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Abstract:
Objective: The aim of  the study is to predict the absorbed radiation dose on thorax CT imaging in geriatric patients with 
COVID-19. 
Materials and Method: The SIEMENS SENSATION 64 CT scanner was performed with real protocols to patients 
(male/female phantom) using Monte Carlo simulation methods with the patient’s real height and weight nts and the actual 
parameters CT scanner. Absorbed organ doses have been calculated based on these Monte Carlo results. These results were 
used to predict the optimal absorbed radiation dose by Artificial Neural Network, Linear Discriminant Analysis, Random 
Forest Classification, and Naive-Bayes Classification algorithms. The dose values were clustered for genders by the Fuzzy 
C-Means algorithm.
Results: The ages of  the patients were between 60 and 70 years. The Body Mass Indexes of  male and female patients 
were 26.11±4.49 and 25.03±4.86 kg/m2 respectively. All classification algorithms, mentioned in the material section, were 
validated with approximately 100% success. The Fuzzy C-Means technique was found to be successful in clustering the dose 
values for gender clusters.
Conclusion: While the predicted   and the observed values of  patients do not change in the organs/tissues around and 
outside of  the thorax, they generally vary in the intra-thoracic organs and tissues. It can be concluded that data-driven 
techniques are useful to obtain optimal radiation doses for organs/tissues in CT imaging.
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1. Introduction
COVID-19 heavily relies on radiological tests, partic-
ularly computed tomography (CT). It is still necessary 
and essential to conduct a thorough and timely study of 
the radiological role in combating COVID-19. Chest CT 
plays an important role in the early detection of lung in-
fection. CT has become an important imaging modality 
for the early diagnosis of patients with COVID-19 pneu-
monia [1].

Chest CT may have higher sensitivity than repetitive 
Reverse Transcription-Polymerase Chain Reaction (RT-
PCR) testing for the diagnosis of COVID-19 because RT-
PCR can be affected by low patient viral load and inap-
propriate clinical sampling. Bilateral, multifocal, ground 
glass opacities (GGO), patchy consolidation, and periph-

eral, and subpleural distribution are typical radiologi-
cal characteristics of COVID-19, especially in the lower 
lobes.

If there is a high clinical likelihood that COVID-19 is the 
cause, repeated RT-PCR testing and chest computed to-
mography (CT) scanning may be combined to make the 
diagnosis. Chest CT can improve COVID-19 diagnosis 
sensitivity, but radiation exposure to patients should be 
minimized, especially for young children and pregnant 
women [2].

Radiology is very important in the management of pa-
tients in intensive care units. Portable chest X-rays are 
frequently utilized, although, in some situations, com-
puted tomography and ultrasound are valuable diagnos-
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tic tools [3]. Ultrasonography works on the same principle 
as x-ray, tomography, and magnetic resonance because it 
works on the basis of echo. However, X-ray is not used in 
this examination method. Ultrasonography is a method 
that enables the visualization of internal organs by us-
ing sound waves with a frequency that is too high for the 
human ear to hear. Ultrasonic imaging is a non-invasive, 
safe, and painless technique that uses sound waves to 
take pictures of the body [4]. The use of multiple imaging 
modalities on the same target in the field of biomedical 
imaging is expanding as more sophisticated methods and 
tools become available. For a variety of applications, for 
instance, simultaneous acquisition of computed tomog-
raphy (CT) and positron emission tomography (PET) has 
come to be accepted in clinical practice. Together with 
CT and magnetic resonance imaging (MRI), which offer 
high contrast and spatial resolution details on anatomi-
cal structures to better characterize lesions, lesions can 
be more accurately characterized by the use of functional 
imaging methods like PET, which lack anatomical charac-
terization but offer quantitative metabolic and functional 
information about illnesses [5]. CT is similar to tradition-
al x-ray radiography in that the x-ray tube and detector 
spin around the investigated body part. CT is a system for 
patients, that is monitored by the technician [6]. 

Unfortunately, the excessive use of radiological imaging 
methods exposes patients to radiation. Both the patient 
and the technicians should be protected from radiation 
as much as possible. Therefore, in recent years, many ma-
chine learning (ML) or artificial intelligence (AI) process-
es have been developed. Because image recognition, ob-
ject detection and tracking, automatic document analysis, 
computational photography, augmented reality, 3D recon-
struction, and medical image processing are just a few of 
the computer vision issues that machine learning can han-
dle. Recent advances in powerful computing and imaging 
technologies in the field of biomedical engineering have 
opened up new avenues for research, and the expanding 
volume of biomedical data necessitates the use of accurate 
machine learning-based data mining methods [7].

This study aims to predict the absorbed radiation dose 
on the thorax in geriatric patients with COVID-19. The 
predictive model was established by both supervised and 
unsupervised learning algorithms.

