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ABSTRACT Neural networks and fractional order calculus are powerful tools for system identification through which there exists
the capability of approximating nonlinear functions owing to the use of nonlinear activation functions and of processing diverse inputs
and outputs as well as the automatic adaptation of synaptic elements through a specified learning algorithm. Fractional-order calculus,
concerning the differentiation and integration of non-integer orders, is reliant on fractional-order thinking which allows better understanding
of complex and dynamic systems, enhancing the processing and control of complex, chaotic and heterogeneous elements. One of the
most characteristic features of biological systems is their different levels of complexity; thus, chaos theory seems to be one of the most
applicable areas of life sciences along with nonlinear dynamic and complex systems of living and non-living environment. Biocomplexity,
with multiple scales ranging from molecules to cells and organisms, addresses complex structures and behaviors which emerge from
nonlinear interactions of active biological agents. This sort of emergent complexity is concerned with the organization of molecules
into cellular machinery by that of cells into tissues as well as that of individuals to communities. Healthy systems sustain complexity
in their lifetime and are chaotic, so complexity loss or chaos loss results in diseases. Within the mathematics-informed frameworks,
fractional-order calculus based Artificial Neural Networks (ANNs) can be employed for accurate understanding of complex biological
processes. This approach aims at achieving optimized solutions through the maximization of the model’s accuracy and minimization
of computational burden and exhaustive methods. Relying on a transdifferentiable mathematics-informed framework and multifarious
integrative methods concerning computational complexity, this study aims at establishing an accurate and robust model based upon
integration of fractional-order derivative and ANN for the diagnosis and prediction purposes for cancer cell whose propensity exhibits
various transient and dynamic biological properties. The other aim is concerned with showing the significance of computational complexity
for obtaining the fractional-order derivative with the least complexity in order that optimized solution could be achieved. The multifarious
scheme of the study, by applying fractional-order calculus to optimization methods, the advantageous aspect concerning model accuracy
maximization has been demonstrated through the proposed method’s applicability and predictability aspect in various domains manifested
by dynamic and nonlinear nature displaying different levels of chaos and complexity.
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INTRODUCTION

Universal order and complex universe, correspondingly, require
solutions and models to address the complexity challenge by
self-organization, harmonization and synchronization. Complex-
fractional models in complex dynamical processes, therefore, have
extensive schemes made up of hierarchical, spatial as well as topo-
logical structures that have assorted likely granularities of the par-
ticular system by differential equations. On the other hand, com-
plex order fractional derivatives govern complex-fractional sys-
tems in which memory and nonlinearity are seen as the two aspects
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of complex-fractional systems with complex variables, which point
out the significance of the modeling of memory-intense systems.
Complex-order systems which functions within a universal order
manifests multiple dynamical interactive components grounded
on multiscale spatial and temporal fields, which points towards
the integration for the construction of an operational whole on a
holistic spectrum. Fractional calculus (FC), owing to its ability of
reflecting the systems’ actual state properties, exhibiting unfore-
seeable variations, makes the generalization of integration and
differentiation possible. In that regard, it can provide a new added
value for the enhanced description of the characteristics concern-
ing different complex systems. When it is necessary to summon
solutions for the complex models, simulations, technological ad-
vances have enabled the integration of fractional calculus and Ar-
tificial Intelligence (AI) applications particularly for the managing
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of uncertainty and making critical multi-stage and multi-criteria
decisions within the framework of mathematical modeling. For-
mation and validation of hypothesis can, hence, be minimized in
terms of time, with the acceleration of experiments and numerical
simulations along with the substantial volume of data analyses,
which have become precise, reliable and trustworthy.

Fractional-order calculus (FOC), being based on fractional-
order thinking, concerns the differentiation and integration of
non-integer orders, which enables improved understanding of
complex and dynamic systems with or without time delays. Cer-
tain complex systems in nature may not always be likely to be
characterized by classical integer-order calculus models; therefore,
a fractional-order system-based model is capable of describing the
system performance in a more accurate manner. The processing
as well as control of complex elements are also enhanced whilst
making the performance more optimal owing to FOC. The fractal
processes’ discontinuous nature necessitates a reinvestigation of
equations of motion including fractional operators. In this regard,
fractional calculus paves the way for modeling the impact of an
erratic background in a system with its description merging with
nonlinear dynamics.

Fractional thinking as a sort of in-between thinking is situ-
ated between the integer-order moments, and there, fractional mo-
ments are needed as empirical integer moments cannot converge.
Between the integer dimensions, there exist fractal dimensions
whose significance is seen when data possess no characteristic
scale length. The non-integer operators that are required to de-
fine dynamics with long-time memory and spatial heterogeneity
are at stake between the integer value operators local in time and
space. Taking all these into account, it can be said that the mod-
ern inclination of science requires the understanding and even
embracing of complexity where complex phenomena oblige us
to find new ways of thinking. Fractional calculus is one way to
provide framework towards such thinking (West 2016; West et al.
2003). Fractional differential equations are also beneficial means
to characterize and show the dynamics of complex phenomena
with spatial heterogeneous characteristics and long memory. The
fractional derivative of real order is seen as the degree of structural
heterogeneity between the homogeneous and also in homogeneous
spheres in which complexity usually arise with respect to systems
made up of elements interacting with one another which may be in-
trinsically hard in terms of modeling (Lopes and Tenreiro Machado
2019).

Fractional-order differential and integral equations enable the
conventional integral and differential equations’ generalization by
extending the related conceptions with respect to different biolog-
ical phenomena. Correspondingly, adeptness in computational
complexity ensures an interconnected, integrative and multifari-
ous angle towards problems; which is the cause of applicable sets
of ideas and implementations to be implemented for the identi-
fication of the subtle features of complex dynamic systems. One
significant point to bear in mind is to acknowledge the varying
degrees of problems in order that the models can be established in
a way that can be adjustable and fitting the matter into the right
data, as handled in various disciplines like neuroscience (Singhal
et al. 2010), biology (Magin 2010) and so on.

Mathematical-informed frameworks with computer-assisted
proofs are used so that it becomes possible to be equipped with
reliable and accurate understanding in complex heterogeneity and
dynamic structure of temporally and spatially multiple transient
states. There still exist means in mathematics awaiting to construct
their way in theoretical biology as is in the case of fractional, or

non-integer order calculus whose application emerges as a power-
ful and strategic approach of modeling in the light of forthcoming
opportunities and challenges in mathematical medicine. Fractional
mathematical oncology, in this regard, deals with memory effects,
heterogeneous scales and dormant periods with respect to the on-
set and development of tumors in a straightforward way (Valentim
et al. 2021). Biological phenomena and problems, inherently char-
acterized by nonlinearity and uncertainty, modeled by ordinary
or partial differential equations with integer order, are possible to
be described well through the employing of ordinary and partial
differential equations. The variables, attributes, parameters, initial
conditions as well as observation states in the model are to be
considered for computational purposes. At each instance of time,
it is possible to measure the correct information by a non-integer
order derivative.

One relevant study on that subject matter is (Ziane et al. 2020)
aims at applying the local fractional homotopy analysis method
(LEHAM) in order to get the non-differentiable solution of two
non-linear partial differential equations (PDEs) concerning the
Cantor sets’ biological population model. The proposed method
is demonstrated to be effective and powerful in terms of solving
those PDEs with LFHAM being applied for the solution of other
nonlinear PDEs with local fractional derivative. Another study is
on biomathematical modeling (Carletti and Banerjee 2019), distin-
guishing demographic noise and environmental noise. The authors
present a technique for simulating and modeling demographic
noise that goes in backward direction. Neurological phenomena,
on the other hand, have layered, multi-phase and multi-functional
materials like those of brain tissue with interconnected networks.

In order to enhance the comprehension how the brain provides
its functions, robust mathematical-informed as well as feedback
engineering frameworks which use basic scientific concepts to in-
terpret and direct the experiments investigating brain’s responses
to different stimuli, diseases and treatment courses thereof are
required. In neuroscience, one of the related studies (Lewis et al.
2016) is concerned with the ratio processing system (RPS) tuned
to the holistic magnitudes suited for grounding fraction learning
difficulties about symbolic fractions. The proposed premise is the
capability to represent ratio/fraction magnitudes stated by the RPS
could upkeep a more profound grasping of fractions as relative
magnitudes, which shows the critical importance of RPS about
learning with regard to fractions. In short, fractional dynamics
could be applicable both for the oculomotor system and for the
motor control systems.

