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Abstract

In this study, the system of nonlinear inequalities (SNI) problem is investigated. First, a
SNI is reformulated as a system of nonsmooth and nonlinear equations (SNNE). Second, a
new smoothing technique for the ”max” function is proposed and the smoothing technique
is employed for each element of the SNNE. Then, a new smoothing algorithm is developed
in order to solve SNNE by combining the smoothing technique with the iterative method.
The new algorithm is applied to some numerical examples to show the efficiency of our
algorithm.

1. Introduction

In this paper, the following system of non-linear inequalities is considered:

H(x)≤ 0, (1.1)

where, H(x) := (h1(x),h2(x), . . . ,hn(x))T with hi : Rn→R is continuously differentiable for any i ∈ {1, . . . ,n} [1,2]. The SNI
has been emerged in many real-world applications such as image restoration problems, data analysis, supply chain problems,
computer aided design problems, compressive sensing problems and set separation problems [2–4]. In recent years, motion
control involving two–joint planar robotic manipulator are modelled as SNI in [5] and it is faced a problem of SNI in process
of designing parallel manipulator for aliquoting of biomaterials [6]. Depending on all of these practical applications, SNI has
been extensively studied over the years [7–10].
There are many interesting methods have been proposed to solve the problem (1.1) such as modified Newton methods [11],
smoothing Newton methods [1,2,8], Broyden-like methods [12], Conjugate Gradient methods [13,14], trust-region method [15],
homotopy method [16] and etc. Although there is a parameter that must be tune to construct a smoothing function, among
the all methods the smoothing Newton methods come into prominance due to their excellent numerical performance [17].
Smoothing Newton methods developed by modifiying the line search strategies such as exact, inexact, bactracking and etc.
types line search techniques [18, 19]. One of the main tool of smoothing Newton method is smoothing functions. The
smoothing function is defined as follows:

Definition 1.1. [20] A function H̃ : Rn×R→ Rm is called a smoothing function of a non-smooth function H : Rn→ Rm if,
for any ε > 0, H̃(x,ε) is continuously differentiable and

lim
z→x,ε↓0

H̃(z,ε) = H(x)

for any x ∈ Rn.
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Smoothing functions have been studied by many scholars [21–24] and they have been applied to solve many interesting non-
smooth problems over the years [25–27]. The comprehensive overview on smoothing approaches can be found in [20, 28, 29].
Among the smoothing functions, the smoothing function studied in [30] distinguishes itself from the others due to different
structure, formulations and useful properties.
In this study, we propose a new smoothing function inspiring from the smoothing methods given in [30] based on the
problem (1.1). By the help of this smoothing approach, we design a family of smooth equations which is surrogate for the
original problem (1.1). A practical and user-friendly algorithm is developed to solve the surrogate system. The algorithm is
implemented to some test problems in the literature in order to demonstrate the numerical performance of it. The comparison
with corner stone studies has been presented in order to show the superiority of our algorithm.
Throughout the paper, Rn+ denotes the non-negative part of Rn, I denotes n×n identity matrix. For any vector u ∈ Rn, uT

denotes the transpose of u and the Euclidean norm of u is denoted by ‖u‖. In the following section, we present the new
smoothing technique and a new formulation of system of non-linear inequalities. In Section 3, some numerical experiments are
illustrated and comparison with the other methods is presented. Some concluding remarks are given in the last section.

2. Main Results

In the first subsection, we re-formulate the SNI (2.9) as a system of nonsmooth and nonlinear equations, then we propose a
new smoothing technique to make smooth the each element of reformulated problem. In the next, we propose an algorithm to
solve smoothed reformulated problem.

2.1. Smoothing Techniques

Let us define the function for any y ∈ Rn

y+ := (max{0,y1}, . . . ,max{0,yn})T . (2.1)

Then, problem (1.1) is reformulated as the following system of nonlinear equations:

H(x)+ = 0. (2.2)

By considering the smoothing techniques proposed in our another study [30] and adapt it for “max” function. For any t ∈ R,
define the function φ(t) = max{t,0} which is also stated as

φ(t) =

 0, t ≤ 0,

t, t > 0.

