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Abstract 

In this paper, the Keller-Segel model is analysed. The work 

presented will focus on the mass criticality results for the 

Chemotaxis model. Subsequently the relative stability of 

stationary states are analysed using the Keller-Segel system 

for the Chemotaxis with linear diffusion. In this analysis, 

the techniques of ‘separation of variables’ and ‘standard 

linearization’ were used. Also, the graphics illustrate 

stability or instability in all the cases analysed.  
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Introduction 

 The randomly-determined motion of an entity will be 

discussed here. For example, cells, bacteria, chemicals, and 

animals generally move around randomly. Microscopic 

movement analysis shows that many individual particles 

move irregularly. We know that diffusion is one of several 

transport phenomena that occur in nature. Reaction-

diffusion systems influence local chemical reactions in 

which objects are transformed into each other. This system 

also affects diffusion, whereby the objects spread out over a 

surface (MURRAY, 2002). 

         We denote 𝑎(𝑥, 𝑡) as the gradient in attractant, which 

prompts a movement. The resulting flux of cells will rise 

with the number of cells, 𝜌(𝑥, 𝑡).  It can be written,  

 

𝐽 = 𝜌𝑥(𝑎)𝛻𝑎  
(1) 

  
where  𝐽 is chemotactic flux and 𝑥(𝑎) is a function of the 

concentration of the attractant HILLEN and PAINTER 

(2009). 
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The equation can be written generally for 𝜌(𝑥, 𝑡): 

𝜕𝜌

𝜕𝑡
= 𝑑𝑖𝑣 𝐽 = 𝑓(𝑛) 

where 𝑓(𝑛) introduces the growth term for the cells, the 

total flux, 

𝐽𝑡𝑜𝑡 = 𝐽𝑑𝑖𝑓𝑓 + 𝐽𝑐ℎ𝑒𝑚 

where 𝐽𝑑𝑖𝑓𝑓 = −𝐷∇ρ. Hence, 

𝜌𝑡 = 𝐷𝜌𝑥𝑥 − (𝜌𝜒(𝑎)𝑎𝑥)𝑥 + 𝑓(𝑛) 
 

(2) 

where 𝐷 is diffusion coefficient of the cells. The (2) 

equation is called the reaction-diffusion-chemotaxis 

equation. It is known that 𝑎(𝑥, 𝑡) is a chemical term, and in 

general we may write 𝑎(𝑥, 𝑡): 

𝑎𝑡 = 𝐷𝑎𝑎𝑥𝑥 + 𝑔(𝑎, 𝜌) 
 

(3) 

 where 𝑔(𝑎, 𝜌) is the kinetics term and 𝐷𝑎 is a diffusion 

coefficient of 𝑎. This term depend upon 𝜌 and 𝑎. 

{
𝜌𝑡 = 𝐷𝜌𝑥𝑥 − 𝜒(𝜌𝑎𝑥)𝑥
𝑎𝑡 = 𝐷𝑎𝑎𝑥𝑥 + 𝑔(𝑎, 𝜌)

 (4) 

 

According to KELLER and SEGEL (1970), the kinetics 

terms would be 𝑔(𝑎, 𝑛) = ℎ𝜌 − 𝑘𝑎 where ℎ, 𝑘 are positive 

constant. While (ℎ𝜌) is rational to the number of amoebae 

𝑛, (−𝑘𝑎) introduces decay of attractant activity. One simple 

model is 𝑓(𝑛) = 0, which means that we ignored the 

amoebae production rate. The chemotactic term 𝜒(𝑎) can be 

taken as a constant 𝜒. Then the nonlinear system is written 

with the linear form to 𝑔(𝑎, 𝑛).  
 

{

𝜕𝜌

𝜕𝑡
= 𝐷Δ𝜌 − 𝜒𝑑𝑖𝑣(𝜌∇a)

𝜕𝑎

𝜕𝑡
= 𝐷𝑎Δ𝑎 + ℎ𝜌 − 𝑘𝑎

 (5) 

 

where 𝑎 is the food which it consumed and 𝜌 refers to a 

bacterial population.  
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         This suggests that diffusion is commonly stabilizing 

while chemotaxis is commonly destabilizing because 𝑎 and 

𝜌 have a Laplacian contribution but with different sign. 

 

 The first equation of (5) introduces the cell dynamics. 

This equation describes a diffusive flux model of the 

random motion of cells, with flux modelling directed cell 

movement and velocity proportional to the concentration 

gradient of the chemical. The second equation of (5) is a 

reaction-diffusion equation that represents the chemical 

kinetics, with linear production and degeneration at constant 

rates ℎ, 𝑘 > 0 [2]. The system (5) is called the 'minimal 

chemotaxis model'. This model contains strong dynamics 

such as the universal existence of solution and spatial 

pattern formation. HORSTMAN (2003) and PERTHAME 

(2007) have previously studied this subject.  