A fractional derivative’s physical meaning is said to be an open
problem and for the modeling of various memory related phe-
nomena, a memory process is made up of two stages: short has
permanent retention and the second one is ruled by a simple model
of fractional derivative. The fractional model is shown to fit the
test data of memory related phenomena in different fields like
mechanics and biology perfectly though the numerical least square
model. Thus, the physical meaning concerning fractional order is
found to be an index of memory based on that scheme (Du et al.
2013). Fractional Calculus (FC), refers to the calculus of derivatives
and integrals of arbitrary complex order or real order has wide-
ranging domains of application. Different studies are available in
the literature addressing the solution of varying fractional order
biological disease models in environments displaying uncertainty.
The application of Caputo operator to convey non-integer deriva-
tive of fractional order can be found in (Khan et al. 2020), handling
of chaos control and synchronization of a biological snap oscillator
through a new fractional model is addressed with regard to bio-
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engineering in (Sommacal et al. 2008), biology (Toledo-Hernandez
et al. 2014), (Tokhmpash 2021), signal processing (Gutierrez et al.
2010), image processing (Debnath 2003), electronics (Krishna and
Reddy 2008) robotics (Singh et al. 2021), control theory (Panda and
Dash 2006), (Garrappa 2015). Numerical parameters, variables and
radiation elements are used for the treatment model’s simulation.
It has been concluded that the model is capable of simulating the
treatment process of cancer and make the prediction of the results
of other protocols related to radiation.

Regarding the broad class of functions, the Riemann–Liouville
definition is employed in the process of the problem formulation,
with the Grünwald-Letnikov definition being referred to for achiev-
ing some numerical solutions. The use of Riemann-Liouville frac-
tional calculus’ operators is considered in (Rodríguez-Germá et al.
2008) for the reduction of linear ordinary or PDEs with variable
coefficients to more simple problems through certain commutative
differential relations. Thus, it has been aimed to avoid the singu-
larities in the original equations and the case of Bessel differential
equations is used as the related example. The efficiency of the
technique employing Riemann-Liouville operators of fractional
calculus has been shown by (Rodríguez-Germá et al. 2008). Regard-
ing the derivatives of Riemann-Liouville and Caputo derivatives,
Riemann-Liouville derivative as one of mostly employed fractional
derivatives and some important features of the Caputo derivative
are discussed in (Li et al. 2011) which provides benefits for the un-
derstanding of fractional calculus as well as modeling of fractional
equations in the fields of science and engineering.

Mittag-Leffler (ML) functions, with their various properties and
one to five and more parameters, are inclined towards modifica-
tion on a complex plane with the extension of particular fractional-
calculus operators owing to their use in the various direct ap-
plications and involvements in fractional calculus and fractional
differential equations concerning biology, physics, applied sciences
and engineering. Among the studies in the literature, the following
work can be referred to: (Fernandez and Husain 2020), (Pang et al.
2018).

Fractional order calculus theory, employed for addressing vary-
ing orders of derivatives and integrals, lends itself to diverse
kinds of definitions for fractional order derivatives with Rie-
mann–Liouville, Caputo and Grünwald–Letnikov being the most
frequently used ones. On the other hand, fractional calculus af-
fords tools that can describe and deal with complex phenomena as
well as its connection to the inherent properties that are nonlinear
complex considering the memory effects and apparently chaotic
behavior. In view of that, the fractional order derivative notion is
ubiquitous in different areas, offering diverse and varying methods
concerning fractional order derivative (FOD) (KARCI et al. 2014).

It is noted that fractional derivatives have the capability of
improving the machine learning algorithms’ accuracy, with com-
puting power, if and when utilized for spectral data, signals and
images. Given these, fractional derivatives and, successively, frac-
tional calculus have proved to provide a framework to be able to
enhance optimization tasks. One example of work handled within
that view is by (Raubitzek et al. 2022) providing exemplary applica-
tions to segment MRI brain scans, for stroke, to be applied as input
for a machine learning algorithm. Another work addresses practi-
cal software optimization methods to implement fractional-order
backward difference, sum, and differintegral operator, which are
dependent on the Grünwald–Letnikov definition regarding the
evaluation of fractional-order differential equations in embedded
systems owing to their more convenient form in contrast with
Caputo and Riemann–Liouville definitions (Matusiak 2020).

The work of (Viola and Chen 2022) provides an evaluation
of a fractional-order self-optimizing control architecture for the
purpose of process control. As a consequence, the related con-
troller is stated to enhance the system closed-loop response under
different operating conditions while reducing convergence time
of the real-time derivative-free optimization algorithm through
fractional-order stochasticity. Furthermore, another paper is re-
lated to the optimization techniques of image analysis algorithms.
The authors optimize the Grünvald - Letnikov fractional - order
backward difference for the estimation of the position of the marker
in a sequence of images, and through the mathematical foundation
of the fractional order derivative optimization tool of the study, it is
observed that process or load linked with the optimized algorithm
was reduced by 35% and more (Jachowicz et al. 2022).

Conducting predictions reliant on mathematical models with
regard to processes and datasets related to biology requires the pa-
rameters concerning machine learning. Moreover, the fitting of the
parameters to experimental data is challenging as it is important
and essential to find the model parameters’ optimal values during
when the model parameters’ different values may exhibit consis-
tent aspects with the data, called the identifiability. For ANNs,
learning is a noteworthy stage concerning convergence rate, as
obtained potentially by the use of fractional-order gradient in data
science.

One respective study, (Gomolka 2018), utilizes a model of a
neural network with a new backpropagation rule by making use of
a fractional order derivative mechanism. Another study, (Kadam
et al. 2019) addresses the ANN approximation of fractional deriva-
tive operators. The study (Mall and Chakraverty 2018) develops
an ANN technique to find solution of FDEs and shows the advan-
tage of them in terms of describing various real-world application
problems of physical systems. A MLP architecture and error back
propagation algorithm are used to minimize the error function and
modify the weights and biases as parameters. ANN output is said
to yield a suitable approximate solution of FDE and the accuracy
of the method is put forth as such. (Wu et al. 2017) investigates
in depth the ML stability of a class of fractional-order neural net-
works in the field of neurodynamics. The results established are
dependent on the FDE theories of FDE and differential equation
with generalized piecewise constant arguments with the derived
criteria improving and extending the respective results. Finally,
(Niu et al. 2021) provides the discussion of an optimal randomness
case study for a stochastic configuration network (SCN) machine-
learning method having heavy-tailed distributions along with the
discussion of the employment of fractional dynamics in analytics
concerning big data to quantify variability due to the complex
systems’ generation.

Complex systems are marked by order and homogeneity as
well as the hierarchy of subsystems and different levels in space
and time. Therefore, the observation of the interconnection with
respect to different biological elements such as cells, molecules and
tissues, with a focus on their qualitative properties, is required.
Considering this intricate complexity, it would not be adequate to
characterize and identify only the discrete biological components
of the system. Thus, mathematical models play a noteworthy role
for the complex problems’ solution and the viable applications to
biological data so that it can be possible to attain a thorough un-
derstanding of the emergent interactions between heterogeneous
biological components and their related pathways. In this way,
it can be ensured to reveal the correlations between different ob-
servable phenomena characterized by heterogeneity and dynamic
properties in an accurate and robust way.

36 | Yeliz Karaca CHAOS Theory and Applications



Life is endowed with many diverse and peculiar attributes,
which invokes the investigation of its origin that is not possible
to obtained from scratch, referring to its molecular constituents.
These complex systems in life do not only evolve through time,
they also have a past which is jointly responsible for the present
behaviors. On the other hand, the evolution of its forms cannot
be predicted; in that sense, evolution, as a universal process and
dynamics, brings about diverse phenomenology of life with its
related theory leading to rich phenomenology of life on earth
for modern biology and mathematical bioengineering which has
been subject to modifications due to its nature over the years.
The complexity of living systems can be expressed in cells and
tissues’ structures and functions, which means biological functions
of each element are embedded in a three-dimensional alignment
of the cells of each tissue, extracellular matrices and anatomical
organization. Biocomplexity, alternatively, with multiple scales
ranging from molecules to cells and organisms addresses complex
structures and behaviors that emerge from nonlinear interactions
of active biological agents. Due to this complexity of biological
systems and elements, chaos theory seems to be one of the most
applicable areas of life sciences in view of nonlinear dynamic and
complex systems of living and non-living environment.