2. Materials and Methods
2.1. Monte Carlo Simulation
The measurements of the radiation dose and organ ab-
sorbed dose were performed using SIEMENS SENSA-
TION 64 slice CT as the foundation. Patients’ genuine 
heights and weights as well as the SIEMENS SENSATION 
64 slice CT scanner’s actual parameters were measured 
using real patient protocols and Monte Carlo simulation 
techniques. On the basis of these Monte Carlo outcomes, 
absorption organ dosages have been computed. Using 
Monte Carlo simulation techniques, the SIEMENS SEN-
SATION 64 CT scanner was done using genuine proto-

cols on patients (male and female phantoms), using the 
patients’ actual height and weight as well as the CT scan-
ner’s actual characteristics [Figure 1]. 

Based on these Monte Carlo outcomes, absorption organ 
dosages were determined. The CT scanner’s Monte Carlo 
simulation is based on the following criteria: 

• 64 detector rows, 
• axial scan mode, 
• pitch 1, 
• filter 8.0 mm Al 7 Deg Tungsten, 
• mean spectral energy 57.6 keV, 
• scan table increment 1.92 cm, 
• number of rotations 13, 
• source-to-iso-center distance 57 cm, 
• total field size at iso-center 60.6 cm x 25 cm, 
• beamwidth at iso-center 1.9 cm, 
• scan length 25 cm. 

Among the various X-ray tube currents, the medical im-
aging technician chose an x-ray tube voltage of 100 kVp, 
tube current, gantry rotation speeds, and tube current of 
40 mAs [Figure 2]. The X-ray scanner moreover makes 
use of the standard CT scan protocol and this feature, 
tube current modulation while scanning was applied to 
the observations in this work. CT protocol and X-ray 
tube feature selection (like kV, mAs, scan length, etc.) 
are important determinants of radiation dose and image 
quality in CT examinations. 

The Radiation Dosimetry Group of the Department of 
Nuclear Energy at the Federal University of Pernambuco, 
Brazil, developed the MASH and FASH phantoms that 
are employed in our work for the estimation of compa-
rable doses to radiosensitive organs and tissues of the 
human body.

2.2. Predictive Modelling Algorithms

Artificial Neural Network

Artificial Neural Network (ANN) can be defined as a 
system designed to model a machine learning predictive 
method like a human-brain nervous connection. ANN 
consists of connecting artificial nerve cells with each 
other in various ways and is usually arranged in layers. 
It can be realized with electronic circuits as hardware or 
as software in computers. An ANN is a parallel distrib-
uted processor that can store and generalize information 
after learning, according to the brain’s information pro-
cessing technique [8]. Artificial neural networks are used 
to make very fast decisions under different conditions, 
and in solving complex problems by means of simplified 
models. In ANN, artificial neurons are simply clustered. 
The weighted input neurons (Wi*Xi) in the input layer 
send information to the hidden layer with bias (b) as fol-
lows [9]:
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The output layer receives data from the hidden layer. Ev-
ery neuron has a single output, weighted inputs (synaps-
es), and an activation function. The synapses are custom-
izable parameters that transform a neural network into a 
parameterized system clustering is performed in layers 
and then these layers are linked to each other. Therefore, 
one type of ANN is called the Multilayer Perceptron. 
Three or more layers make up a multilayer perceptron 
(MLP). It makes use of a nonlinear activation function 
(most often a hyperbolic tangent or logistic function) to 
distinguish data that isn’t linearly separable. Every node 
in one layer connects to every node in the next, com-
pleting the network’s connectivity. perceptron natural 
language processing (NLP) applications. Basically, ANN 
methodology can be learned from data and worked with 
an unlimited number of attributes [10]. 

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a method that al-
lows the p attributes in the X data set to be divided into 
two or more real groups, and the newly observed units to 
be correctly assigned to the specified classes by means 
of the specified discriminant functions. In the LDA ap-
proach, the conditional probability of P(X| Y=0) and P(X| 
Y=1) with  and  mean and covariance pa-

rameters can be assumed as bigger than some threshold 
T as follows:

Under the homoscedasticity assumption.

LDA is a suitable method for cases where the perfor-
mance is examined in randomly generated test sets and 
the frequencies within the classes are not equal. By this 
method, the ratio of two variances is tried to be max-
imized, as in the F distribution, so that the maximum 
separation is successfully achieved [11].