The function φ(t) is re-stated by the help of indicator function as

φ(t) = tψ(t), (2.3)

where,

ψ(t) =

 0, t ≤ 0,

1, t > 0.
(2.4)

The function defined in (2.4) is not smooth. We propose to use the following smoothing function:

ψ
l j(t,ε) =


0, t <−ε,

D j(t,ε), −ε ≤ t ≤ ε,

1, t > ε,

(2.5)

where,

D1(t,ε) =
−1
4ε3 t3 +

3
4ε

t +
1
2
,

and
D2(t,ε) =

3
16ε5 t5− 10

16ε3 t3 +
15

16ε
t +

1
2
,

for j = 1,2. Based on the smoothing functions of indicator function, the smoothing function of φ(t) in (2.3) is defined as

φ
l j(t,ε) = tψ l j(t,ε), (2.6)
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Figure 2.1: The graphics of smoothing functions of indicator functions and smoothing functions of max function.

for j = 1,2.
We illustrate all the smoothing process by using graphs. The graphs of ψ(t) and ψ l j(t,ε) is illustrated in Fig. 2.1 (a) and (b).
In Fig. 2.1 (a), the blue and solid graph indicates the function ψ(t) and the red and dotted one indicates ψ l1(t,ε) and, Fig. 2.1
(b) the blue and solid graph again indicates the function ψ(t) and the green and dashed one indicates ψ l2(t,ε) for ε = 1.
The graphs of φ(t) and φ l j(t,ε) is illustrated in Fig. 2.1 (c) and (d). In Fig. 2.1 (c), the blue and solid graph indicates the
function φ(t) and the red and dotted one indicates φ l1(t,ε) and, Fig. 2.1 (d) the blue and solid graph again indicates the
function ψ(t) and the green and dashed one indicates φ l2(t,ε) for ε = 1.

Lemma 2.1. Let φ l j : R×R+→ R be defined as in (2.6) then,

i. φ l j is continuously differentiable at t ∈ R,
ii. limε→0 φ l j(t,ε) = φ(t) for any t ∈ R,

for any ε > 0 and j = 1,2. Moreover φ l2 is second order continuously differentiable.

Proof. i. The derivative of the smoothing functions φ l j are

d
dt

(
φ

l j(t,ε)
)
= ψ

l j(t,ε)+ t
d
dt

(
ψ

l j(t,ε)
)
,

where,

d
dt

(
ψ

l j(t,ε)
)
=


0, t <−ε,

d
dt (D j(t,ε)), −ε ≤ t ≤ ε,

0, t > ε,

with
d
dt
(D1(t,ε)) =

−3
4ε3 t2 +

3
4ε

,

and
d
dt
(D2(t,ε)) =

15
16ε5 t4− 30

16ε3 t2 +
15

16ε
,

and
d2

dt2 (D2(t,ε)) =
15
4ε5 t3− 15

4ε3 t,

for j = 1,2.
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ii. For any ε > 0 and t 6∈ I = [−ε,ε], then φl j(t,ε) = φ(t) for j = 1,2. Assume that t ∈ [−ε,0], since ψ(t) = 0 we have

0≤ φ(t)−φ
l j(t,ε) = tψ(t)− tψ l j(t,ε)

≤ −tψ l j(t,ε)

≤ ε

2
.

Now, let t ∈ [0,ε] then, we have

0≤ φ(t)−φ
l j(t,ε) = tψ(t)− tψ l j(t,ε)

≤ t
(

1−ψ
l j(t,ε)

)
≤ ε

2
.

From the above results the φ l j(t,ε)→ φ(t) as ε → 0 for j = 1,2.
The proof is completed.

