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ABSTRACT The electroencephalogram is a promising tool used to unravel the mysteries of the brain. However,
such signals are often disturbed by ocular artifacts caused by eye movements. In this study, Independent
Component Analysis and Wavelet Transform based ocular artifact removal method, which does not need
reference signals, is proposed to obtain signals free from ocular artifacts. With our proposed method, firstly,
the ocular artifact regions in the time domain of the signal are detected. Then the signal is decomposed into
its components by independent component analysis and independent components containing artifacts are
detected. Wavelet transform is only applied to these components with artifact. Zeroing is applied to the parts
of the wavelet coefficients obtained as a result of the wavelet transform corresponding to the ocular artifact
regions in the time domain. Finally, the clean signal is obtained by inverse Wavelet transform and inverse
Independent Component Analysis methods, respectively. The proposed algorithm is tested on a real data
set. The results are given in comparison with the method in which the zeroing is applied to the classical
independent components. According to the results, it is seen that most of the signal is not affected by the
zeroing and the neural part of the EEG signals is successfully preserved.
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INTRODUCTION

The investigation of psychophysiological signals has become an
important research area by the desire for the human brain to be dis-
covered. Researchers have been trying to understand psychophys-
iological signals and develop Brain Computer Interfaces (BCI) that
can work in harmony with these signals in this area. Electroen-
cephalography (EEG) the result of firing many neurons in the brain
is the commonly used signal type in BCI studies (Wolpaw et al.
2006). The various types of artifacts could interfere) with EEG
signals such as ocular artifacts (OAs), cardiac artifacts and muscle
artifacts. The OAs are the important sources of noise which make
access to neural information difficult in EEG. The high amplitude
of OAs are distorted the neural part of EEG signals (Yang et al.
2015).

The electrooculogram (EOG), which leads to OAs is the result
of eye blinks and movements. These artifacts affect analysis of
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EEG signals negatively. Therefore, EEG signals need to artefact
removal process. In the literature, artifact removal methods have
been proposed such as signal epoch rejection (Kirkove et al. 2014),
regression (Krishnaswamy et al. 2016) and Blind Source Separa-
tion (BSS) methods(James and Hesse 2004; Vigario and Oja 2008).
The Independent Component Analysis (ICA) which is a complex
mathematical technique has been most commonly used to separate
artifacts from EEG signals in many of these proposed methods
(Bell and Sejnowski 1995; Jung et al. 2000; Hyvärinen and Oja 2000).
Various studies have used visual inspection and manual artifact
removal based methods (Akhtar et al. 2012; Mammone et al. 2011).
Beside these methods, several studies that use ICA on the auto-
matic artifacts removal method have been proposed (Sameni and
Gouy-Pailler 2014; Judith et al. 2022). For example, it was reported
an automatic method for ocular removal from simulated EEG sig-
nals based on ICA in a study (Romero et al. 2008, 2009). Sameni
et al. used the ICA based automatic moethod to remove ocular
artifacts from EEG signals (Sameni and Gouy-Pailler 2014). Çinar
et al. presented OD-ICA method for determination of the OAs
(Çınar and Acır 2017).
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In the processes of artifact removal, it is important to recognize
the properties which are decisive of the artifact such as amplitude
and frequency. In order to determine these properties, different
mathematical methods can be used in signal processing. Wavelet
Transform (WT) is a very useful mathematical technique that al-
lows to analyze signals, in the scale-time domain. The WT and
ICA based OA removal methods are introduced in the literature.
Nguyen et al. developed a real time neural network algorithm
based on Wavelet for EEG artifact (Nguyen et al. 2012). Kelly et
al. proposed a new method for use in high dimensional neural
data based on Wavelet thresholding and ICA to localize artifacts
(Kelly et al. 2010). Similarly, Ghandeharion et al. presented a new
automatic artefact detection method which based on a combina-
tion of ICA and WT (Ghandeharion and Erfanian 2010). In the
previous studies, ICA used for EEG decomposition. The artifactual
Independent components (AICs) are rejected and the other ICs are
used in reconstruction of artefact free EEG. The WT is also used
for the focus of the signal to the frequency components containing
artifacts by dividing the EEG signal into frequency components.