Biocomplexity, with multiple scales that range from molecules
to cells and organisms, is concerned with complex structures and
behaviors emerging from nonlinear interactions of active biologi-
cal agents. This alignment of emergent complexity deals with the
organization of molecules into cellular machinery through that of
cells into tissues as well as that of individuals to communities. As
healthy systems keep up their complexity in their lifetime and are
chaotic, disease is seen as an outcome when the loss of complexity
or the loss of chaos occurs. Furthermore, mathematical models
enable researchers to dig into the degree of complexity concern-
ing processes, routes and the way these are interconnected. One
of the related studies in this domain is (Tzoumas et al. 2018) on
the sensor selection to determine the minimum number of state
variables which are required to be measured for the monitoring
of the evolution of the biological system. The authors focus on
the solution of different problems of sensor selection and consider
biologically motivated discrete-time fractional-order systems. The
work (Blazewicz and Kasprzak 2012) addresses the progress of
research in computational biology based on computer science and
operational research, presenting the different issues around com-
plexity as inspired by computational biology.

Algorithms and complexity along with their conceptual aspects
become significant on the condition that their definition is done
vis-á-vis formal computational models (Du and Ko 2011). Since
computing is proven to be critical to be able to deal with exhaus-
tive data tasks and achieve scalable solutions to complex problems,
researchers and developers should be familiar with impacts of
computational complexity to better grasp and design efficient al-
gorithms in computational biology. Algorithmic (computational)
complexity, known as running time, is a way of comparing the
efficiency of an algorithm. For a given task, an algorithm doing
the completion of a task is considered to be more complex if more
steps are the case.

It is possible to express the algorithmic complexity with the
Big O notation varying in relation to the size of the input. The
measurement of complexity is considered based on the duration it
takes for a program to run in relation to the size of the input (time
complexity) or to the memory it is to take up (space complexity).
One related work (Sidelnikov et al. 2018) investigates the applica-
tion of dynamic deep neural networks for non-linear equalization

in long haul transmission systems. The optimum dimensions are
identified by extensive numerical analysis and computational com-
plexity of the systems are calculated as a function of system length.
The authors demonstrate performance at a considerably lower cost
of computation.

Neural networks and fractional order calculus are known to be
efficient to identify systems, which concerns the capability to ap-
proximate nonlinear functions. One of the relevant studies (Aguilar
et al. 2020) is concerned with a fractional gradient descent method.
By using the Caputo derivative, the authors made the evaluation of
the fractional-order gradient of the error. The performance of the
proposed fractional-order backpropagation algorithm was shown
on certain datasets. The study (Boroomand and Menhaj 2009) on
neural networks for the identification of the problem proposes a
new approach to the neural networks. In another relevant study
(Xue et al. 2020), a fractional order gradient descent with momen-
tum method was used for updating the weights of neural network
for the purpose of data classification. The error analysis of the
study put forth the effectiveness of the algorithm in accelerating
the convergence speed of gradient descent method, which also
improves the performance with validity and accuracy.

Different computing techniques have been developed for op-
timized solutions regarding fractional order systems. Computa-
tional complexity, accordingly, proves to be significant to analyze
problems as their complexity increases in size. Measuring the
extent of the work required for the different problems’ solution,
computational complexity can provide a practical classification
tool from the powerful lenses where the patterns can be observed
both on a distinctive level and as a whole. In line with a novel
mathematics-informed framework and multi-staged integrative
method regarding computational complexity, there is no exist-
ing previous work as this work in the literature, obtained from
such an interconnected and inclusive perspective with the meth-
ods proposed. With its novel mathematics-informed framework
and multifarious integrative methods concerning computational
complexity, this study has the aim of establishing a robust, reli-
able as well as accurate model depending upon the integration
of fractional-order derivative and ANN for the purposes of diag-
nosis and differentiability prediction purposes for heterogeneous
cancer cell that displays various transient and dynamic biological
properties.

The other aim of the present work is to reveal the importance of
computational complexity so that the fractional-order derivative
with the least complexity could be obtained to be able to attain
the optimized solution. Accordingly, the subsequent steps were
integrated and applied: first of all, the Caputo fractional-order
derivative with three-parametric Mittag-Leffler function (MLF)
(α, β, γ) was applied to the cancer cell dataset. Hence, the new
fractional models with changeable degrees were formed by en-
abling data fitting with the fitting algorithm MLF which has three
parameters, depending upon the heavy-tailed distributions. After-
wards, the new datasets (mfc_cancer cell and the mfr_cancer cell
dataset) were generated. As the following step, classical derivative
(calculus) was applied to the cancer cell dataset, and from this
application, the cd_ cancer cell datasets were generated. After that,
the performance of the new dataset, obtained from the applica-
tion of the first step and the performance of the dataset obtained
from the application of the second step as well as of the cancer
cell dataset was compared by the multilayer perceptron (MLP)
algorithm application. As the following step, the fractional order
derivatives models that could be the most optimal for the disease
were produced. Last but not least, computational complexity was
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employed to achieve the Caputo fractional-order derivative (FOD)
that has the least complexity, for the purpose of obtaining the
optimized solution as a result.

This multifarious scheme, by the application of fractional-order
calculus (FOC) to optimization methods and the experimental
results, have allowed us to highlight the advantage of the max-
imization of the model’s accuracy and the minimization of the
cost functions. This corroborates the applicability of the proposed
method in different domains which are characterized by nonlinear
and dynamic nature with varying levels of complexity. Multi-
stage integrative models can capture the regular and significant
attributes on temporal and spatial scales, besides fractional-order
differential and integral equations demonstrate the generalization
of classical calculus by the extension of the conceptions concerned
with biological processes and systems.

The rest of the study is structured in the following manner. Sec-
tion 2 is on Biocomplexity, Biological Dataset, Related Method and
Methodology with the subheading, 2.1 Complex Heterogenous
Cancer Cell Dataset of the Study and 2.2 Method and Methodology.
Subsequently, Section 3 addresses Experimental Results and Dis-
cussion: Computation- related Application of Caputo Fractional-
Order Derivatives with Three-Parametric Mittag-Leffler Functions,
ANN algorithm and Computational Complexity. Finally, Section
4, provides the Concluding Remarks and Future Directions of this
work.

BIOCOMPLEXITY, BIOLOGICAL DATASET, RELATED
METHOD AND METHODOLOGY

Complex Heterogenous Cancer Cell Dataset of the Study
Biocomplexity addresses the complex interactions within and
among different systems are evident; and thus, biocomplexity
necessitates an integrated exploration of coupled human-natural
systems by looking into the reasons for and consequences of bio-
logical dynamics so that it can provide the related mathematical
models of complex biological phenomena to comprehend them,
and to interpret and guide quantitative experimental processes.
Accordingly, an accurate interpretation of the data entails the grasp-
ing of many emergent and dynamic properties that are due to the
interchange of various varying biological elements in complex
heterogeneous biological systems. Given such complexity, only
identifying and characterizing the individual biological compo-
nents in the system would not be sufficient. To address these
challenges, mathematical modeling, which enables researchers to
look into the degree of complexity, along with statistical techniques
are important to investigate problems. If the disruptions concern-
ing the processes and the way the interaction occurs is understood
well, then it will also be possible to identify the factors that have
impact on the disease. Consequently, the present study handles
a complex biological dataset concerned with cancer cell, which
manifests complex, heterogeneous and dynamic properties, with
an undeniable effect on health and life quality, being one of the
most frequent reasons for mortality.

Regarding the aims of diagnosis and differentiability prediction
concerning the heterogeneous cancer cell, 30 different columns
were employed. The other related details with respect to the het-
erogenous biocomplex cancer cell dataset with attributes computed
unit-wise can be found in the following reference (Murphy 1994).
Biocomplexity with a quantitative and integrative approach refers
to the study of the emergence of complex and self-organized behav-
iors based on the interacting of numerous simple agents. This kind
of an emergent complexity is representative of the different levels
of organization concerning molecules and tissues. Biocomplexity,

arises from biological, environmental, chemical, behavioral, physi-
cal and social interactions, encompassing the presence of multiple
scales (Michener et al. 2001).

If one is to have a thorough understanding of the correct inter-
pretation of data, knowing the dynamic and emerging characteris-
tics is important. Robust, accurate and appropriate mathematical
modeling serves the investigation of problems due to the fact that
mathematical models allow the exploration of the way complexity
processes and disruptions regarding these processes affecting the
course of the disease, which also has critical impact on its predic-
tion. This study deals with biological dataset, namely cancer cell,
which shows heterogeneous, dynamic as well as complex charac-
teristics which need to be taken under careful control in order to
prevent possible detrimental effects for the future.