By considering the functions φ l j(t,ε) instead of φ(t), the corresponding smoothing function of φ (hi(x)) is obtained, for
j = 1,2 and i = 1,2, . . . ,n. The resulting smoothing approximation of H(x)+ is stated as a system of smooth nonlinear
equations by

H̃(x,ε) = 0, (2.7)

where

H̃(x,ε) =



φ
l j
1 (x,ε)

φ
l j
2 (x,ε)

...

φ
l j
n (x,ε)


,

and φ
l j
1 (x,ε) = φ l j(h1(x),ε), φ

l j
2 (x,ε) = φ l j(h2(x),ε), . . . ,φ

l j
n (x,ε) = φ l j(hn(x),ε) for ε > 0.

Theorem 2.2. Assume the functions H(x)+ and H̃(x,ε) be stated as in (1.1) and (2.7), respectively. Then, we obtain

‖H(x)+− H̃(x,ε)‖ ≤ ε

2
√

n.

Proof. For any ε > 0,

‖H(x)+− H̃(x,ε)‖2 =
n

∑
i=1

∣∣∣φi(x)−φ
l j
i (x,ε)

∣∣∣2
≤

n

∑
i=1

(
ε

2

)2

= n
ε2

4

for j = 1,2. This completes the proof.

Theorem 2.3. The function H̃(x,ε) is continuously differentiable and the Jacobian of H̃(x,ε) is obtained as

H̃ ′(x,ε) =



∂φ
l j
1 (x,ε)
∂x1

∂φ
l j
1 (x,ε)
∂x2

. . .
∂φ

l j
1 (x,ε)
∂xn

∂φ
l j
2 (x,ε)
∂x1

∂φ
l j
2 (x,ε)
∂x2

. . .
∂φ

l j
2 (x,ε)
∂xn

...
...

. . .
...

∂φ
l j
n (x,ε)
∂x1

∂φ
l j
n (x,ε)
∂x2

. . . ∂φ
l j
n (x,ε)
∂xn


, (2.8)

for any ε > 0.
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2.2. Algorithm

Define the following function

G(x,λ ) =
λ

2
‖H(x)+‖2,

and its smooth approximation

G̃(x,λ ,ε) =
λ

2
‖H̃(x,ε)‖2,

where λ ,ε > 0.

Assumption 1. H̃ ′(x,ε) is invertible for any x ∈ Rn.

Theorem 2.4. Assume that the Assumption 1 is hold. Then, ∇G̃(x,λ ,ε) = 0 if and only if H̃(x,ε) = 0.

Proof. Let ∇G̃(x,λ ,ε) = 0 for any λ ,ε > 0. Then, we have that

∇G̃(x,λ ,ε) = λ [H̃ ′(x,ε)]T H̃(x,ε) = 0. (2.9)

There are two different cases in solving (2.9). At the first one is H̃(x,ε) = 0 in which the proof is directly obtained. At the
second one, H̃(x,ε) 6= 0 and H̃ ′(x,ε) = 0 are obtained. In this case, H̃ ′(x,ε) = 0 contradicts the Assumption 1.

It should be stated that the Assumption 1 is necessary to guarantee the equivalence of problems 2.2 and 2.10.
By considering Theorem 2.4, the following optimization problem

min
x∈Rn

G̃(x,λ ,ε) (2.10)

can be considered as a surrogate problem for H̃(x,ε) = 0.

Remark 2.5. It should be stated that the Assumption 1 is necessary to guarantee the equivalence of problems 2.2 and 2.10.

Theorem 2.6. Let x∗ and x̄ are local minimizers of G(x,λ ) and G̃(x,λ ,ε), respectively. Then,

0≤ G(x∗,λ )− G̃(x̄,λ ,ε)≤ nλ
ε2

8
.