Random Forest Classification

Random Forest was developed in 2001 by Leo Breiman. 
The random forest consists of a combination of bagging 
methods and random subspace methods proposed by 
Tim Kam Ho. In the random subspace method, the vari-
able that will provide the most appropriate branching is 
determined by a small number of variables randomly se-
lected among all variables [12]. The RF method applies 
bagging learning in training. The method works as fol-
lows with a given training set X with responses Y. For 
b=1, …, B; choosing samples from X and Y, a classification 
(or regression)is trained as follows:,

Figure 1. Human Body Phantom for CT Scan (Siemens Sensation 64)

   a      b

Figure 2. a) Source model of the CT Scanner b) Monte Carlo Simulation model of the CT Scanner (Siemens Sensation 64 with 3D drawing)
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for an unseen sample of .

Random forests are a collection of tree-type classifiers, 
each tree in the forest depends on the values of an inde-
pendently sampled random vector and the same distri-
bution. It can be considered an advanced form of bagging 
method. Considering the application area of the random 
forest, it is seen that it is used for many classifications 
[13]. 
Naive-Bayes Classification

The Naive-Bayes classifier is based on the Bayes theorem. 
Determine with which probability the samples belong to 
which class. In the Naive-Bayes classifier, the attributes 
are all considered to be equally important and the attri-
butes are independent of each other. The Naive-Bayes 
classifier chooses the class in which class the best prob-
ability is calculated [14]. In summary, this classifier as-
sumes that the attributes are independent of each other 
and the attributes are all equally important. Under the 
Bayes Theorem, the conditional probability can be writ-
ten as:

Then a Bayes classifier combines the model with maxi-
mum a posteriori decision rule for some k as follows:

The Naive-Bayes classification algorithm is a classifier 
that is easy to understand, fast to use, and learn. It can 
be used for binary or multiple classifications. Although 
the independence assumption is generally unrealistic, 
Naive-Bayes mostly shows a good classification perfor-
mance. The method struggles with lost value by giving 
up the sample during probability estimation calculations 
[15].

Fuzzy C-Means Clustering

The fuzzy c-means algorithm was first suggested by 
J.Bezdek et al. in 1984. The method is based on the fuzzy 
logic proposed by Zadeh in 1965. The fuzzy C-means 
(FCM) method has been developed by making improve-
ments to the KM algorithm. In this technique, each data 
point can belong to multiple clusters with a degree of 
membership [16]. Like the QM method, the FCM meth-
od is based on the reduction of the uniqueness criterion, 
the cost function. Unlike rigid clustering, in this method, 
each data point is a member of a predetermined num-
ber of clusters with a membership degree between 0 and 
1. The blur constant m used in cluster center and mem-
bership calculations is an important parameter affecting 
the result. The value of this parameter determines the 
maximum turbidity limit. As the value of the turbidity 
constant approaches 1, the clustering result approaches 

solid clustering. Conversely, as the value of the turbidi-
ty constant increases, the turbidity of the processes in-
creases, and the cluster center values   of different clusters 
converge. This parameter also affects the convergence 
speed of the algorithm. The higher its value, the slower 
the convergence speed [17]. The algorithm aims to mini-
mize an objective function

for a partition matrix 

attempting to partition a finite collection of n elements X 
into a collection of c fuzzy clusters.

2.3. Technical Statistical Analysis
The analyses of the study were performed by SPSS 20.0 
(IBM Inc, Chicago, IL, USA) and JASP 0.14.1.0 version. 
The descriptive statistics were presented as mean±SD 
and frequency (percentage). The comparison of the dose 
measurements between genders was performed by In-
dependent Sample t-test and One-way ANOVA for ages.  
Four different classification algorithms (Artificial Neu-
ral Network-Multilayer Percepteron, Linear Discrimi-
nant Classification, Random Forest Classification, and 
Naive-Bayes Classification) to classify the dose values 
for age and gender and the Fuzzy C-Means clustering 
method to cluster the measurements were used. The cor-
relations between the dose values and BMI were checked 
by Spearman’s Rho correlation analysis. The dataset was 
evaluated based on splitting into three sets as training 
(67%), validation (16.5%), and testing (16.5%) parts. In 
all classification methods, 10-fold cross-validation was 
performed, and precision, recall, F1-score, and AUC 
values were calculated. In the fuzzy c-means clustering 
method, AIC, BIC, and Silhouette Measure values were 
determined. P<0.05 value was considered a statistically 
significant result.

3. Results
Information on 9 male and 9 female patients with dif-
ferent heights and weights were included in the study. 
Eleven different age measurement values between 60 and 
70 years were selected for various weights and heights. 
A data set was created totally with measurements of 
198 patients (Male:Female ratio 1:1). In male patients, 
weights were between 59.3 and 108 kg, and heights were 
between 167 and 185 cm. The data varying between 59.6-
94 kg and 155.5-173 cm were obtained in female patients. 
While the mean weight was 81.11±15.71 kg in male pa-
tients and 68.13±14.98 kg in female patients. The mean 
height was calculated as 176.11±7.71 and 164.72±6.99 cm, 
respectively. Although the weight and height of male pa-
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tients were higher, mean BMI values were found to be 
close to each other (26.11 ± 4.49 and 25.03 ± 4.86 kg/m2, 
respectively).