Method and Methodology
Algorithm based on Heavy-tailed distribution for Data Fitting with
the ML Functions

Three-parametric ML functions (α, β, γ) Being among the do-
mains of mathematical analysis, special function is linked with
different topics (Garrappa 2015). MLF is also one of the important
classes of special functions with its extensions [46]. For benefits of
fractional calculus and fractional exponential functions, (Karaca
and Baleanu 2022a), (Camargo et al. 2012) and (Fernandez and
Husain 2020) can be referred to. (Baleanu and Karaca 2022) can be
referred to for the details concerning the original function of ML
relying on different parameters with different extensions.

The Basic Theory Behind Heavy- tailed Distributions
Pareto distribution: a power-law probability distribution
The Pareto distribution is known as a power-law probability distri-
bution which is employed to describe different observable phenom-
ena concerning science, social life, control and so forth (Newman
2005). Pareto distribution (PD) as a random variable (Arnold 2014)
is followed by the Pareto distribution provided it owns the tail’s
array as such according to Eq. (1):

PD(V) =

1 − (b)
V V ≤ b

0. V < b
(1)

a and b respectively show the scale and shape parameters with 1
and 1 values.

Weibull distribution: a continuous probability distribution
The Weibull distribution is employed to describe a particle size
distribution (Almalki and Nadarajah 2014). The Weibull WD as a
random variable (Baleanu and Karaca 2022) follows the Weibull
along with the tail formula as obtained in line with Eq. 2 (Kharazmi
2016)

WD(V) = exp(
V
k )

ζ
(2)

k and ζ refer for shaping and scaling the parameters (Gorenflo et al.
2020).

Cauchy distribution: a continuous probability distribution
The Cauchy distribution refers to the spread of the ratio of normally
distributed two independent random variables with a mean of zero
(Steck 1958). The Cauchy distribution (CD) as a random variable
(Arnold and Beaver 2000) is followed with the tail formula whose
formulation can be provided according to Eq. 3:

CD(V) =
1
π

arctan
(

2(V − µ)

β

)
+

1
2

(3)
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b and u respectively with 1 and 0 values represent the scale and
location parameters. Mittag-Leffler (ML) distribution: probability
distributions on the half line [0, ∞).

Shown as Eα(y), the ML distribution states its reliance upon the
cumulative density function (cdf) or distribution function, given
based on Eq. 4 (Chakraborty and Ong 2017).

f (x; α) = 1 − Eα(−yα) = ∑∞
k=1(1)

k−1(k α).xk α−1
/
{Γ(αk + 1),

x > 0, 0 < α ≤ 1
(4)

The ML distribution has different shapes and distributional
properties (see (Mainardi and Gorenflo 2000), (Mittag-Leffler 1903),
(Pillai and Functions 1990), (Karaca and Baleanu 2022a) for further
related details.

The comparison of these four distributions is conducted in
relation with their performances, by using log likelihood value
(MLE) and the Akaike Information Criterion (AIC). The respective
definitions can be presented in the following manner:

AIC = −21nL + 2k, and k shows the number of parameter(s)
and L shows the maximum log-likelihood with regard to a par-
ticular dataset. Moreover, the other related applications of the
were done as well. (please see ref. ((D’Agostino 2017), (Fan and
Gijbels 2018)) for further details). Relatively high (small) values
of log likelihood (AIC) may hint better fittings, as overviewed in
Table 1 for different relevant distributions, which clearly yield the
best of the fit. In addition, the performance of the likelihood ratio
test is also provided in order that different distributions can be
differentiated (see Table 1).

Figure 3 shows the functions along with the four related heavy
tailed distributions. The computations were conducted by Matlab
with the pattern of [ ] = gml_ f un( ), made for the evaluation
pertaining to the MLF (Petrás 2011), (Karaca and Baleanu 2022a).

The biological datasets handled in this study were fit as per the
three-parametric MLF (α, β, γ). Algorithm 1 (see Section 3.1) is
based on heavy-detailed distributions, having been applied on the
cancer cell dataset to identify the optimized three-parametric MLF,
found with heavy-tailed distributions. As a result, the optimized
MLF (α, β, γ) were obtained, which is an important stage to
explore the complex attributes.

The Basic Theory Behind the Fractional Calculus
Fractional calculus (FC) may be considered to be a natural ex-
tension of traditional integer order calculus because this area of
mathematics is concerned with the investigation and application
of the concepts of integral and non-integer differential calculus
(Karaca and Baleanu 2022c). The main publications on the subject
matter were seen in the early 20th centur (Tenreiro Machado et al.
2010).

The basic notions can be seen in classical materials by (Oldham
and Spanier 1974), (Ross 1977). More recent ones can be found in
the works of (David et al. 2011), (De Oliveira and Tenreiro Machado
2014), (Kochubei et al. 2019), (Valentim et al. 2021). Mathematical
biology, with an interdisciplinary approach, looks into cancer-
related phenomena via mathematical models in an inclusive way.
Encompassing wide-ranging domains from biology to materials
science, mathematical biological enables the comprehension of
biological systems that cause disease.

By this virtue, fractional-order models can enable a better un-
derstanding related to oncological biological particularities, which
contributes potentially to critical multi-stage decision-making in-
cluding early diagnosis techniques, tumor evolution and treatment
procedures as well as therapies tailored depending on the patient.

FC regarded as a generalization of integer order calculus, with
the related core notions are presented by depending on more basic
conjectures. Factorials, for example, make up only natural num-
bers, so this has constricting factors for its domains of applications
(Herrmann 2011). Gamma function is introduced for any as fac-
torial generalization, indicated as in (Karaca and Baleanu 2022a)
can be generalized as well through the replacement of its factorial
component with a gamma function, producing the following in
accordance with Eq. (5).

ez =
∞

∑
n=0

zn

Γ(1 + n)
(5)

and hence, the MLF for ℜ(z) > 0 is introduced as follows, (Mittag-
Leffler 1903) based on Eq (6).

Eα(z) =
∞

∑
n=0

zn

Γ(1 + nα)′
(6)

as extended to concede the three parameters for ℜ(z) > 0 (Wiman
1905) according to Eq (7).

Eα,β(z) =
∞

∑
n=0

zn

Γ(nα + β)
(7)

For the purpose of representing the solution of several frac-
tional problems related to mathematics and physics, the MLF is
critical, as the exponential functions are for integer calculus. This
is because numerous simple functions are the specific cases of this
generalization, so a number ofstudies have investigated the related
particularities along with its uses (Camargo et al. 2012); (Gorenflo
et al. 2020).

Fractional-Order Derivatives
Fractional-order derivative models are employed for the accurate
modeling of the systems that require different analytical and nu-
merical methods along with their related their applications to new
and complex problems. Being a critical function with extensive do-
mains of application, MLF is employed as a fractional differential
method. The following power series are usedto define the MLF
in line with the following references (Karaca and Baleanu 2022a),
(Gutierrez et al. 2010) Eq. (8).

It, as an entire function, ensures a simple generalization of
the exponential function whose reduction and convergence can
be found in more detail in (Mainardi and Gorenflo 2000). The
complex plane denotations and approaches related to the MLF, can
be found in (Baleanu and Karaca 2022), (Mainardi 2020).

Caputo Fractional-Order Derivatives
The Caputo Fractional-order derivative is employed to model phe-
nomena, considering the significant interactions of past and prob-
lems that have nonlocal properties based on equations having
memory. The related definition is addressed as per Eq. 9 (Gutier-
rez et al. 2010), which is used to solve the differential equations:

Dm
α f (t) =

1
Γ(mα)

∫ t

0

f (m)(τ)

(t − τ)α+1−m dτ, (8)
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Being similar to Caputo fractional derivative (CFD), Grünwald-
Letnikov fractional derivative is related to most of the analytic func-
tions, and there is a insignificantly different aspect identified when
the constant function is addressed. For a constant, the Caputo
fractional derivative equals to 0. However, the Riemann–Liouville
counterpart does not equal to 0. Caputo fractional derivative is
generally used to address the initial value FODE (Gutierrez et al.
2010).

The important implications about fractional integral and deriva-
tives of the power function (t − t0)

β for, β > −1 are the case and
for the Caputo’s derivative, Eq. 16 is employed in the following
way:

Dα
t0
(t − t0)

β =



0 β ∈ 0, 1, ..., m − 1

Γ(β+1)
Γ(β−α+1) (t − t0)

β−α β > m − 1

non existing otherwise

Dm and f (m) signify the integer-order derivatives (Garrappa
et al. 2019).