Proof. From Theorem 2.2 we obtain

0≤ G(x∗,λ )− G̃(x∗,λ ,ε) ≤ λ

2

(
‖H(x∗)‖2−

∥∥H̃(x̄,ε)
∥∥2
)

≤ λ

2

∥∥H(x∗)− H̃(x̄,ε)
∥∥2

≤ λ

2

∥∥H(x̄)− H̃(x̄,ε)
∥∥2

≤ nλ
ε2

8
.

It is easy to see that G̃(x̄,λ ,ε)→ G(x∗,λ ) as ε → 0. We now give the following definition.

Definition 2.7. A point x is called as τ−approximate solution for (1.1) if the condition

‖H(x)+‖< τ

is hold.

The following algorithm is proposed in order to solve (2.10), numerically.

Algorithm 1:
1 Choose the starting point x0 and tolerance parameter τ = 10−4. Select the parameters λ 0 > 0, ε0 > 0, L > 1, 0 < η < 1 and

let k = 0.
2 Solve the problem (2.10) by using xk as a starting point. Let xk+1 be the optimal solution.
3 If xk+1 is τ−approximate solution, then stop. Otherwise, update the parameters εk+1 = ηεk, λ k+1 = Lλ k and k = k+1, then

go to Step 2.

It should be noted that Quasi Newton method is used in Step 1. Now, we prove the convergence of the Algorithm I. First, we
define the level set as

L (x0) =
{

x ∈ Rn : ‖H(x)+‖2 ≤ ‖H(x0)+‖2}
for a stating point x0.
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Assumption 2. For any ε > 0 and for a starting point x0, the set

Lε(x0) =
{

x ∈ Rn : ‖H̃(x,ε)‖2 ≤ ‖H̃(x0,ε)‖2}
is bounded.

Theorem 2.8. Assume that Assumptions 1 and 2 are hold. Then, a sequence {xk} generated by Algorithm I converges to the
optimal solution of the problem (2.2).

Proof. It can be seen that xk ∈L
εk(x0) for all k ≥ 0. Since, L

εk(x0) is bounded then there exists set K ⊂N such that {xk} has
a limit point for k ∈ K. Assume that x is a limit point of {xk}. We have to show that x is the optimal solution for (2.2). Thus, it
suffices to show that x̄ ∈L (x0) and ‖F(x̄)‖2 ≤ infx∈L (x0) ‖H(x)‖2.
Let us consider the contrary that x̄ 6∈L (x0), i.e. for sufficiently large k ∈ K, there exist β0 > ‖H(x0)+‖2 and i0 ∈ {1,2, . . . ,n}
such that

h2
i0(x

k)≥ β0 > 0.

Since xk is the global minimum according k−th values of the parameters εk and λ k, for any x ∈L (x0) we have

G̃(x0,λ k,εk)≥ G̃(xk,λ k,εk) =
λ k

2

(φi0(x
k,ε)

)2
+

n

∑
i=1
i 6=i0

(
φi(xk,ε)

)2

≥ λ k

2
β0.

If k→ ∞ then, λ k→ ∞ and limk→∞ G̃(xk,λ k,εk) = ∞. It contradicts with the boundedness of the Lε(x0). Moreover, we have

G̃(xk,λ k,εk)≤ G̃(x,λ k,εk)

for any x ∈L (x0). When k→ ∞, we have G̃(x,λ ,ε)≤ G̃(x,λ ,ε).