There was no significant change in the absorption dose 
values   according to age in both female and male patients 
(p>0.05). Absorption dose values   of organs were com-
pared between genders. The air kerma absorption dose 
values   per shot differed significantly between genders, 
especially for thorax organs and tissues. While only the 
adrenal dose was significantly higher in male patients 
(p=0.001), the values   of the oral mucosa, lungs, skin area, 
stomach wall, salivary glands, thymus, brain, heart wall, 
lymphatic nodes, skeleton averages, RBM and BSC ab-
sorbed doses were found to be significantly higher in all 
female patients. A significant difference was observed be-
tween genders in similar organs for absorbed dose, CDTI 
volume, and percentage values. The adrenal values   were 
significantly higher only in males, while the brain, oral 
mucosa, lungs, skin area, stomach wall, salivary glands, 
thymus, heart wall, lymphatic nodes, skeleton averages, 
RBM, and BSC absorbed doses values   were significantly 
higher in the females. Similarly, for CDTI volume mea-
surements, only the adrenal value is significantly high-
er in men, brain, oral mucosa, lungs, skin area, stom-
ach wall, salivary glands, thymus, heart wall, lymphatic 
nodes, skeleton averages, RBM, and BSC absorbed dose 
values   in female patients were observed significantly 
higher [Table 1-3].

There was a negative and significant correlation between 
BMI and air kerma absorption dose, absorbed dose, and 
CTDI values of various organs. A moderate negative 
correlation between oral mucosa, liver, salivary glands, 
lymphatic nodes, and BMI (p<0.05); a negatively strong 
correlation was found with breast glandular, lungs, mus-
cle, esophagus, skin area, thymus, heart wall, skeleton 
average, RBM and BSC absorbed dose and weighted dose 
(p<0.01).

The multilayer perceptron classification method was used 
in artificial neural network analysis. In the model created 
for gender classes, 3 hidden layers were determined by 
optimal determination of layers according to informa-
tion criteria. The prediction model obtained was found 
to be quite successful. The predicted gender rates were 
calculated as 45.7% for the male patient class and 54.3% 
for the female patient class. According to ROC analysis, 
the area under the curve (AUC) was calculated as 0.984. 
Moreover,  the AUC for BMI was 0.947, and this showed 
that very successful predictive values   were obtained. The 
sum of square errors (SSE) was 0.019 and the relative er-
ror value was 0.003. The average of the differences be-
tween the predicted   and the observed measurements of 
BMI   was calculated as -0.0019. The most important vari-
ables in the prediction model were determined as BSC 
AD, muscle, extrathoracic airways, weighted dose, oral 
mucosa, thyroid, breast glandular, and salivary glands.

Similar results were obtained for AK, AD, and CDTI 

measurements of gender in the classification analysis 
performed with the Naive-Bayes method. The classifica-
tion error rate was 0% and the gain score was 30. AUC 
was calculated as 0.991. Class rates for male and female 
patients were determined as 50%. The same results were 
found for both training and testing sets. Among the 
measurements, breast glandular, skeleton average, lungs, 
muscle, oral mucosa, and extrathoracic airways were de-
termined as the most important variables according to 
pseudo-BIC (Bayesian Information Criteria) values.

In the linear discriminant classification method, the 
predicted cluster ratio was calculated as 53.3% for male 
and 46.7% for female patients. Precision, recall, F1 score, 
and AUC values   were calculated as 0.978. The lymphatic 
nodes, salivary glands, thymus, BSC AD, Weighted Dose, 
and heart wall among thorax organs and tissues had 
more significant discriminant values   in classification.

In the Random Forest Classification method, the pre-
dicted rates for gender classes were calculated as 58% 
for male and 42% for female patients. Precision, recall, 
F1 score, and AUC values   were calculated as 0.958. The 
most important variables in the prediction model were 
listed as lymphatic nodes, salivary glands, adrenals, oral 
mucosa, skeleton averages, extrathoracic airways, RBM 
AD, and thymus.

In all classification algorithms, the training, testing, and 
validation ratios were considered as 70%, 18%, and 12%, 
respectively. However, in all methods, the success of the 
algorithms was so high, and this is a sign of an overfitting 
problem. Therefore, a 10-fold cross-validation method, 
which is one of the most popular techniques to assess 
the accuracy of the model, was applied to solve this prob-
lem. After the application, the accuracy results decreased 
slightly as expected. However, the most accurate result 
belonged to the Naive-Bayes algorithm again (97.4%). 
Other results of the methods were 91.2% for ANN, 88.7% 
for Linear Discriminant Analysis, and 83.5% for Random 
Forest classification, respectively. 