When compared with the Riemann–Liouville, the Laplace trans-
form for the Caputo’s derivative is initialized with the standard
initial values shown in terms of integer-order derivatives (Ouyang
and Wang 2016).

Artificial Neural Networks Algorithm

As a series of algorithms attempting to recognize the underlying
patterns in a set of data, neural networks, systems of neurons,
whether they be organic or artificial in nature, mimic the way
the human brain operations through different processes. Since
neural networks, rooted in artificial intelligence, can be adaptive
in changing input, the network generates the best possible result
without the need of redesigning the output criteria. As a special
type of machine learning algorithms, Artificial Neural Networks
(ANNs) are modeled by mimicking the human brain, and they
enjoy predictive and solution abilities.

ANNs can learn from the data of the past, just like the neurons
in the human nervous system learn from the past data, and can
provide responses in prediction or classification forms. ANN is a
self-learning network, conducts the learning from sample data sets
and signals; and as nonlinear models, they manifest a complex rela-
tionship between the inputs and outputs to discover a new pattern.
Accordingly, Multi-layered perceptron (MLP) is a type of network
in which multiple layers of a group of perceptron are together
loaded in order to make a model. In a multi-layered perceptron,
the arrangement of the perceptrons is seen in interconnected layers
(Karaca 2016).

The use of the MLP networks, with at least three layers, signifies
there is a training set of input-output pairs (for further details on
the weight coefficients, please refer to (Karaca and Cattani 2018),
(Karaca et al. 2020), (Karaca and Baleanu 2022b)). For its related
steps and architecture, please see (Mia et al. 2015), (Alsmadi et al.
2009) and (Abdul Hamid et al. 2011). The input signal propagates
via the network layer by layer. The signal-flow of the network with
two hidden layer is provided in Figure 1. Multilayer feed forward
back propagation algorithm is utilized for network training and
network performance testing.

Figure 1 The configuration depiction of the MLP algorithm

The back-propagation algorithm involves the subsequent steps
(Karaca and Baleanu 2020), (Karaca and Cattani 2018) and (Zhang
and Wu 2008).
Step 1. Initialization: The algorithm at first is to be initialized
regarding that one does not know any previous information. The
thresholds and synaptic weights are picked among a uniform
distribution. Sigmoid shows the activation function.
Step 2. The network should be presented by epochs of training
examples to conduct computations of forward and backward.
Step 3. The preferred response vector is d(n) in the output layer of
computation nodes, which is a forward computation, if the input
vector to the layer of sensory nodes is x(n). The computation of
the network’s local fields and signals related to function is done by
proceeding forward via the network through each of the layers. If
the sigmoid function is employed, then equation provided below
is considered to obtain the output signal:

y(l)j = φj(vj(n))

If l=1, meaning that the j neuron is in the first hidden layer, then
this is obtained:

y(0)j = xj(n)

Here, xj(n) refers to the jth element of the input vector
x(n).

Let, L refers to the depth of network. If the neuron j is in the
output layer, that is to say, l = L then

y(L)
j = oj(n)

Hence, the error signal will be:

e(n) = dj(n)− oj(n)

dj(n) refers to the jth element of the vector of preferred re-
sponse d(n).
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Step 4. The following equation in backward computation
shows the local gradients of the network (Haykin 2009).

δl
j(n) =


eL

j (n)φ′
j(n)(v

L
j (n)) output layer L

θ′j(v
i
j(n))∑k δ

(i+1)
k (n)w(i+1)

kj (n) hidden layer L

φ′
j(•) refers to differentiation concerning the argument. The

network’s synaptic weights in layer l need to be adapted to as per
the generalized data rule. If η is the training-rate parameter and
α signifies the momentum constant, the following is to be obtained:

wl
ji(n + 1) = w(l)

ji (n) + ∞[w(l)
ji (n − 1)] + η δ

(l)
i (n)y(l−1)

i (n)

Step 5. Last but not least, the computations regarding the
forward and backward need to be iterated till the stopping
criterion chosen can be fulfilled. The learning-rate parameters and
momentum are adjusted through reducing the related values as
the number of iterations goes up.

In the current study, MLP algorithm was applied to the cancer
cell dataset (768 × 9) for the purposes of diagnosis and differentia-
bility concerning the disease classification and prediction.

Computational Complexity

Computational complexity serves the goal of classifying and com-
paring the practical aspect of problem solutions regarding finite
combinatorial objects (Stockmeyer 1987). Technically, Big-O nota-
tion, used to describe the complexity of algorithms, presents the
approximation or placing of an upper bound on the resource require-
ments for an algorithm. The complexity of the algorithm signifies
the computational complexity and technically speaking, computa-
tional (algorithmic) complexity can be applied both to space and
time (storage and memory) resource necessities. As a matter of
fact, many individuals focus their attention on the running time
of an algorithm (Arora and Barak 2009), (Chivers et al. 2015). Al-
gorithmic complexity is denoted by the term of “on the order of ",
which indicates the approximate cost of the algorithm consider-
ing the aforementioned resource requirements. “on the order of " is
written in an abbreviated form in capital “O". This gives us the
more recognized term, that is to say the Big-O notation (Karaca et al.
2022).

Computational complexity measures how much work is re-
quired for the solution of different problems and providing a
practical classification tool beside dealing with complex problems
through the powerful lenses from which the patterns can be ob-
served both on a distinctive level and as a whole, considering the
resource usage. Concerning the temporal aspect, computational
time complexity denotes the change in an algorithm’s runtime,
and this process is dependent on the variation in the size of the
input data. When it comes to spatial properties, space complexity
is the description of the amount of additional memory a related
algorithm needs to have, which is dependent on the input data’s
size.

Big-O notation is: O (formula)

Big-O notation depends on the input parameters for whose details
(Karaca et al. 2022) can be referred to. Figure 2 depicts the order of
growth concerning the algorithms stated in Big-O notation.

Figure 2 The order of growth pertaining to algorithms stated in
Big-O notation

Big-O notation is a notation which is utilized to represent al-
gorithmic complexity. It is expedient to contrast with various
algorithms because the notation actually yields the conveying of
the algorithm scales. That is to say, the input size becomes larger,
and this is often referred to as the order of growth (see Figure 2)
(Chivers et al. 2015).

Complexity of the Fast Fourier Transform (FFT) Computation
The problem related to the Fourier transform (FT) is because of
its sine/cosine its complex exponential form or regression model
form, necessitating O(n2) operations to compute all the Fourier
coefficients. This does not apply for the short time series, though.
Notwithstanding, for quite long time series, this situation may
be an exhaustive computational process although performed on
developed computers of the current era.

FFT is known to be an important improvement for the reduction
of the complexity of the FT computation from O(n2) to O(n log n),
(Al Na’mneh and Pan 2007). The core notion behind this is that:
assume that there is a time series y1, ..., yn and one would like
to calculate the complex Fourier coefficient z1. It requires the
following computation with the formula:

z0 = ∑n−1
t=0 yt,

Which is proportional to the data mean. In the case that
data are de-trended or de-meaned, then this value will be 0. The
next Fourier coefficient will be:

z1 = ∑n−1
t=0 y1exp(−2πi.1.t/n)

= y0exp(−2πi.1.0/n) + y1exp(−2πi.1.1/n) + ...

Let us suppose that one would like to calculate the new co-
efficient . Then, this shall necessitate the computation as such:

z2 = y0 exp(−2πi.2.0/n) + y1 exp(−2πi.2.1/n) + ...

