neighboring vertices to A′
k decrease,

and the conditional curvatures of the remaining vertices remain unchanged. Consequently, upon deformation
towards Z > 0, we obtain an increase of ωk, and the conditional curvatures of other vertices do not increase.
Lemma 3.2 is proved.

Proof of Theorem 3.3. Let us denote by T (G, γ) the set of convex polyhedras PG ∈ Ωp, for which the
conditional curvatures of the vertices projecting into points Ai are less than or equal to ωi. The set T (G, γ)
is not empty, since the convex hull of the broken line γ belongs to T (G, γ). It is a polyhedron with an edge γ
without inner vertices. It follows that µP0

(Ai) = 0. Polyhedron Q ∈ T (G, γ) is bounded by edge γ. Let’s denote
by hi the distance between point Ai and vertex A′

i, which is projected to point Ai (even if A′
i is a flat vertex).

Let us assign to each polyhedra P ∈ T (G, γ) the function

Ω (P ) = h1 + h2 + ...+ hn.

Function Ω (P ) is continuously dependent on hi and is limited because all hi are capped. Therefore, there
is a polyhedron P0 ∈ Ω (G, γ), for which Ω (P ) reaches the smallest value T (G, γ). Let us show that P0 is a
polyhedra, the existence of which is proved in the theorem. If we suppose the opposite, then there is a vertex
Ai for which the conditional curvature is less than ωi. The vertex Ai can be displaced in a straight line towards
Z > 0 so that the conditional curvature remains less than ωi.

By Lemma 3.2, the conditional curvatures of other vertices do not increase in this case, that is, the resulting
polyhedra P ′

0 belongs to T (G, γ). But when mixing , the value of will decrease, which is impossible, since

Ω (P0) = inf Ω (P ) , P ∈ T (G, γ) .

The contradiction shows that for polyhedron P0, the conditional curvature of vertex Ai is ωi. The theorem is
completely proved.

The proof of the theorem on the uniqueness of a convex polyhedron with given conditional curvatures is
based on the monotonicity of the conditional curvature of the convex polyhedron and on the theorem of A.V.
Pogorelov proved for any function at the vertices of a polyhedral angle possessing the monotonicity property.
So, the following is true.

Theorem 3.4. Let P1 and P2 be convex polyhedrons with a common edge γ, uniquely projected onto plane XOY , convex
towards Z > 0, and the corresponding internal vertices are projected to the same point of plane XOY .

Let the conditional curvatures take the same values at the corresponding vertices of these polyhedra. Then
the polyhedras P1 and P2 coincide.

4. Conclusions

Many geometry problems "in the large" are connected with the existence and uniqueness of surfaces with
given geometric characteristics. The geometric characteristics can comprise intrinsic curvature, extrinsic or
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Gaussian curvatures, and other features associated with the surface. We have found such an invariant that has
the properties of positive definiteness and monotonicity. It can be taken as a conditional external curvature of a
polyhedron. Using A.V. Pogorelov‘s theorem for any function at the vertices of a polyhedral angle that has the
property of monotonicity, we have solved the problem of the existence and uniqueness of a convex polyhedron
of a certain class, according to given values of the conditional external curvature at the vertices.
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