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Abstract 

In this study, explicit exponential finite difference 

schemes based on four different linearization techniques 

are given for the numerical solutions of the Modified 

Burgers' equation. A model problem is used to verify the 

efficiency and accuracy of the methods that we proposed. 

Also comparisons are made with the relevant ones in the 

literature. It is shown that all results that are found to be 

in good agreement with those available in the literature. 

2L  and L  error norms are calculated. The obtained 

error norms are suciently small in all computer runs. The 

results show that the present  method is a successful 

numerical scheme for solving the Modified Burgers' 

equation. 

 

Keywords: Burgers’ equation, Modified Burgers’ 
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Introduction 

Burgers’ equation was first given by Bateman 

(BATEMAN (1915)) and later was studied by Burgers 

(BURGERS (1939), BURGERS (1948)) as a 

mathematical model for turbulence. Since it has an 

extensive usage in engineering and other scientific fields, 

the Burgers’ equation has found applications in various 

fields such as convection and diffusion, number theory, 

gas dynamics, heat conduction, elasticity etc (ROSHAN 

and BHAMRA (2011)). The one-dimensional generalized 

Burgers’ equation is in the form 

0       ,     1, 2
p

t x xxu u u vu a x b p       

in which u  denotes the velocity for space x  and time t  

and 0v   is a constant representing the knematics 

viscosity of the fluid. It is known as Burgers’ equation 

and modified Burgers’ equation for 1p   and 2p  , 

respectively. 
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Many analytical and numerical solutions of equation have 

been published by a number of authors using different 

methods and techniques. An analytical solution of 

Burgers’ equation was given by Benton and Platzman 

(BENTON and PLATZMAN (1972)). Infinite series 

solutions of the equation have been introduced by Miller 

(MILLER (1966)) Kutluay et al. (KUTLUAY et al. 

(1999)) have obtained numerical solutions of one-

dimensional Burgers’ equations by using explicit and 

exact-explicit finite difference methods. A finite element 

approach was used to obtain the numerical solution of 

Burgers’ equations by Öziş et al. (ÖZİŞ et al. (2003)). 

Dag et al. (DAG et al. (2005)) have obtained numerical 

solutions of the Burgers’ equations by using B-spline 

collocation methods. Variational iteration method has 

been used to solve Burgers and coupled Burgers 

equations by Abdou and Soliman (ABDOU and 

SOLIMAN (2005)). The problem we deal with is in 

general form: 

 
2

0       t x xxu u u vu a x b     ,   0tt   

with initial condition 

   xftxu 0,  

and boundary conditions 

   tgtau 1,  ,           tgtbu 2,   

where x  and t  are independent variables, ( , )u u x t , 

 ba,  is the solution region  Rba , , v  is the 

viscosity parameter,  xf ,  tg1  and  tg2  are known 

functions. 

In the present work, main aim is to apply the explicit 

exponential finite difference methods to improve a 

numerical method for the modified Burgers’ equation. In 

the literature many numerical method was applied to 

approximate the solution of the modified Burgers 

equation by several authors. Ramadan and El-Danaf 

(RAMADAN and EL-DANAF (2005)) used the 

collocation method with quintic splines for the solution of 

equation. Then, the equation has been solved by 

Ramadan et al. (RAMADAN et al. (2005)) using the 

colocation method with septic splines. Burgers and the 
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modified burgers equations are solved numerically by 

using the time and space splitting techniques to 

equations, and then using B-spline collocation procedure 

to approximate the resulting systems by Saka and Dag 

(SAKA and DAG (2008)). Numerical solutions of 

modified Burgers’ equation was obtained by using sextic 

B-spline collocation method by Irk (IRK (2009)). 

Grienwank and El-Danaf (GRIENWANK and EL-

DANAF (2009)) obtained the numerical solutions of the 

modified Burgers’ equation by using a non-polynomial 

spline based method. Bratsos and Petrakis (BRATSOS 

and PETRAKIS (2011)) used an explicit numerical 

scheme for solving the modified Burgers’ equation. The 

equation has been numerically solved by Roshan and 

Bhamra (ROSHAN and BHAMRA (2011)) by the 

Petrov-Galerkin Method. 