In the 2nd term, the exponential in the sum for z2 is the same that in
the 3rd term in the sum for z1, equaling to exp(−2πi.1.2/n). There
exists no need to calculate this exponential quantity two times, so
one may calculate it for the first time when we assume recovering
from memory is speedier compared to computing that from the
very beginning. The FFT algorithm, therefore, can be regarded as
an intricate bookkeeping algorithm being able to monitor such
symmetries in the Fourier coefficients’ computational processes.
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EXPERIMENTAL RESULTS AND DISCUSSION:
COMPUTATION-RELATED APPLICATION OF CAPUTO
FODS WITH THREE-PARAMETRIC ML FUNCTIONS
(α, β, γ), ANN ALGORITHM AND COMPUTATIONAL
COMPLEXITY

Mathematics-informed modeling of complex systems by FODs
relying upon FC plays a critical role for one to achieve the related
syntheses robustly and effectively. Correspondingly, the current
study has aimed at establishing an accurate model depending
upon the integration of FOD and ANN for the diagnosis and dif-
ferentiability pertaining to the prediction of disease which exhibits
transient biological features. One other goal has been to illustrate
the benefit of computational complexity to obtain the FOD that
has the least complexity to be able to obtain the solution which is
optimized. For this particular purpose, the proposed integrative
multifarious approach has followed the below stated stages:
i) Caputo fractional derivative along with MLF that had three pa-
rameters (α, β, γ) was applied to the cancer cell dataset. In this
way, it was possible to establish the new fractional models which
had distinct degrees through the conducting of data fitting with
the fitting algorithm MLF with three parameters (α, β, γ) depen-
dent on Heavy-tailed distributions (see Algorithm 1). Through the
algorithm, it was possible to obtain the optimized ML (α, β, γ)
functions, which enabled us to find the best fitting MLF with three
parameters (α, β, γ) in the cancer cell dataset. As a result, the new
datasets, namely the mfc_cancer cell dataset and mfr_cancer cell
dataset were obtained.
ii) The classical derivatives were applied to the cancer cell dataset
(the raw dataset); and obtained the cd_cancer cell datasets.
iii) The performances of the new dataset (in line with step i), the
dataset obtained from the classical derivative (calculus) application
(in line with step ii) and the cancer cell dataset were compared by
the MLP algorithm application. Consequently, the most optimal
fractional order derivative model for the disease was engendered.
iv) In order to attain the Caputo FOD with the optimized solution
and the least complexity, computational complexity was addressed.
Computational complexity with the Caputo FOD (ML with three
functions) and classical derivative (calculus) was calculated com-
paratively through the identification of the complexity concerning
the cancer cell dataset. Big O was used to identify the derivatives
which had the maximum and minimum level of complexity. The
experimental results obtained from the multifarious approach with
an integrative scheme corroborate and reveal the applicability of
the proposed scheme. It is, consequently, shown that the Caputo
FOD with the least complexity produced the most successful end
result as per the output derived from that MLP algorithm.

MATLAB (MATLAB 2022) and Phyton (Van Rossum and
Drake Jr 1995) were used for the obtaining of all the analyses,
results and visual depictions of the study.

Computation-related Application of ML Functions with Heavy-
tailed distributions’ Algorithm for Optimized Cancer Cell Data
Fitting
Algorithm 1 was applied to the cancer cell dataset so that it could
be possible to make the identification of the optimized MLF with
three parameters (α, β, γ) to fit the data possible. Hence, it was
possible to obtain the optimized ML (α, β, γ) functions. To put it
differently, this application enabled the finding of the best fitting
MLF with three parameters in the cancer cell dataset.

Algorithm 1 has been benefited from for the fitting with three
parameters related to MLF based on heavy-tailed distributions.
The related steps for Algorithm 1 can be referred to in (Karaca and

Baleanu 2022a).
Algorithm 1 was applied to the cancer cell dataset (569 × 25)

for the nine attributes in units (see the details related to the dataset
in the following reference (Murphy 1994)).

For the analyses, negative log likelihood: -log L was taken for
the log likelihood value. The best fit distribution was generated
(retrieved from the AIC, SD, MAE, MAPE, SSE, MSE and RMSE
calculations). The lowest of the two values was taken and the best
fitting distribution was achieved in order that the ML functions
representing the data most in the most suitable way were obtained
(Step 4 carried out based on Algorithm 1). The lowest value for
each distribution was taken; and conducted computations for all
the nine attributes. As an exemplary view, the presentations for
one attribute, which is the Smoothness, are shown in Table 1).
Hence, the lowest value obtained is marked bold in the respective
tables. The illustrations of the figures based on the computations
gained from the above mentioned attribute provided in the ta-
ble indicating the distribution beside the related peak points (see
Figure 3).

Table 1 depicts the smoothness attribute showing the lowest
value taken for each of the heavy-tailed distributions.

The depictions regarding the calculations gained from the at-
tributes provided in Table 1 for the Smoothness attribute the four
related heavy-tailed distributions and its peak points are indicated
in Figure 3. Two approaches are applicable to handle each of
the cancer cell data set attribute to perform the aforementioned
analysis. The former one is as such: based on the results which
are obtained from each distribution as per Algorithm 1, the most
accurate distribution is obtained based on the results as attained
with the lowest value. The latter one has to do with the address-
ing of the results based on α, β and γ values depending on the
results produced by the 4 heavy-tailed distributions together with
the eight statistical values while performing the comparison of
the connected attributes inherently (for further details Table 1 can
be referred to); and in addition, the most accurate distribution is
achieved based on the outcomes gained with the minimum value.
Should there be extreme points within the distribution, those ex-
treme values would not be considered for the analyses conducted
in the current work.

The best outcome for ML function with three parameters was
found to be MLF (10, 2, 2) for the cancer cell dataset.

Computation-related Application of Caputo FODs to Cancer Cell
Dataset

Algorithm 2 provides the steps of fractional derivatives with non-
integer orders for the cancer cell dataset, concerned with the iden-
tification of the order degree to find the most significant attribute.
Algorithm 2: Application of the Caputo FODs on cancer cell dataset
that has non-integer orders.
Step 1: Establish non-integer orders (y = orders = [0.1, 0.2, 0.3,
..., 0.9]).
Step 2: All of the orders are applied to the attributes specifically
in the dataset, as a result of which values were obtained for the y
order fractional derivatives, identified in Step 1.
Step3: Obtain 3D graphs of 3 types of derivatives as grid
and surface (x, y, z) = ( f or each attribute o f the data u,
alpha, derivative o f all the data).

Figure 4 presents the application steps of CFOD on the cancer
cell dataset. The most significant orders were obtained based on
the application of the procedures indicated in Figure 3, and for the
related orders, CFOD models were identified, as detailed with the
outcomes derived accordingly.
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■ Table 1 Smoothness attribute computation concerning the cancer cell dataset for MLF depending upon Heavy-tailed distributions

Distributions α β γ -log L AİC SD MAE MAPE SSE MSE RMSE

Mittag-Leffler 0.5 0.5 0.5 631.09718 1264.1944 0.008366 0.329849 0.534995 61.909033 0.108803 0.329853

Cauchy dist. 0.5 0.5 0.5 834.76194 1671.5239 0.008366 0.230607 0.374042 30.260861 0.053183 0.230613

Pareto dist. 0.5 0.5 0.5 Inf Inf 0.008366 0 0 0 0 0

Weibull dist. 0.5 0.5 0.5 350.9032 703.8064 0.008366 0.539741 0.875463 165.77254 0.29134 0.539759

Mittag-Leffler 3 1 1 816.59675 1635.1935 0.002348 0.238082 0.234318 32.252786 0.056683 0.238083

Cauchy dist. 3 1 1 1054.8973 2111.7946 0.002348 0.156618 0.154142 13.957155 0.024529 0.156618

Pareto dist. 3 1 1 18.14285 38.285699 0.002348 0.968628 0.95332 533.86979 0.93826 0.968638

Weibull dist. 3 1 1 578.14566 1158.2913 0.002348 0.362015 0.356292 74.5705 0.131055 0.362016

Mittag-Leffler 5 1 3 808.74844 1619.4969 0.000352 0.241388 0.240808 33.154539 0.058268 0.241388

Cauchy dist. 5 1 3 1047.1228 2096.2456 0.000352 0.158772 0.15839 14.343667 0.025209 0.158772

Pareto dist. 5 1 3 2.738101 7.476202 0.000352 0.9952 0.992808 563.55062 0.990423 0.9952

Weibull dist. 5 1 3 570.37073 1142.7415 0.000352 0.366994 0.366112 76.63567 0.134685 0.366994

Mittag-Leffler 5 1 7 810.58361 1623.1672 0.00082 0.240611 0.239266 32.941402 0.057894 0.240611

Cauchy dist. 5 1 7 1048.9504 2099.9009 0.00082 0.158263 0.157378 14.251833 0.025047 0.158263

Pareto dist. 5 1 7 6.378511 14.757021 0.00082 0.988854 0.983328 556.38788 0.977835 0.988855

Weibull dist. 5 1 7 572.1984 1146.3968 0.00082 0.365817 0.363773 76.145014 0.133823 0.365818

Mittag-Leffler 7 2 1 807.37739 1616.7548 0 0.24197 0.24197 33.314695 0.05855 0.24197

Cauchy dist. 7 2 1 1045.7534 2093.5068 0 0.159155 0.159154 14.412869 0.02533 0.159155

Pareto dist. 7 2 1 0.00272 2.005439 0 0.999995 0.999993 568.99456 0.99999 0.999995