In this study, an eye artefact removal algorithm has been pro-
posed. The eye artefact removal algorithm, unlike the studies in
the literature, applies the zeroing operation only to the artifact-
containing time segment of the relevant frequency component of
the artifact. The proposed eye artefact removal algorithm apply
a series of ICA decompositions to the EEG signal. The algorithm
detects and extracts artifactual ICs (AICs) by selecting the best
estimation with high correlation for automatic artifact detection.
Thus, the proposed method, achieved much improvement in terms
of removing OAs and preserving the neural part of EEG signals.

MATERIALS AND METHODS

EEG Acquisition
The data acquisition experiments is performed by 8 adult subjects.
During the experiments, the subjects are imagined that they write
Turkish syllables which are ’mer’, ’ha’, ’ba’ and ’ar’, ’ka’, ’daş’
on the screen. These syllables are the pieces of sound used to
vocalize the ’hello’ and ’friend’ words in Turkish. The brain signals
are recorded during the experiments by using 8 EEG gold-plated
electrodes placed on scalp. Sampling rate is selected as 500 Hz.
Electrodes placement is shown in Figure 1. The experimental
procedure is also given in Figure 2. Before the recording, the
subjects performed the experiment in a short training session. Each
trial is recorded for 4 seconds duration which has rest period for
one second. The EEG signals are obtained by use a Bioradio device
which has been developed by Great Lakes NeuroTechnologies. The
dataset is also published on Kaggle under the name "EEG Dataset
with Ocular Artifact".

Figure 1 Electrodes placement.

Figure 2 The experimental procedure.

Independent Component Analysis (ICA)

For BCI systems, it is essential to remove artifacts from the ac-
quired signals as a result of eye movements, heartbeats, muscle
activities and similar noises (Sahonero-Alvarez and Calderon 2017;
McMenamin et al. 2011). The ICA method is used to convert a
linearly mixed set of signals into another set that is independent
of each other (Hyvärinen and Oja 2000; Stone 2002). The base of
ICA relies on statistical independence. The general ICA approach
is given by Equation 1. x(t), A and s(t) represent the signal vector
received from the electrodes, the mixing matrix and the original
source vector, respectively.

x(t) = γs(t) (1)

ICA method tries to determine unmixing matrix U that an
approximately inverse of γ and given in Equation 2.

Ux(t) = O(t) (2)

O(t) is approximate original signal which separated from
sources. The FastICA algorithm is preferred for the parallel imple-
mentation convenience in this paper (Behera 2009). The FastICA
algorithm uses kurtosis for the independent components estima-
tion (Langlois et al. 2010).

FastICA performs by the following procedure;

1. Initialize Ui (randomly)
2. U+

i = E(ϕ
′
(UT

i X))Ui − E(xϕ(UT
i ))

3. Ui =
U+

i
||U+

i ||
4. if i = 1, go to step 7. otherwise continue with step 5.
5. U+

i = Ui − ∑
j−1
j=1 UT

i UjUj

6. Ui =
U+

i
||U+

i ||
7. If converged go back to step 1 with i = i+ 1 until all components
are extracted else go back to step 2.

Wavelet Transformation (WT)

Wavelet transform is a very useful mathematical technique that
allows to analyze EEG signals, in the scale-time domain. The WT
is used to analyze in more detail the AICs. WT expresses the signal
at different scales and time relative to the main wavelet. WC and
ψ show Wavelet Coefficients and the mother wavelet respectively.
The WCs are calculated in Equation 3 (Liu et al. 2023).

WC(Sca, Pos) =
∫ +∞

−∞
x(t)ψ(Sca, Pos, t)dt (3)

112 | Erkan et al. CHAOS Theory and Applications



Much more efficient WT, Discrete Wavelet Transform (DWT)
which scaled and shifted by powers of two. The DWT calculation
is given in Equation 4.

DWT(i, m) = ∑
i

∑
m

x(m)2−i/2ψ(2−in − m) (4)

The Daubechies mother wavelet which is the fundamental
function to analyze the analog signals is used in DWT (He et al.
2007). 3 Level DWT decomposition is applied to the ICs by using
Daubechies mother Wavelet. DWT levels of the ICs are given in
Figure 3. The zeroing process is applied to only 3th level of the
approximate DWT coefficients.

Figure 3 DWT levels of the ICs.

Eye Artefact Remover
In this section, the OA removal approach is given detailed.