 

The explict exponential finite difference method have 

been improved by Bhattacharya (BHATTACHARYA 

(1985)) for the solution of heat equation. Bhattacharya 

(BHATTACHARYA (1990)) and Handschuh-Keith 

(HANDSCHUH and KEITH (1992)) used the 

exponential finite difference technique to obtain 

numerical solutions of Burgers’ equation. Bahadır 

(BAHADIR (2005)) obtained the numerical solutions of 

KdV equation for small times by applying the 

exponential finite difference method. Implicit exponential 

finite difference method and fully implicit exponential 

finite difference method were used to solve the Burgers’ 

equation by Inan and Bahadır (INAN and BAHADIR 

(2013)) The Burgers’ equation has been numerically 

solved by Inan and Bahadır (INAN and BAHADIR 

(2013)) by applying the Hopf-Cole transformation to 

equation and then employed the explicit exponential 

finite difference method to approximate the resulting heat 

equation.  

 

Model Problem and Numerical Method 

Model Problem 

We consider the initial boundary value problem for 

modified Burgers’ equation 

 

      ,2

xxxt vuuuu     10  x ,    1t             (1) 

 

with initial condition 

       
 vxc

x
xu

4/exp)/1(1
1,

2

0
                      (2) 

and boundary conditions 

  0,0 tu ,    
   vtct

t
tu

4/1exp/1

/1
,1

0
 .  (3) 

Following (HARRIS (1996)) modified Burgers’ equation 

(1) has the analytic solution 

 
 vtxct

tx
txu

4/exp)/(1

/
,

2

0
  

where  0c  is a constant, 00 1c  . 

 

Numerical Method 

To obtain numerical solutions, the solution region of the 

problem 10  x  is divided by N  equal subintervals of 

length h. We indicate the finite difference approximation 

of ),( txu at the mesh point ),( ni tx  by 
n

iu  in which 

ihxi  ),,1,0( Ni  , nkttn  0  

),2,1,0( n , 
N

h
01

  is the mesh size in x  

direction and k is the time step.  

 

Now let us express the finite difference schemes of the 

initial condition (2) and the boundary condition (3), 

respectively, 

 
 vxc

x
u

i

i

i
4/exp)/1(1

1/
2

0

0


     and 

 00 nu , 

 
 nn

nn

N
vtct

t
u

4/1exp)/(1

/1

0
 . 

We follow the procedure of ref. (BAHADIR (2005)) to 

examine the numerical method. If we suppose that  F u  

is any continuous differential function and multiplying 

equation (1) by 
F

u




 the following equation is obtained: 

 
2

2

2

F u u u
F u u v

u t x x

   
  

   

 
 
 

 

and 

 
2

2

2
.

F u u
F u u v

t x x

  
  

  

 
 
 

                         (4) 

Using  the forward difference approximation for 
F

t




 the 

finite difference representation of equation (4) is obtained 

as: 

     
2

1 2

2

nn

n n n

i i i

i i

u u
F u F u kF u u v

x x

  
   

 

   
    
     
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in which k  is the time step. Let   lnF u u  then the 

expilicit exponential finite difference scheme for equation 

(1) is obtained as: 

 

2
1 2

2
exp

nn

n n

i i n

ii i

k u u
u u u v

u x x

  
  

 

     
     
       

 

 

(5) 

If we use central difference approximation in place of  
2

2

u

x




  in equation (5) 

2

1 1

2 2

2
,  1 i N-1

n
n n n

i i i

i

u u uu

x h

  
  



 
 
 

 

and then apply the following linearization techniques in 

place of the non-linear term 
2 u

u
x




 

 
2

2 1 1

2

2 1 1 1

FD-I.  ,  1 i N-1
2

FD-II.  , 1 i N-1
2 2

n n n
n i i
i

i

n n n n n
i i i i

i

u uuu u
x h

u u u uuu
x h

  
         

   
       
          

   

   


    


 

2

2 1 1 1FD-III.  ,  1 i N-1
2 2

n n n n n
i i i i

i

u u u uuu
x h

    
                

    


 

2

2 1 1 1 1FD-IV.  ,  1 i N-1
3 2

n n n n n n
i i i i i

i

u u u u uuu
x h

    
                 

     


 

respectively, we obtained the following explicit 

exponential finite difference schemes 

   
1

E-EFDM-I.  exp 2
1 1 1 12

n n k rvn n n n n nu u u u u u u ui i i i i i i inh u
i

 
  

      
    

 

 

 
   

E-EFDM-II. 