Finally, the Fuzzy C-Means clustering analysis   was used 
to test how many clusters would be formed by the mea-
surement values   and gender. According to the lowest BIC 
value, two clusters were decided to be suitable (Figure 3). 
For two clusters, R2 = 0.411, AIC = 1983.02, BIC = 2117.12, 
and Silhouette Measure = 0.320 were calculated, and Sil-
houette measure = 0.278 for the male patient group and 
Silhouette Measure = 0.376 for the female patient group. 
Therefore, the most optimal absorbed dose values   for 
thoracic organs or tissues were calculated [Table 4].

The AK, AD, and CDTI values   obtained by the Fuzzy 
C-Means clustering method were presented in Table 6. 
The predicted Air Kerma dose values   for male and fe-
male patients were compared with the observed values. 
The values   estimated by the brain, oral mucosa, colon 
wall, skin, spleen, stomach wall, salivary glands, thyroid, 
extrathoracic airways, skeleton average, and weighted 
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dose measurements were found to be equal or very close 
to each other. The adrenals, breasts glandular, kidneys, 
liver, lungs, esophagus, thymus, heart wall, lymphatic 
nodes, maximum RBM, and BSC dose measurements 
were predicted lower in men and higher in women. Sim-
ilarly, the predictive values of AD and CDTI values were 
performed, and in all three types of dose, the same pat-
tern for genders was obtained. The predictive value for 
males increased while there was a decrease in female pa-
tients or vice versa.

4. Discussion
This study showed that comments on output variability 
related to the combination of two different software ap-
plications (Monte Carlo and Predictive Modeling Algo-
rithms). The use of different methods to calculate organ 
dose in emergency CT scans such as Covid-19 was im-
portant for physicians, health professionals, and patients.  
At the end of this study, it was desirable to summarize 
the current situation in predicting geriatric organ doses 

in CT reviews and draw a roadmap for standardized re-
porting of the basic parameters needed to predict organ 
doses from international CT imaging [18].

The software used was virtual dose measurements with 
Monte Carlo Simulation and organ dose measurements 
in geriatric patients with virtual Phantoms. In addition to 
the existing modulation, the geriatric organ dose results 
of the Monte Carlo simulation were studied with the Pre-
dictive Modeling Algorithms and evaluated statistically. 
The answer to the question is why Monte Carlo simu-
lation and Predictive Modeling Algorithms were used; 
difficulties in accessing the actual patient databases re-
quested during the pandemic period. Homayounieh et al. 
in their study, the study included generalizability of the 
findings and a relatively small number of patients (10-20 
patients per site). However, this is understandable given 
the high workload of medical personnel at health facili-
ties during the pandemic and the manual data collection 
process adopted by the study. As a result of COVID-19 
literature research, the reason for the small number of 

Table 1. Absorbed Dose of Radiation per Incident Air Kerma of or-
gans/tissues between genders 

Absorbed Dose Per 
Incident Air Kerma Male (n=99) Female 

(n=99)

Organ/Tissue Mean±SD p

Adrenals 0.241±0.074 0.115±0.026 0.001*

Brain 0.003±0.001 0.004±0.001 0.011*

Oral Mucosa 0.034±0.004 0.045±0.009 0.008*

Colon Wall 0.004±0.001 0.006±0.001 0.040*

Breasts. Glandular 0.324±0.054 0.333±0.035 0.796

Kidneys 0.088±0.026 0.077±0.017 0.436

Liver 0.125±0.033 0.132±0.031 0.605

Lungs 0.415±0.053 0.495±0.047 0.006

Muscle 0.107±0.011 0.105±0.011 0.605

Oesophagus 0.365±0.052 0.421±0.055 0.050

Pancreas 0.026±0.006 0.027±0.006 0.931

Small Intestine Wall 0.003±0.001 0.004±0.001 0.190

Skin (Area Covered By CT 
Beam) 0.416±0.024 0.464±0.027 0.003*

Spleen 0.094±0.026 0.116±0.030 0.077

Stomach Wall 0.063±0.017 0.082±0.020 0.040*

Salivary Glands 0.027±0.003 0.036±0.007 0.011*

Thymus 0.449±0.055 0.521±0.054 0.019*

Thyroid 0.241±0.044 0.295±0.099 0.258

Extrathoracic Airways 0.022±0.002 0.025±0.005 0.161

Heart Wall 0.431±0.066 0.498±0.058 0.031*

Lymphatic Nodes 0.154±0.024 0.216±0.017 <0.001*

Skeleton Average 0.261±0.031 0.301±0.029 0.008*

Maximum RBM Absorbed 
Dose 0.442±0.048 0.509±0.057 0.024*

Maximum BSC Absorbed 
Dose 0.601±0.059 0.699±0.081 0.014*

Weighted Dose 0.161±0.022 0.183±0.022 0.050

 
*: significant at 0.05 level according to Independent Sample t-test

Table 2. Absorbed Dose of Radiation of organs/tissues between 
genders 

Absorbed Dose Male (n=99) Female 
(n=99)