Threshold Determination Determination of the threshold value is
also important process in removal methods. The threshold value
is determined according to each EEG signal by the proposed algo-
rithm, although the value is usually fixed in existing studies (Kelly
et al. 2010; Çınar and Acır 2017). Previous studies have found that
blinking occurs in the 0.5 to 3.5 Hz frequency range. We used
approximately this frequency range in our study (Nguyen et al.
2013). The threshold determination process is given in Figure 4.

Figure 4 The threshold determination process.

The threshold value is obtained by the IIR and moving mean
filtering. The frequency range is chosen as 0.6-3.8 Hz.

Artifact Detection OAs are components of lower frequency and
higher amplitude than the neural part of the signal. The OAs are
detected by using peak properties such as PPV and PVD which
represent peak prominence value and peak distance value. The
PPV that the minimum vertical distance that the signal must de-
scend on either side of the peak before either climbing back to a
level higher than the peak and the PDV that the distance between
the two peaks are given in Figure 5. OAs create peaks in a certain
band range in EEG signals. Determining the threshold value in
this band range directly affects the OA detection success of the
system. The minimum PPV and the minimum PDV are chosen as
0.3 s and 1.3e − 04 µV respectively. After determining the peak of
the artifact by threshold, the bottoms of the artifact are determined
by descending from both points of the artifact peak.

Figure 5 The sample EEG trial with OAs.

The height of descending point are determine the downward
trend of the point. The bottom points of the artifact are reached,
when the downward trend finish. The bottom points of the artifact
determines the OA region which is on the wavelet coefficients of
the AICs to use in the zeroing. However, Savitzky Golay filter was
preferred for signal smoothing. The threshold value, smoothed
signal, the OA region and peak bottoms are shown in Figure 6.

The artifact detection process is also applied to the ICs which
obtained by ICA decomposition. Thus, AICs which are related
with OAs are obtained. The result of a sample ICA decomposition
is given in Figure 7. The OA regions, which given in Figure 6 and
Figure 7 are suppressed by the zeroing process. The estimated
AICs by the eye artefact removal algorithm are shown by yellow
triangle marker in Figure 7.

Artifact Removal Process The block diagram of eye artefact re-
moval is given in Figure 8. In Figure 8, first, It is applied ICA
decomposition to the trials OA-containing by the eye artefact re-
moval. After performing the ICA decomposition, the AICs are
automatically identified by eye artefact removal and WT is applied
to the AICs. The zeroing is applied only to the OA regions of AICs’
third level approximate wavelet coefficients. Thus, the neural part
of EEG signals is more successfully protected. Finally, the OAs free
EEG signal is obtained by the inverse WT and ICA composition.
The original EEG signal, training of the OA extraction process and
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Figure 6 Sample EEG signal.

Figure 7 The result of a sample ICA decomposition.

clean EEG signal are given in a, b, c of Figure 9 which is the eye
artefact removal application screenshot respectively.

The FastICA method is used for signal separation. The eye
artefact removal obtains the best possible separation result by six
iterations for one EEG trial.

Performance Evaluation
There is no general performance evaluation for artifact removal
methods. As is known, EEG includes OA from a separate source
such as eye muscles. These signals are highly inconsistent due to
volumetric differences in their source. Therefore, after applying a
perfect OA removal algorithm, the originally artifact-free portions
of the signal should remain the same after EOG removal. This
situation can best be expressed with the CC and STD parametrics
(Kelly et al. 2010). For artifact removal evaluation has been used
EEG experts or synthetic EEG data in the literature (Islam et al.
2016). Beside the non objective methods, Correlation Coefficient
(CC), standard deviation difference (STD D.) and exterior standard

Figure 8 The general block diagram of the eye artefact removal
algorithm.

Figure 9 The eye artefact removal application screenshot.
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deviation difference (E. STD) can be used to conduct a comparison.
The CC and E. STD are given in Equations 5 and 6 respectively:

CC(x, y) = ∑(So − S̄o)(Sc − S̄c)√
∑(So − S̄o)2(Sc − S̄c)2

(5)

E.STD(x, y) =

√√√√ 1
N

N

∑
i=1

(So − Sc)2 (6)

where S̄o and S̄c represents mean of the original EEGSo and
clean EEG Sc. The N represents length of the selected window in
Equation 4. The CC and STD respectively, show how well the shape
of the result signal is preserved and how much the signal power
is affected. The high CC represents minimum changing between
original and result EEG signal. Another evaluation criteria is the
mean squared error between the STD of the original and result
EEG signal. This is called as exterior STD (E. STD). (Kelly et al.
2010; Jafarifarmand et al. 2017). The CC, STD D. and E. STD are
calculated for both original and result EEG signals.