2

1 1
 exp 2 ,

1 1 1 18

n nu un n i ik rvn n n n nu u u u u u ui i i i i i in nh u u
i i

 
   

      
    

  

 

 
   

2

11E-EFDM-III.  exp 2 ,
1 1 1 18

n nu u
i ik rvn n n n n n nu u u u u u u

i i i i i i in nh u u
i i

 
            

 
  

 

 
   

E-EFDM-IV.  

2

1 1 1
exp 2 ,

1 1 1 118

n n nu u un n i i ik rvn n n n nu u u u u u ui i i i i i in nh u u
i i

 
     

      
    

  

 

respectively, where 
2

,  1 i N-1
k

r
h

   . 

 

Numerical Results and Discussion 

Numerical solutions of model problem are obtained by 

explicit exponential finite difference method. To show 

the accuracy of the results, 2L  and L error norms: 

 
2

2 2
0

N

N j N j
j

L u U h u U


    , 

 maxN j N jj
L u U u U 

     

are used, in which u  and NU  represent analytic and 

computed numerical solutions respectively. Numerical 

solutions are obtained at different times for different 

values of  v , h , t  and 0 0.5c  . The obtained results 

are displayed in Table 1-6 and Figure 1-2. Table 1 and 

Table 2 present 2L  and L error norms with 0.001v  , 

0.0125h  , 0.01t    at different times.  2L  and L

error norms of explicit exponential finite difference 

schemes at 2ft   for 0.01v   and 0.001t   for 

different values of  h  are given  in Table 3 and Table 4, 

respectively. It is seem that the values of 2L  and L  

decrease with decrease of h  in Table 3 and Table 4, 

respectively. The obtained error norms  2L  and L of 

present study are compared with other methods 

(RAMADAN and EL-DANAF (2005), IRK (2009))  for 

0.005v  , 0.005h   and 0.001t   at times 

2, 6,10t   in Table 5. The obtained error norms  2L  and 

L  of the present study are compared with other methods 

(RAMADAN et. al. (2005), SAKA and DAG (2008), 

IRK (2009)) for 0.01v  , 0.02h   and 0.01t   at 

times 2, 6,10t   in Table 6. As seen from the Tables 5-

6, it is observed that the obtained results using the 

explicit exponential finite difference schemes are in good 

agreement with those available in the literature. Figures 1 

and 2 show behavior of the numerical solutions for  

0.01v   and 0.005v   with 0.05h  , 0.01t   at 

times 1, 2, 4, 6,8,10t   for E-EFDM-I. The top and 

bottom curves are at 1t   and 10t  , respectively. It 

can be seen from the figures that the curve of the 

numerical solution decays as the time increases. Note that 

as the viscosity parameter v  gets small the decay gets 

fast.  
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Table 1. 
3

2 10L   error norms with 0.001v , 0.0125h   

and 0.01t  . 

t  E-EFDM-

I 

E-EFDM-

II 

E-EFDM-

III 

E-EFDM-

IV 

2 0.070907 0.070925 0.070888 0.070916 

3 0.061455 0.061509 0.061394 0.061455 

4 0.054713 0.054778 0.054640 0.054710 

5 0.050197 0.050263 0.050122 0.050193 

6 0.046844 0.046908 0.046772 0.046840 

7 0.044160 0.044220 0.044092 0.044156 

8 0.041909 0.041966 0.041845 0.041905 

9 0.039966 0.040020 0.039906 0.039963 

10 0.038257 0.038307 0.038200 0.038254 

 

Table 2. 
3

10L   error norm with 0.001v  , 0.0125h   

and 0.01t  . 

t  E-EFDM-

I 

E-EFDM-

II 

E-EFDM-

III 

E-EFDM-

IV 

2 0.257336 0.257714 0.256925 0.257335 

3 0.223175 0.223464 0.222852 0.223164 

4 0.186933 0.187179 0.186657 0.186920 

5 0.160985 0.161194 0.160751 0.160973 

6 0.141988 0.142166 0.141787 0.141977 

7 0.127328 0.127483 0.127154 0.127319 

8 0.115506 0.115642 0.115353 0.115497 

9 0.105649 0.105769 0.105513 0.105641 

10 0.097656 0.097771 0.097526 0.097648 

Table 3. 
3

2 10L   error norms with 0.01v  , 0.001t   

and 2ft  . 