Organ/Tissue Mean±SD p

Adrenals 1.292±0.398 0.618±0.141 0.001*

Brain 0.014±0.002 0.021±0.004 0.008*

Oral Mucosa 0.185±0.021 0.242±0.053 0.008*

Colon Wall 0.023±0.007 0.031±0.008 0.063

Breasts. Glandular 1.740±0.289 1.788±0.187 0.796

Kidneys 0.473±0.139 0.413±0.092 0.436

Liver 0.671±0.176 0.709±0.166 0.605

Lungs 2.225±0.285 2.658±0.251 0.006*

Muscle 0.573±0.062 0.564±0.059 0.605

Oesophagus 1.961±0.281 2.259±0.294 0.050

Pancreas 0.139±0.035 0.147±0.034 0.931

Small Intestine Wall 0.017±0.005 0.022±0.006 0.258

Skin (Area Covered By CT 
Beam) 2.231±0.129 2.489±0.145 0.003*

Spleen 0.504±0.138 0.619±0.162 0.077

Stomach Wall 0.337±0.091 0.443±0.105 0.040*

Salivary Glands 0.146±0.014 0.194±0.037 0.008*

Thymus 2.409±0.297 2.791±0.291 0.019*

Thyroid 1.293±0.237 1.581±0.531 0.258

Extrathoracic Airways 0.119±0.011 0.133±0.025 0.222

Heart Wall 2.312±0.356 2.673±0.311 0.031*

Lymphatic Nodes 0.827±0.132 1.162±0.092 <0.001*

Skeleton Average 1.394±0.162 1.616±0.154 0.008*

Maximum RBM Absorbed 
Dose 2.375±0.261 2.732±0.307 0.024*

Maximum BSC Absorbed 
Dose 3.225±0.319 3.751±0.429 0.014*

Weighted Dose 0.867±0.117 0.981±0.118 0.050
 
*: significant at 0.05 level according to Independent Sample t-test
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studies based on actual patients is that the pandemic is 
still unfinished. However, the study provides valuable 
data on organ doses taken by geriatric patients that are 
not available in the literature and is a preliminary study 
to highlight the importance of future studies for a larger 
number of patients using more complex simulation and 
prediction techniques [19,20].

Another limitation adopted by the authors is the un-
known accuracy of dose identifiers reported from par-
ticipating health sites. Large-scale CT dose surveys and 
studies often rely on manual reporting techniques, in 
which individuals tend to present general screening pro-
tocols rather than those used for patients at an individual 
level. Direct access to electronic dose records would be 
the best future way to accurately estimate dose levels, and 
these future techniques could be sought-after studies. In 
summary, Homayounieh et al. reported extensive proto-
col changes in the use of CT and radiation doses associat-
ed with COVID-19. “Do you have a specific CT protocol 

for COVID-19 patients?” half of the sites answered “Yes”. 
However, in previous studies, significant differences in 
CT screening protocols have been observed in health-
care institutions around the world, and the current level 
of radiation dose is much higher than the recommended 
low-dose CT screening protocols [21-24].

Controlling the spread of COVID-19 requires early de-
tection and diagnosis. Screening for COVID-19 in CT 
scans as a tool to assist in diagnosis has become incred-
ibly valuable. However, studies on CT dose measure-
ment and reporting, particularly in the age group most 
affected by the disease, have become extremely relevant, 
as there are certain risks associated with the use of CT. 
It will also be important to assess the risks and benefits 
of chest CT scans followed in the context of COVID-19. 
Artificial intelligence (AI), a new technology in the realm 
of medical imaging, has been extremely helpful in the 
fight against COVID-19. Compared to the traditional 
imaging workflow, which mostly relies on human labor, 
AI enables the development of imaging solutions that are 
more secure, accurate, and productive. The main current 
AI-powered applications include the COVID-19 dedicat-
ed imaging platform, lung, and infection region segmen-
tation, clinical assessment, and diagnosis, as well as cut-
ting-edge basic and clinical research. Also, a significant 
number of commercial solutions have been developed 
that effectively use AI to address COVID-19 and abun-
dantly demonstrate the technology’s potential [25]. Using 
a range of imaging techniques can help with COVID-19 
control. The gold standard for clinical diagnosis con-
tinues to be nucleic acid analysis. Nonetheless, imaging 
characteristics, particularly those of CT scans, can re-
veal pleural, bronchial, and lung parenchymal abnormal-
ities. The screening and diagnosis of COVID-19 can be 
enhanced by combining these imaging biomarkers with 
RT-PCR analysis. The results of this review indicate that 
the diagnosis of COVID-19 should be made using an ep-
idemiological history, test results, nucleic acid detection, 
CT imaging, clinical symptoms, and indicators [26]. Like 
in medical imaging, transport units for patients with 
COVID-19 are also important due to contamination. 
There are some studies about the usage of AI algorithms 
in the production of such units. The term “CRBN” refers 
to hazardous and dangerous conditions brought on by 
chemical, nuclear, biological, and radioactive pollutants 
that can be accidentally or purposefully dispersed, harm-
ing both people and the environment. These hazards may 
result in circumstances that directly endanger the lives 
of many people, result in many deaths, or have a signifi-
cant impact on the lives of those impacted. Both on the 
military and civilian levels, an isolated patient transpor-
tation capsule is an essential life-saving tool [27-28].