RESULTS

Data were obtained from 8 healthy subjects. The number of trials,
the number of trials containing OA, the mean number of AICs and
the OA detection success are given in Table 1. The OA detection
success is also confirmed by the expert.

■ Table 1 The results of the experiments

Number Mean OA

Subject Number of trials number of detection

of trials with OA AICs success %

S1 227 108 3.07 96.30

S2 233 122 3.07 98.36

S3 230 125 3.24 95.20

S4 231 147 3.15 95.92

S5 231 158 3.01 98.73

S6 230 183 3.06 98.91

S7 118 28 3.26 96.43

S8 116 30 2.62 100

The mean number of AICs is observed about 3 in Table 1. It
means that the zeroing process affects about 3 ICs for each EEG sig-
nal. The comparison of eye artefact removal and classical zeroing
method results is given in Table 3.

■ Table 2 OA removal by eye artefact removal-ICs zeroing

CC STD E. STD

Subject (x10−2) (x10−6) (x10−9)

S1 64.24±19.97 87.75±86.32 3.33±4.55

S2 57.43±19.71 75.67±90.07 3.99±6.78

S3 53.57±19.04 78.38±62.08 3.78±4.24

S4 55.75±19.20 67.52±56.17 2.13±2.34

S5 48.43±16.03 85.68±57.54 1.28±1.38

S6 55.18±16.76 66.78±48.86 0.93±0.84

S7 61.40±18.92 72.97±49.09 1.34±1.66

S8 79.87±19.73 53.04±66.23 0.86±2.30

■ Table 3 OA removal by eye artefact removal

CC STD E. STD

Subject (x10−2) (x10−6) (x10−9)

S1 98.82±0.35 3.87±4.27 1.32±1.75

S2 98.70±0.39 5.37±6.22 1.74±1.92

S3 98.42±0.40 4.74±4.80 2.11±1.88

S4 98.05±0.44 4.76±6.09 1.38±1.27

S5 98.98±0.34 3.70±4.18 0.83±0.60

S6 99.34±0.19 2.92±3.06 0.68±0.45

S7 97.01±0.54 5.18±5.80 1.05±1.16

S8 98.22±0.49 5.10±5.46 0.38±0.65

The success of the eye artefact removal algorithm is shown in
Table 3 and a,b of Figure 10. The comparison of three signals which
original, cleared by eye artefact removal and cleared by classic ICA
zeroing is also given in b of Figure 10. The values are given in
Table 2 and Table 3 as mean ± standard deviation.
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Figure 10 Visual comparison of eye artefact removal.

CONCLUSION

According to the experimental results, we have obtained that
the proposed eye artefact removal algorithm shows superior per-
formance over several commonly-used ICA based methods on
OA removal. As seen from Table 2 and Table 3, the proposed
method is better than classical zeroing method. As given in Table
3, 99.34±0.19 CC value is achieved with Subject 6. The eye artefact
removal algorithm never disturb any part of the signal except the
OA regions which are shown as sample in Figure 7.

The eye artefact removal obtains the best possible separation
result by six iterations for one EEG trial. The algorithm is used
the FastICA method for signal separation. The selected separation
method is also suitable for parallel programming. In the future,
it is intended to increase of the eye artefact removal algorithm
effectiveness with the parallel program version and analyze of the
results of the eye artefact removal on classification.

In this paper, the eye artefact removal algorithm is proposed
to remove OAs full automatically from OA contaminated EEG
signals without any reference signals and user intervention. The
performance of the eye artefact removal algorithm is tested on
a real EEG dataset. The results are shown that the proposed al-
gorithm could successfully eliminate OAs from real EEG signals
and protect neural information with minimum loss. And also, the
proposed algorithm is superior to the classical ICs zeroing method.
The WT ensured that the signal was better separated and focused
on the responsible frequency domain. The proposed algorithm,
similar to the studies in the literature, detects OA on the EEG sig-
nal and performs OA reset. However, unlike the studies in the
literature, applies the zeroing only to the artifact-containing time
segment of the relevant frequency component of the artifact. By
the applying of the zeroing to the OA regions of AICs’ wavelet
coefficients with a novel approach, a large amount of the EEG
signal is not affected by the zeroing and the neural part of EEG
signals was successfully protected.
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