 

Definition and Problem 

 

 In this section one-dimensional chemotaxis model will 

be analysed. Let us consider the system (5), namely 

 

{
𝜌𝑡 = 𝐷𝜌𝑥𝑥 − 𝜒(𝜌𝑎𝑥)𝑥
𝑎𝑡 = 𝐷𝑎𝑎𝑥𝑥 + ℎ𝜌 − 𝑘𝑎,

 (6) 

 

The parameters 𝐷,𝐷𝑎 , 𝜒 are constants. 𝐷 and 𝐷𝑎 are the 

diffusion coefficient of the cells and 𝑎, respectively ℎ and 𝑘 

are positive constants. The first term in the first equation in 

(6) involves a Laplacian, representing the random spatial 

motion of the cells. The second term models the 

chemotactic motion of the cells. In the second equation in 

(6) the first term represent diffusion of the chemoattractant 

similar to that of the equation (5). The second term models 

the production of the chemoattractant by the cells, and the 

third term represents linear decay. (KELLER and SEGEL, 

1971) 

 

Initial and Boundary Conditions 

 

The initial conditions for the system (6) are 

 

{
𝜌(𝑥, 0) = 𝜌0(𝑥)

𝑎(𝑥, 0) = 𝑎0(𝑥),
 

 

(7) 

The boundary conditions with no flux for 𝜌 are 

 

{
𝜌𝑥(0, 𝐿) = 0

𝑎𝑥(0, 𝐿) = 0,
 

 

(8) 

This system can be analysed for the linear stability of the 

constant steady states. Let us first consider whether the 

system has any steady states, and in particular whether there 

are any spatially homogenous steady states. Let (𝜌∞,𝑎∞) 
be a constant steady state. The equation (6) equation yields,  

 

ℎ𝜌∞ − 𝑘𝑎∞ = 0 

and the steady state  

(𝜌∞,𝑎∞) = (𝜌∞,
ℎ𝜌∞

𝑘
) 

 

From the conservation of total mass,  

 

∫𝜌(𝑥, 𝑡)𝑑𝑥 = ∫𝜌0(𝑥)𝑑𝑥 

 

Then the steady state 𝜌∞ will be determined by  

 

∫𝜌∞𝑑𝑥 = 𝑀 

This gives us,  

 

(𝜌∞,𝑎∞) = (
𝑀

𝐿
,
ℎ𝑀

𝑘𝐿
). 

 

Linear Analysis  

 

We now consider a perturbation of the linear system for 

𝜌(𝑥, 𝑡) and 𝑎(𝑥, 𝑡)  
𝜌(𝑥, 𝑡) = 𝜌∞ + 𝑢(𝑥, 𝑡) 
𝑎(𝑥, 𝑡) = 𝑎∞ + 𝑣(𝑥, 𝑡) 

 

when the system (6) is arranged for 𝑢 and 𝑣, 

 

{
 

 
𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
− 𝜒𝜌∞

𝜕2𝑣

𝜕𝑥2

𝜕𝑣

𝜕𝑡
= 𝐷𝑎

𝜕2𝑣

𝜕𝑥2
+ h𝑢 − 𝑘𝑣,

 (9) 

 

These coupled PDEs are linear in u and v and so should be 

easier to deal with. The solution may be found by the 

technique of the separation of variables but we need to 

"normal modes" the solution, 

 

𝑢(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) = 𝛼𝑛(𝑡)𝑓𝑚(𝑥) 
𝑣(𝑥, 𝑡) = 𝑣𝑛(𝑥, 𝑡) = 𝛽𝑛(𝑡)𝑔𝑚(𝑥) 

 

where  𝑓𝑚(𝑥) = 𝑔𝑚(𝑥) = cos(𝜇𝑚𝑥) and 𝜇𝑚 =
𝑛𝜋

𝐿
. The 

solution will be a linear homogeneous differential equation 

in 𝑥 and 𝑡. Thus we need to substitute this into the 

differential equation and then 

 

𝛼̇𝑛(𝑡)𝑓𝑚(𝑥) = 𝐷𝛼𝑛(𝑡)𝑓𝑚̈(𝑥) + 𝜒𝜌
∞𝛽𝑛(𝑡)𝑔̈𝑚(𝑥)  

𝛽̇𝑛(𝑡)𝑔𝑚(𝑥) = 𝐷𝑎𝛽𝑛(𝑡)𝑔̈𝑚(𝑥) + ℎ𝛼𝑛(𝑡)𝑓𝑚(𝑡)
− 𝑘𝛽𝑛(𝑡)𝑔𝑚(𝑥 ) 

 

Then the system will be such that 

 

𝛼𝑛(𝑡) = −𝐷𝜇𝑛
2𝛼𝑛(𝑡) + 𝜒𝜌

∞𝜇𝑛
2𝛽𝑛(𝑡)  

𝛽𝑛(𝑡) = −𝐷𝑎𝜇𝑛
2𝛽𝑛(𝑡) + ℎ𝛼𝑛(𝑡) − 𝑘𝛽𝑛(𝑡) 
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which can be re-written in matrix form as 

 