Weibull dist. 7 2 1 569.00136 1140.0027 0 0.367879 0.367878 77.005408 0.135335 0.367879

Mittag-Lefflerr 7 2 2 807.37874 1616.7575 1e-06 0.24197 0.241968 33.314536 0.058549 0.24197

Cauchy dist. 7 2 2 1045.7548 2093.5095 1e-06 0.159154 0.159153 14.412801 0.02533 0.159154

Pareto dist. 7 2 2 0.005439 2.010879 1e-06 0.99999 0.999986 568.98912 0.999981 0.99999

Weibull dist. 7 2 2 569.00272 1140.0054 1e-06 0.367878 0.367876 77.00504 0.135334 0.367878

Mittag-Lefflerr 7 2 4 807.38147 1616.7629 1e-06 0.241968 0.241966 33.314217 0.058549 0.241968

Cauchy dist. 7 2 4 1045.7575 2093.515 1e-06 0.159153 0.159152 14.412663 0.02533 0.159153

Pareto dist. 7 2 4 0.010879 2.021757 1e-06 0.999981 0.999971 568.97824 0.999962 0.999981

Weibull dist. 7 2 4 569.00544 1140.0109 1e-06 0.367876 0.367872 77.004304 0.135333 0.367876

Mittag-Leffler 7 2 8 807.3869 1616.7738 3e-06 0.241966 0.241961 33.31358 0.058548 0.241966

Cauchy dist. 7 2 8 1045.7629 2093.5259 3e-06 0.159152 0.159149 14.412387 0.025329 0.159152

Pareto dist. 7 2 8 0.021757 2.043515 3e-06 0.999962 0.999943 568.95649 0.999924 0.999962

Weibull dist. 7 2 8 569.01088 1140.0218 3e-06 0.367872 0.367865 77.002832 0.13533 0.367872

Mittag-Leffler 10 2 2 807.37603 1616.7521 0 0.241971 0.241971 33.314854 0.05855 0.241971

Cauchy dist. 10 2 2 1045.7521 2093.5041 0 0.159155 0.159155 14.412938 0.02533 0.159155

Pareto dist. 10 2 2 5e-06 2.000011 0 1 1 568.99999 1 1

Weibull dist. 10 2 2 569 1140 0 0.367879 0.367879 77.005775 0.135335 0.367879

Mittag-Leffler 10 2 5 807.37603 1616.7521 0 0.241971 0.241971 33.314853 0.05855 0.241971

Cauchy dist. 10 2 5 1045.7521 2093.5041 0 0.159155 0.159155 14.412938 0.02533 0.159155

Pareto dist. 10 2 5 1.4e-05 2.000027 0 1 1 568.99997 1 1

Weibull dist. 10 2 5 569.00001 1140 0 0.367879 0.367879 77.005774 0.135335 0.367879

Mittag-Leffler 10 2 7 807.37604 1616.7521 0 0.241971 0.241971 33.314853 0.05855 0.241971

Cauchy dist. 10 2 7 1045.7521 2093.5041 0 0.159155 0.159155 14.412938 0.02533 0.159155

Pareto dist. 10 2 7 1.9e-05 2.000038 0 1 1 568.99996 1 1

Weibull dist. 10 2 7 569.00001 1140 0 0.367879 0.367879 77.005774 0.135335 0.367879
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Figure 3 Smoothness attribute computation based on cancer cell dataset for MLF depending upon Heavy-tailed distributions.

The computation-related application of CFODs and classical
derivative, both with (y = orders = [0.1, 0.2, 0.3, ..., 0.9]), for
all of the related parameters were conducted for the cancer cell
dataset. As an example to depict the computations in a clear way,
Figure 4 is presented for three parameters (the radius parameter,
the symmetry parameter and the smoothness parameter). Figure
4 shows the computational application of CFODs and classical
derivative, both with y(= orders), for 3 parameters for the cancer
cell dataset. CFOD and classical derivative models were identi-
fied for the related orders. The computation-related application of
CFODs and classical derivative, for all the parameters were carried
out concerning the cancer cell dataset. To illustrate, for depicting
the computations in a evident manner, Figure 4 provides the three
parameters including radius, symmetry and smoothness). Figure
4 shows the computation-related application of CFODs and clas-
sical derivative, both with y(= orders), for the cancer cell dataset.
CFOD and classical derivative models were identified for these
orders.

Computation-related Application of ANN Algorithm to Cancer
Cell Dataset and Optimized Results Diagnostic Treatments and
Predictive Transdifferentiability

The computation-related application of CFODs and classical
derivative obtained in Figure 4 for all the parameters for the cancer
cell dataset generates the significant attributes in newly obtained
datasets. CFOD and classical derivative models were found and
determined for the related orders depending upon the model. Ta-
ble 2 shows the parameters of that MLP algorithm, employed in
the present study.

Figure 5 presents the application of CFODs with MLF param-
eters MLF (10, 2, 2) to the cancer cell dataset, besides the new

datasets (mfc_cancer cell dataset and mfr_cancer cell dataset), as
taken from the significant attributes from the related application,
with MLP algorithm application, to the new dataset ensuring per-
formance of the orders with respect to the disease diagnosis as
well as differentiability.

Figure 6 presents the application of classical derivative to the
cancer cell dataset, besides that of the MLP algorithm application
to the new dataset (cd_cancer cell dataset), which provides the
orders’ performance with respect to the disease diagnosis and
differentiability.

CFODs indicate the condition of higher conditions concerning
regularity in terms of differentiability. The related derivative needs
to be calculated initially for the fractional derivative of a function
in the sense of Caputo.

Table 3 presents the outcomes generated by CFODs; and the
classical derivative application is contrasted with the outcomes of
classical derivative showing that CFOD (with order 0.8) provides
us with better results. The result that MLP algorithm application
cancer cell dataset based on CFOD and classical calculus yielding
the respective highest accuracy results is presented for the related
orders: for order 0.2 (79.4376%); for order 0.5 (80.1406%); for order
0.8 (83.4798%) and for order 1 (79.9649%) in Table 3. It is observed
that the results obtained by CFOD application with changing or-
ders produces more accurate outcomes. As a consequence, the
CFOD for differentiable functions generated accuracy rates with
more robustness. Hence, the definition for CFODs is performed
for differentiable functions while functions without any first-order
derivative may own fractional derivatives with all orders which
equal to lower than 1.
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■ Table 2 MLP algorithm’s Network Parameters

Network Properties Values

Adoption learning function Learngdm

Training Properties Levenberg- Marquart (’trainlm’)

Transfer function Tansig

Performance Mean squared error (MSE)

Epoch number 1000

Hidden layer number 3

Test dataset (85x1)

Training dataset (399x1)

Validation dataset (85x1)

Output Cancer

■ Table 3 The optimized outcomes derived from CFODs with three-parametric MLF and classical derivatives for the mfc_cancer cell
dataset with MLP algorithm

Percentage
Fractional of Correct Multiclass Area Under
Differential Classification Sensitivity Precision Specificity F1-score Classification ROC Curve
Type/Order (Accuracy) (MCC) the (AUC)
Caputo/0.2 79.4376 100 75.3165 44.8113 85.9206 0.58095 0.72406
Caputo/0.5 80.1406 96.9188 77.2321 51.8868 85.9627 0.57669 0.76685
Caputo/0.8 83.4798 98.0392 80.0915 58.9623 88.1612 0.65292 0.79883
Caputo/1 79.9649 99.1597 76.1290 47.6415 86.1314 0.58548 0.74041
Dataset 80.6678 96.9188 77.7528 53.3019 86.2843 0.58816 0.77370
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Figure 5 The MLP algorithm application to the mfc_cancer cell dataset (a) Best validation performance analyses (b) ROC analyses (c) Error
Histograms with 20 Bins (d) Training state analyses (e) Linear regression graphs and (f) Confusion matrices
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Figure 6 The MLP algorithm application to the cd_cancer cell dataset (a) Best validation performance analyses (b) ROC analyses (c) Error
Histograms with 20 Bins (d) Training state analyses (e) Linear regression graphs and (f) Confusion matrices

The Application of Computational Complexity based on Caputo
FOD to the cancer cell dataset

Computational complexity, is utilized to classify the computational
problems. As it is not possible to address some matters in compu-
tational biology in a computational sense, it could be limiting to
search for the optimal solution for some practical reasons. Conse-
quently, those kinds of matters are addressed through heuristics
and approximations to be able to overcome the computational
requirements that bring about solutions which are suboptimal. Yet,
when essential complexity of an algorithm is investigated, it can
also be possible to identify the algorithm’s efficiency.