In conclusion, the organ dose value must be the software 
used and the scan area, and the body part concerned for 
diagnosis. Because COVID-19 is infected in the lungs, 
scans of the thorax region are also used to diagnose it. 
Because of this, the thorax region was selected and organ 
doses were calculated in our study. The dose coefficients 

Table 3. Absorbed Dose of Radiation per CDTI of organs/tissues 
between genders 

Absorbed Dose per CDTI 
Volume Male (n=99) Female 

(n=99)

Organ/Tissue Mean±SD p

Adrenals 0.712±0.219 0.341±0.077 0.001*

Brain 0.008±0.001 0.011±0.002 0.011*

Oral Mucosa 0.102±0.011 0.133±0.027 0.008*

Colon Wall 0.013±0.004 0.017±0.005 0.077

Breasts. Glandular 0.959±0.159 0.986±0.103 0.796

Kidneys 0.261±0.077 0.228±0.052 0.436

Liver 0.371±0.097 0.391±0.091 0.605

Lungs 1.227±0.157 1.465±0.139 0.006

Muscle 0.316±0.034 0.311±0.032 0.605

Oesophagus 1.081±0.154 1.246±0.162 0.050

Pancreas 0.077±0.019 0.081±0.019 0.931

Small Intestine Wall 0.009±0.003 0.011±0.003 0.161

Skin (Area Covered By CT 
Beam) 1.232±0.071 1.372±0.081 0.003*

Spleen 0.278±0.076 0.341±0.089 0.077

Stomach Wall 0.186±0.053 0.244±0.058 0.040*

Salivary Glands 0.081±0.008 0.107±0.022 0.008*

Thymus 1.328±0.164 1.538±0.161 0.019*

Thyroid 0.713±0.131 0.872±0.293 0.258

Extrathoracic Airways 0.066±0.005 0.074±0.014 0.222

Heart Wall 1.274±0.196 1.473±0.171 0.031*

Lymphatic Nodes 0.456±0.072 0.639±0.054 <0.001*

Skeleton Average 0.769±0.089 0.891±0.085 0.008*

Maximum RBM Absorbed 
Dose 1.309±0.143 1.505±0.169 0.024*

Maximum BSC Absorbed 
Dose 1.777±0.176 2.067±0.236 0.014*

Weighted Dose 0.478±0.064 0.541±0.065 0.050

 
*: significant at 0.05 level according to Independent Sample t-test

Adnan Karaibrahimoğlu, Ümit Kara, Özge Kılıçoğlu, Yağmur Kara

95European Mechanical Science (2023), 7(2): 89-98 https://doi.org/10.26701/ems.1262875



Figure 3. The Fuzzy C-Means clusters for gender

Table 4. Predicted Absorption Dose of Radiation for thoracic organs/tissues for Genders by Fuzzy C-Means Clustering  