𝜕𝑡𝑈𝑛(𝑡) = 𝐴𝑛𝑈𝑛(𝑡) 

 𝐴𝑛 ≔ (
−𝐷𝜇𝑛

2       𝜒𝜌∞𝜇𝑛
2  

ℎ         − 𝐷𝑎𝜇𝑛
2 − 𝑘

) 
(10) 

 

where 

𝑈𝑛(𝑡) = (
𝛼𝑛(𝑡)

𝛽𝑛(𝑡)
) 

 

We will seek solution to (10) of the form: 

 

det(𝜎𝐼 − 𝐴𝑛) = 0 
 

This gives us, 

 

(
𝛼 + 𝐷𝜇𝑛

2     −  𝜒𝜌∞𝜇𝑛
2  

−ℎ         𝜎 + 𝐷𝑎𝜇𝑛
2 − 𝑘

) (
𝛼0
𝛽0
) 𝑒𝜎𝑡 = 0 

 

(11) 

where 𝛼𝑛(𝑡) = 𝛼0𝑒
𝜎𝑡   and 𝛽𝑛(𝑡) = 𝛽0𝑒

𝜎𝑡. Solutions of the 

linearised system exist if the determinant of this matrix is 

zero, i.e.  

 

(𝜎 + 𝐷𝜇𝑛
2)(𝜎 + 𝐷𝑎𝜇𝑛

2 + 𝑘) − ℎ𝜒𝜌∞𝜇𝑛
2 = 0 (12) 

  
where 𝜇𝑛 = 𝜇. Since our solutions are of the form given by 

(11), in order to detect stable solutions corresponding to 

values of 𝜎 such that 𝑅𝑒(𝜎) < 0, since these solutions do 

not decay over time and may therefore result in a high 

density of cells somewhere in our domain. Accordingly, let 

us re-write as a quadratic in 𝜎:  

 

𝜎2 − (𝑡𝑟𝐴𝑛)𝜎 + det(𝐴𝑛) = 0 (13) 
where 

 

{
𝑇𝑟(𝐴𝑛) = −𝐷𝜇𝑛

2 − 𝐷𝑎𝜇𝑛
2 − 𝑘

det(𝐴𝑛) = 𝜇𝑛
2(𝐷𝐷𝑎𝜇𝑛

2 − 𝐷𝑘 − 𝜒𝜌∞h)
 (14) 

 

Thus there are two possibilities:  

a) 𝜎1 and 𝜎2 are negative, 

b) 𝜎1 is negative and 𝜎2 is positive. 

 

Therefore, it is clearly seen that the conditions 𝜎1 and 𝜎2 are 

negative if and only if det (𝐴𝑛) is positive. Thus, where 

𝜌∞ =
𝑀

𝐿
. Then we get,  

𝑀 <
𝐷𝐿𝑘

𝜒ℎ
 (15) 

 

On the other hand, if 

 

𝑀 >
𝐷𝐿𝑘

𝜒ℎ
 (16) 

 

there exists an interval 𝜇 ∈ [0, 𝜇̂] on which 𝐴𝑛  has one 

positive eigen value, which implies linear instability. We 

have therefore obtained a threshold condition for stability, 

which involves 𝜌∞, 𝐷, 𝜒 and 𝑘. One way to see such a 

condition is that if the ratio 𝐷/𝜒 is sufficiently large, then 

diffusion dominates and the system is stable, whereas if 

𝐷/𝜒 is sufficiently small then chemotaxis dominates and 

the system is unstable. 

 

Results and Conclusion  

 

It can be clearly seen that, the eigenvalues of (𝐴𝑛) are 

both strictly negative for all 𝜇. Therefore the system is 

stable for both eigenvalues in Figure 1 and 2. 

        When two graphs are compared, we have two critical 

results. Firstly, the blue line always remains while the ratio 

of 𝐷/𝜒 changes. On the other hand, the red line slightly 

reduces while the ratio of 𝐷/𝜒 increases.  

 

 

Figure1. 𝐷 = 3.8, ℎ = 0.4, 𝜒 = 0.6,
𝑀

𝐿
= 4, 𝐷𝑎 = 1.4 
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Figure2. 𝐷 = 9.8, ℎ = 0.1, 𝜒 = 0.6,
𝑀

𝐿
= 4, 𝐷𝑎 = 1.4 

It can be seen that both of the systems in the graphs are 

stable. The ratio of 𝐷/𝜒 in the system are 6.33 and 16.33, 

respectively. Even though they are stable, the eigenvalue of 

the second system shows a faster reduction than in the first 

graph. 

On the other hand, if the ratio of 𝐷/𝜒 is sufficiently small 

then we have an unstable situation as in the graph below. 

 

In Figure 3, even though the red line is still stable, the blue 

line is unstable for small variables of 𝜇. After a certain 

point, it starts to become stable again. 

 

Figure3. 𝐷 = 0.8, ℎ = 1.9, 𝜒 = 3.3 ,
𝑀

𝐿
= 4, 𝐷𝑎 = 2 
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