Bearing that in mind, during the conducting of the complexity
computations for the three-parametric ML function, CFOD and
classical derivative, FFT, integration, gamma function and mth

derivative were shown in Big O form.

The computational complexity application for the MLF with
three parameters is as per Eq. 10.

Eγ
α,β(x) = ∑∞

n=0
Γ(γ+n)

Γ(γ)Γ(nα+β)
. xn

n! α, β, δ > 0, x ∈ RN (9)

O(Eγ
α, β(x)) = O( Γ(γ+n)

Γ(γ)Γ(nα+β)
. xn

n! )
(10)

The application of the computational complexity for CFOD based
on the 3 parametric ML function can be seen according to Eq.11.

O(Dα f (t)) = O
(

1
Γ(m−α)

∫ t
0

f (m)(τ)
(t−τ)(α+1−m) dτ

)
O(Dα f (t)) = O(log(mα)−2.N2.OML(N)m)

O(Dα f (t)) = O(log(1α)−2.N2.OML(N))

(11)

The outcomes of the computational complexity application de-
pending on the CFOD and classical derivatives to the cancer cell
dataset are presented in Table 4.

While carrying out the complexity computations with regard to
three-parametric MLF (α, β, γ), CFOD, classical derivative, FFT,
integration, gamma function and mth derivative are handled in the
form of Big O.

The outcomes regarding the application of computational com-
plexity based on Caputo FOD and classical derivatives to the cancer
cell dataset are presented in Table 4.

CFOD is α ≤ 1, then α the value goes down. The complexity, in
the meantime, goes up logarithmically. When this condition is at
stake, α = 1, then it belongs to the category of trivial.

As per the complexity outcomes obtained for CFOD related to
the computational complexity as obtained (presented in Table 4),
as it can be observed, the lowest complexity order is for 0.8 and
the highest complexity is the case for order 0.2.

The lowest order, namely 0.8, with the least complexity of
CFOD, provides the most successful outcome as 83.80% in the
diagnostic and classification purpose of disease related to cancer
cell by the ANN algorithm.
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■ Table 4 Outcomes of the computational complexity application depending on theCaputo FOD and classical derivativeto the cancer
cell dataset.

Order Cancer cell dataset (N=24)

(α)= 0.2 (N/log(0.8))2*(log(-18*N-4)/N) = 2.9294e+03+1.5142e+03i

Caputo FOC (for Eq.11) (α)= 0.5 (N/log(0.5))2*(log(-18*N-4)/N) = 3.0360e+02+1.5693e+02i

(α)= 0.8 (N/log(0.2))2*(log(-18*N-4)/N) = 56.3116+29.1080i

(α)= 1 (N/log(0))2*(log(-18*N-4)/N) = 0

CONCLUDING REMARKS AND FUTURE DIRECTIONS

Computational complexity which concerns the way needed re-
sources are employed for the answer and solution of the problem
is important to address the computational problems in complex
and nonlinear systems. Since it could not be to address some of the
problems in computational biology in a computational perspective,
it could be restricting to seek the optimal solution due to practical
reasons. As a result, sometimes those problems are addressed
by heuristics and approximations so that one can overcome the
computational requirements; yet, such an approach may result in
solutions which are suboptimal. When the essential complexity of
an algorithm is explored, the efficiency of the algorithm is able to
be assessed through computational complexity. As uncertainties
in the complex processes bring about computational complexity,
fractional-order models are employed in a widespread way to de-
scribe the real processes and phenomena. Fractional-order calculus
concerns the integration and differentiation of non-integer orders
and it is dependent on fractional-order thinking. The aim is to
enable a better grasp of complex and dynamic systems, to improve
the processing and control of complex elements and to make the
optimization performance more optimal.

Dynamic complexity arises from the latent factors and the in-
teractions between factors which may have a significant influence
on the systems’ performance. It is not possible to characterize
some particular complex systems in nature by classical integer-
order calculus models; so a fractional-order system based model
which is capable of describing the system performance more ac-
curately is needed. Different levels of complexity are one of the
most characteristic features of biological systems; therefore, the
rules of how complex behaviors and patterns emerge and the novel
physical as well as chemical properties and functions with relation
to biological entities need to be holistically understood. The be-
havior of high-level structures is also more than the whole of the
direct interactions between one single component. Biocomplexity,
as an integrative approach and philosophy, addresses the emer-
gence of complex and self-organized behaviors which are based
on the interaction of many simple agents. This sort of an emergent
complexity represents the organization of molecules into cellular
machinery, including the organization of cells into tissues and to
the organization of individuals into communities.

It should also be noted that biocomplexity arises from many dif-
ferent interactions including biological, environmental, chemical,
behavioral, physical and social ones, with the presence of multiple
scales. Within the mathematics-informed framework based on
FOC and ANNs, the integrative approaches can be employed for
reliable and accurate comprehension of different complex biolog-
ical processes that make up spatio-temporal scales. This line of
methods has the aim of achieving optimized solutions through
maximizing the accuracy of the model and minimizing the com-

putational cost. In this way, capturing the significant and regular
attributes on those spatio-temporal scales can provide the gener-
alization of classical calculus by the extension of the conceptions
related to biological processes and systems. Computational com-
plexity also comes to the foreground since it is used to measure
the extent of work required for the solution of different problems
while providing us with a practical classification tool when one
deals with complex problems. Accordingly, the present study has
aimed at constructing a robust as well as an accurate model reliant
upon the integration of FOD as well as ANN for the diagnostic
and predictive differentiability aims for cancer cell propensity.

We have also attempted to show the importance of computa-
tional complexity to obtain the FOD with the lowest complexity so
that it could be possible to obtain the optimized solution. Based on
the experimental results obtained from this study, the CFOD has
yielded the most accurate results for order 0.8 in terms of diagnosis
and differentiability of the disease, which also has shown its critical
role, suggesting the selection of the appropriate alternative mathe-
matical models can be established in advance so that we can take
uncertain situations under control and conduct the management
effectively. The results also highlight the advantages of CFOD
since it allows the conventional initial and boundary conditions to
be encompassed in the formulation of the problem as well as its
derivative for the constant as zero. On the flipside, the functions
that lack differentiable properties do not have fractional derivative,
that is to say, Caputo derivative’s application areas remain has to
be decreased. Furthermore, other fractional order derivatives (Rie-
mann–Liouville, Grünwald-Letnikov and so forth) can be applied
and compared with the machine learning methods with respect to
different datasets. In view of these, the multifarious scheme with
the related integrative steps, based on the application of FOC to
the optimization means and the experimental results, have enabled
us to emphasize the benefits of model accuracy maximization and
cost function minimization.

Considering these elements and approach addressed in this
study, the below directions can be stated for future investigation:

• The integrated method of fractional-order calculus and Artifi-
cial Intelligence (AI) methods can have a facilitating role for
the prediction of future occurrence of manifold phenomena
while comparing the predicted data with the actual data to
validate with high-performance computing.

• Fractional order and fractional derivatives along with the gen-
eralization of integer calculus order, addressing the varying
orders of derivatives and integrals as used in this study, can
provide a viable framework to enhance optimization tasks
focusing on complex order optimization.

• The increased capability of machine learning algorithms with
computing power and accuracy for spectral data, signals, im-
ages and so forth in connection with the inherent properties
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help the managing of memory effects and apparently chaotic
behavior in critical multi-stage decision-making processes.

• The promoting of new methods to enhance performance out-
comes can be suggested to take strategic actions to yield opti-
mal results for accurate prediction of future in areas charac-
terized by dynamic complexity where "know-why" research
activities are required to develop models that merge phe-
nomenological and data-oriented approaches in other appli-
cable domains.

• The sophisticated integrative and multi scale approach used
with computer-assisted proofs focusing on computational bio
complexity fosters inter- and trans disciplinary work through
the employment of computational power and combined ex-
pertise of different complex realms.

All in all, the experimental results obtained enable the diag-
nosis and differentiability in cancer cell prediction based on
computational complexity, fractional order derivatives and
ANN. Taken together, the scheme proposed with a multi-stage
approach and/or novel methods in this study has demonstrated
the proposed method’s applicability and satisfactory predictive
aspect in different domains characterized by dynamic, chaotic,
heterogeneous and nonlinear nature displaying varying levels of
complexity, which is of crucial value in terms of timely detection
and taking action toward appropriate and tailored treatments.
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