Air Kerma Absorbed Dose CDTI

Organ/Tissue Male Female Male Female Male Female

Adrenals 0.181 0.175 0.971 0.938 0.535 0.517

Brain 0.003 0.003 0.016 0.019 0.008 0.010

Oral Mucosa 0.035 0.044 0.188 0.238 0.104 0.131

Colon Wall 0.005 0.005 0.028 0.026 0.015 0.014

Breasts. Glandular 0.302 0.355 1.621 1.906 0.894 1.051

Kidneys 0.079 0.086 0.423 0.463 0.233 0.255

Liver 0.116 0.141 0.622 0.759 0.343 0.418

Lungs 0.406 0.503 2.180 2.703 1.202 1.490

Muscle 0.100 0.112 0.536 0.601 0.296 0.331

Oesophagus 0.349 0.437 1.871 2.348 1.032 1.294

Pancreas 0.026 0.028 0.137 0.150 0.076 0.083

Small Intestine Wall 0.003 0.003 0.019 0.018 0.010 0.011

Skin 0.414 0.466 2.220 2.500 1.224 1.378

Spleen 0.096 0.114 0.515 0.609 0.284 0.336

Stomach Wall 0.065 0.080 0.350 0.430 0.193 0.237

Salivary Glands 0.028 0.035 0.153 0.187 0.085 0.103

Thymus 0.431 0.537 2.316 2.883 1.277 1.590

Thyroid 0.246 0.290 1.319 1.555 0.727 0.857

Extrathoracic Airways 0.022 0.025 0.120 0.133 0.066 0.073

Heart Wall 0.407 0.521 2.186 2.798 1.205 1.543

Lymphatic Nodes 0.164 0.206 0.880 1.107 0.485 0.610

Skeleton Average 0.254 0.306 1.365 1.645 0.753 0.907

Max RBM Absorbed Dose 0.425 0.526 2.282 2.823 1.258 1.556

Max BSC Absorbed Dose 0.583 0.716 3.130 3.844 1.726 2.119

Weighted Dose 0.156 0.188 0.835 1.011 0.460 0.557
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reported in the literature for different anatomical re-
gions always represent a case of protocols used in clinical 
practice as examples. However, evaluation of potential 
ionizing radiation harms, particularly for patients, with 
individual or age groups, as in this study, should be based 
on the following: i) the absorbed organ or tissue radia-
tion and the dose taken; ii) appropriate absorbed dose-re-
sponse relationships; iii) the assessment of the risk situa-
tions derived from it. 

There are some studies on the amount of radiation ab-
sorption dose in CT imaging. There are also comparisons 
of measurement values   obtained according to different 
devices. This study includes the prediction of measure-
ments for thoracic organs or nearby organs/tissues. How-
ever, in this study, unlike the others, the measurements 
of geriatric patients with Covid-19 and over 60 years of 
age were determined. In addition, using different data 
science clustering algorithms, optimum predictive val-
ues   were obtained for absorption doses of organs/tissues. 
There was no significant difference between the mea-
surement values   for different age values   of the patients, 
and significant correlation coefficients   were obtained 
for different BMI values. The absorption dose values   of 
thoracic organs or tissues, especially, are correlated with 
BMI. In the comparisons according to gender, it can be 
seen that only the measurement value of the adrenals has 
a higher dose value in male patients, and all other organs/
tissue measurement values   are higher in female patients. 
Adrenals, brain, oral mucosa, lungs, skin, RBM AD, BSC 
AD, thymus, stomach wall, and heart wall generally dif-
fer between genders. Among these, lungs, skin, thymus, 
heart wall, RBM, and BSC dose values   have higher values   
than other organs or tissues [29-31].

The classification algorithms are used to develop predic-
tive models within the data science discipline. The pre-
dictive model is a type of supervised learning technique 
trained using observed information of classes in which 
the true predictive class is adjusted to model the param-
eters. There are many prediction models and new models 
are being developed day by day. Various criteria are used 
for the success and fit of the model. Cross-validation is 
primarily applied as the success criterion of the predicted 
classes. A confusion matrix is defined and varies accord-

ing to the model, then the criteria such as accuracy, pre-
cision, F1 measure, recall, and AUC are generally calcu-
lated. Each model can work better in its specific dataset. 
Therefore, a single model is not used in a study. The mod-
el is established with several predictive methods and the 
results are compared according to the criteria. The model 
with higher criteria values   is considered more success-
ful. In the study, artificial neural networks, Naive Bayes, 
Linear Discriminant, and Random Forest Classification 
methods were preferred as classification (predictive) al-
gorithms by using dose measurement values   according 
to gender classes. Over 95% success has been achieved 
in all of the models, and the criterion values   are usually 
1.0 or close to it. The best classification result was Naive 
Bayes and then ANN, Random Forest, and Linear Dis-
criminant algorithms, respectively. In addition, using the 
clustering algorithm, 2 clusters were determined for the 
data, and air kerma, CDTI, and absorbed dose centroid 
values   were estimated for the organs/tissues of male and 
female patients. While the predicted   and the observed 
values of patients do not change in the organs/tissues 
around and outside of the thorax, they generally vary in 
the intra-thoracic organs and tissues at increasing rates 
for males and decreasing rates for female patients.

There are, of course, some limitations in this study. The 
first limitation is that the study was conducted during 
the COVID-19 outbreak period. There was a lot of work-
forces and a fear of contamination, especially in pandem-
ic intensive care units. The second limitation is difficult 
to obtain information from the radiological department 
due to the large number of patients. Another limitation is 
that the sample size should be, actually, larger in dealing 
with Data Science which needs big data usually. However, 
in the healthcare area, even a small sample size can be 
considered big data.  
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