3. Numerical Results

In this section, we implement the Algorithm I to some test problems in order to evaluate the efficiency of Algorithm I. We
compare our numerical results with the methods given in [2,7,8,16]. The numerical experiments have been performed on a PC
with Intel Core i5-1035G1 CPU 1.00 GHz and 8GB RAM. The operating system is Windows 10 and the implementations
have been done in MATLAB. At the algorithm, the parameters are taken as ε0 = 10−1 and η = 0.1. It is accepted that the
problem is solved, if the accuracy 10−4 with respect to function value is obtained. The “fminunc” function is used as solver.
The numerical test problems 1 to 7 are of the form (1.1) and the details are presented as follows:

Problem 1. [1, 2] Consider the function H : R2→ R2 such that

H(x) =

sin(x1)

cos(x2)

 .
Problem 2. [1, 2] Consider the function H : R3→ R3 such that

H(x) =


(x1−0.5)2 +(x2−1)2−0.25

−(x1−0.5)2− (x1−1.1)2 + x2
2−0.26

x2 + x2
3−1

 .
Problem 3. [1, 2] Consider the function H : R6→ R6 such that

H(x) =



sin(x1)+ ε

−cos(x2)+ ε

x1−3π + x2
3 + ε

x2−π/2+ x2
4 + ε

−x1−π + x2
5 + ε

−x2−π/2+ x2
6 + ε


,

where ε = 10−5.
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Problem 4. [16] Consider H : R2→ R2 such that

H(x) =

 −x2
1− x2

2− x1 +1+ ε

−x2
1− x2

2 +2x2 +2+ ε

 ,
where ε = 10−7.

Problem 5. [16] Consider H : R5→ R5 such that

H(x) =



sin(x1)+ ε

−cos(x2)+ ε

2x1− x2
1 + x2

3 + ε

2x2− x2
2 + x2

4 + ε

x1− x2 + x2
5 + ε


,

where ε = 10−7.

Problem 6. [16] Consider H : R3→ R3 such that

H(x) =


x1(x1−2)(x1−3)+ ε

x2
2−3x2 +2+ ε

x2
1− x2 + x2

3 + ε

 ,
where ε = 10−7.

Problem 7. [8] Consider H : R2→ R2 such that

H(x) =

 x2
1 + x2

2−1+ ε

−x2
1− x2

2 +(0.999)2 + ε

 ,
where ε = 10−5.

We apply our algorithm also to test problems of the following form:

H(x) =

 hI(x)≤ 0,

hJ(x) = 0,
(3.1)

where I = {1,2, . . . ,m} and J = {m+,m+2, . . . ,n}. The function hI : Rn→ Rm is defined as

hI =



h1(x)

h2(x)

...

hm,


and hJ : Rn→ Rn−m is defined as

hJ =



hm(x)

hm+1(x)

...

hn,
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where the component functions fi, f j : Rn→ R are continuously differentiable. In other words, the function H : Rn→ Rn is
defined as

H(x) =

hI(x)

hJ(x)

 .
It is easy to see that when the set J is empty, the system (3.1) corresponds to the system (1.1). Now consider the following test
problems which are of the form (3.1).

Problem 8. [8] Consider H : R5→ R5 such that

hI(x) =


x1 + x3−1.6+ ε

1.333x2 + x4−3+ ε

−x3− x4 + x5 + ε

 and hJ(x) =

 x2
1 + x2

3−1.25,

x1.5
2 +1.5x4−3

 ,
where ε = 10−5.

Problem 9. [8] Consider H : R3→ R3 such that

hI(x) =

 x1 + x2e0.8x3 + e1.6 + ε

x2
1 + x2

2 + x2
3−5.2675+ ε

 and hJ(x) =
[
x1 + x2 + x3−0.2605

]
,

where ε = 10−5.

Problem 10. [8] Consider H : R2→ R3 such that

hI(x) =
[
0.8− ex1+x2 + ε

]
and hJ(x) =

 1.21ex1 + ex2 −2.2

x2
1 + x2

2 + x2−0.1135

 ,
where ε = 10−5.

Problem 11. [8] Consider H : R3→ R3 such that

hI(x) =
[
x2

1 + x2
2 + x2

3−10000+ ε
]

and hJ(x) =

x1−0.7sin(x1)−0.2cos(x2)

x2−0.7cos(x1)+0.2sin(x2)

 ,
where ε = 10−5.