h  E-

EFDM-

I 

E-

EFDM-

II 

E-

EFDM-

III 

E-

EFDM-

IV 

0.05h   0.43128 0.43130 0.43074 0.43128 

0.025h   0.39014 0.39040 0.38975 0.39014 

0.0125h 

 

0.38071 0.38088 0.38051 0.38071 

0.01h   0.37961 0.37975 0.37944 0.37961 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 
3

10L   error norms with 0.01v  , 0.001t   

and 2ft  . 

h  E-

EFDM-I 

E-

EFDM-II 

E-EFDM-

III 

E-EFDM-

IV 

0.05h   0.87308 0.87702 0.86863 0.87308 

0.025h   0.82601 0.82843 0.82347 0.82601 

0.0125h   0.81577 0.81701 0.81449 0.81577 

0.01h   0.81580 0.81678 0.81480 0.81580 

 

 

 
Figure 1. Numerical solutions for  0.01v   with 0.05h 

, 0.01t   at times 1, 2, 4, 6, 8,10t   for E-EFDM-I. 

 

 

 

Figure 2. Numerical solutions for  0.005v  with 

 

Conclusions 

In this study, explicit exponential finite difference 

schemes based on four different linearization techniques 

have been proposed for the numerical solutions of the 

Modified Burgers' equation. A model problem is used to 

verify the efficiency and accuracy of the schemes that we 

proposed. Also comparisons were made with the relevant 

ones in the literature. 2L  and L  error norms have been 

calculated and given. The obtained error norms are 

sufficiently small in all computer runs. The results show 

that this method is a successful numerical scheme for 

solving the modified Burgers' equation. 0.05h  , 

0.01t   at times 1, 2, 4, 6, 8,10t   for E-EFDM-I.
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Table 5. Comparison of the error norms 2L  and L with those in other studies in the literature at 2, 6,10t   for 

0.005h  , 0.001t   and 0.005v  . 
 2t   6t   10t   

3

2 10L   
3

10L   
3

2 10L   
3

10L   
3

2 10L   
3

10L   

E-EFDM-I  0.22610 0.57843 0.16368 0.32834 0.13882 0.22770 

E-EFDM-II  0.22615 0.57877 0.16377 0.32851 0.13890 0.22782 

E-EFDM-III  0.22605 0.57808 0.16358 0.32816 0.13875 0.22759 

E-EFDM-IV  
0.22610 0.57843 0.16368 0.32833 0.13882 0.22770 

(RAMADAN AND EL-DANAF (2005))   0.25786 0.72264 0.22569 0.43082 0.18735 0.30006 

(IRK (2009))  (SBCM1) 0.22890 0.58623 - - 0.14042 0.23019 

(IRK (2009))  (SBCM2) 0.23397 0.58424 - - 0.13747 0.22626 

 

Table 6. Comparison of the error norms 2L  and L with those in other studies in the literature at 2, 6,10t   for 0.02h  , 

0.01t   and 0.01v  . 

 2t   6t   10t   

3

2 10L   
3

10L   
3

2 10L   
3

10L   
3

2 10L   
3

10L   

E-EFDM-I  0.37027 0.78740 0.31581 0.52579 0.55159 1.28125 

E-EFDM-II  0.37053 0.78941 0.31636 0.52579 0.55187 1.28125 

E-EFDM-III  0.37000 0.78531 0.31524 0.52579 0.55129 1.28125 

E-EFDM-IV  0.37031 0.78740 0.31580 0.52579 0.55158 1.28125 

(RAMADAN ET. AL. (2005)) 0.79043 1.70309 0.51672 0.76105 0.80026 1.80239 

(SAKA AND DAG (2008)) (QBCA1) 0.37911 0.81254 0.32941 0.52579 0.55848 1.28125 

(SAKA AND DAG (2008)) (QBCA2) 0.39473 0.88383 0.31588 0.53910 0.52425 1.28125 

(IRK (2009))  (SBCM1) 0.38474 0.82611 - - 0.55985 1.28127 

(IRK (2009))  (SBCM2) 0.41321 0.81502 - - 0.55095 1.28127 
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