Table 1: The numerical results

PN SP FSP TIN TFE SFV FV Time
1 (0,1) (3.2471e−06,0.3155) 2 12 2.9236e−06 1.0544e−11 0.2738
2 (1,1,1) (0.8759,0.6721,0.57163) 14 72 6.2936e−07 3.3391e−08 0.3742
3 (0,1,1,1,1,1) (0.0000,0.3156,1.0000,1.0000,1.0000,1.0000) 2 28 7.1189e−05 9.2784e−08 0.3744
4 (1,1) (2,1) 1 6 0 0 0.3342
5 (−1,0,1,2,2) (−1.3024,−0.3418,1,0.8945,0.9801) 11 90 4.4538e−08 1.8001e−11 0.3986
6 (1,2,2) (−0.5814,2.0039,0.8772) 2 16 5.2416e−05 1.5545e−05 0.3118
7 (0,5) (−2.0903e−09,0.9994) 6 36 7.4149e−05 0 0.3498
8 (0.5,2,1,0,0) (0.5018,2.0535,0.9991,0.0382,0) 4 48 7.3160e−09 7.275e−09 0.3065
9 (−1,1,1) (−0.8353,−0.8601,1.9564) 16 84 5.9864e−06 1.5566e−05 0.3715
10 (0,0,0) (−0.1015,0.0992,0) 4 32 4.0599e−05 4.0599e−05 0.3504
11 (0,1,0) (0.4968,0.6296,0) 6 36 3.0136e−06 3.0136e−06 0.3166

The results of the numerical experiments are presented in Table 1. In the Table 1, the problem number (PN), the starting point
(SP), total iteration number (TIN), total function evaluation (TFE), founded solution point (FSP), the norm value of each
smoothed problem ‖H̃(x,ε)‖ in the problem (SFV), the norm value of each problem ‖H(x)‖ in the problem (FV) and total
CPU time (Time) are reported. The satisfactory results are obtained for all test problems. Since, our smoothing functions has
the same value with the original function at the same location, the minimum value is obtained with lower number of iteration.
This property is the main advantage of our method.
The results are compared with the results obtained from the methods suggested in [2,7,8,16] in terms of “TIN” and ”TFE”. The
results are presented in Table 2 and it is observed that all of the test problems are successfully solved by using our algorithm.
Moreover our algorithm presents better results in 82% of all the test problems than other methods in terms of “TIN”.
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Table 2: The comparison of the numerical results with the competing algorithms

Algorithm I Algorithm 3.1 in [2] Algorithm in [16] Algorithm 2.1 in [8] Algorithm 3.1 in [7]
PN TIN TFE TIN TFE TIN TFE TIN TFE TIN TFE
1 2 12 3 - - - - - 3 3
2 14 72 4 - - - - - - -
3 2 28 5 - - - - - 6 8
4 1 6 - - 2 - - - - -
5 11 90 - - 14 - - - - -
6 2 16 - - 18 - - - - -
7 6 36 - - - - 8 12 8 9
8 4 48 - - - - 5 6 4 4
9 16 84 - - - - 24 39 5 5

10 4 32 - - - - 6 8 4 4
11 6 36 - - - - 10 16 9 14

4. Conclusion

A new algorithm with the new smoothing approach is proposed to solve SNI and the convergence of the algorithm is
theoretically presented. The efficiency of our algorithm is illustrated on test problems in the literature. The superiority of our
method among the similar algorithms is proved numerically by considering Table 2. According to the comparison of the results
with the other methods, it is shown that the Algorithm I has many advantages in terms of computational costs. On the other
hand, this study presents a methodology to solve these kinds of problems.
For future works, the proposed smoothing approach can also be applied to other non-smooth problems such as min-max,
complementarity, exact penalty, l1 signal reconstruction and etc. Furthermore, the smoothing function can be used along
with the other algorithms such as Newton type and Conjugate gradient algorithms, and related numerical performance can be
investigated accordingly.
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