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Interpretable QSAR Modelling for QSAR-Based Virtual 
Screening of 3H-Thiazolo[4,5-b] pyridin-2-one Derivatives 
as Potential Antioxidant Drug Candidates

SUMMARY

A quantitative structure-activity relationship (QSAR) study has been 
carried out for 32 N3 substituted 3H-thiazolo[4,5-b] pyridin-2-one 
derivatives as potential antioxidant drug candidates. The genetic 
algorithm (GA) and multiple linear regression analysis (MLRA) 
were used as appropriate techniques for descriptor selection and 
correlation model generation. The four best regressions for predicting 
the ability to scavenge the DPPH radical were generated as three-
parameter QSAR models with the highest statistical characteristics 
and predictive power. It was shown that a set of 2D, 3D, and 
Molecular properties descriptors play a crucial role in antioxidant 
activity enhancement. Small hydrophilic molecules with the minimal 
distance of specific atoms and fragments from the center of mass, 
neglectable electronic density redistribution between the distant 
atoms, and molecules keeping strong symmetry of electronegative 
atoms along the 1st principal component axe exhibit higher activity. 
Validation parameters of the generated models allow us to state that 
they satisfy the statistical requirements for their goodness-of-fitting 
with no current overfitting. The predictive ability of the constructed 
models was assessed with both internal and external validation 
approaches and estimated with the leave-one-out and leave-group-
out cross-validation coefficients (Q2

LOO and Q2
LGO). The values 

of Q2
LOO (0.7060  0.7480) and Q2

LGO (0.6647  0.7711) are 
reasonable, showing that the models are significant and robust to 
predict the free radical scavenging activity of the compounds from 
both training and validation sets. Applicability domain-defining 
technique was employed in the obtained models, and indicated that 
most structures were adequately represented by the chemical space of 
the models.
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Potansiyel Antioksidan İlaç Adayları Olarak 3H-Tiazolo[4,5-b]
piridin-2-on Türevlerinin QSAR Tabanlı Sanal Taraması için 
Yorumlanabilir QSAR Modellemesi

ÖZ

Potansiyel antioksidan ilaç adayları olarak 32 N3 sübstitüe 
3H-tiazolo[4,5-b]piridin-2-on türevleri için kantitatif yapı-aktivite 
ilişkisi (QSAR) çalışması yapılmıştır. Tanımlayıcı seçimi ve korelasyon 
modelleri oluşturmak için uygun teknikler olarak genetik algoritma 
(GA) ve çoklu doğrusal regresyon analizi (MLRA) kullanıldı. DPPH 
radikalini temizleme yeteneğinin tahmini için en iyi dört regresyon, en 
yüksek istatistiksel özelliklere ve öngörü yeteneğine sahip üç parametreli 
QSAR modelleri olarak üretildi. Bir dizi 2D, 3D ve Moleküler özellik 
tanımlayıcılarının, antioksidan aktiviteyi artırmada çok önemli bir 
rol oynadığı gösterilmiştir. Belirli atomların ve fragmanların kütle 
merkezinden minimum uzaklığa sahip olduğu küçük hidrofilik 
moleküller, uzak atomlar arasındaki ihmal edilebilir elektron 
yoğunluğu dağılımı ve 1. ana bileşen ekseni boyunca elektronegatif 
atomların güçlü simetrisini koruyan moleküller daha yüksek 
aktivite sergiler. Oluşturulan modellerin doğrulama parametreleri, 
bunların mevcut aşırı uyum olmadan uyumun iyiliği için istatistiksel 
gereksinimleri karşıladığını belirtmemize olanak tanır. Oluşturulan 
modellerin tahmin yeteneği, hem iç hem de dış doğrulama yaklaşımıyla 
değerlendirildi ve birini dışarıda bırak ve grubu dışarıda bırak 
çapraz doğrulama katsayıları (Q2

LOO ve Q2
LGO) ile tahmin edildi. 

Q2
LOO (0.7060  0.7480) ve Q2

LGO (0.6647  0.7711) değerleri 
makul olup, modellerin hem eğitim hem de doğrulama setlerinden 
bileşiklerin serbest radikal yakalama aktivitesini tahmin etmek için 
anlamlı ve sağlam olduğunu göstermektedir. Elde edilen modellerde 
uygulanabilirlik alanı tanımlama tekniği kullanılmış ve çoğu yapının 
modellerin kimyasal uzayı tarafından yeterince temsil edildiği 
belirtilmiştir. 

Anahtar Kelimeler: 3H-tiazolo[4,5-b]piridin-2-on, QSAR, 
çoklu doğrusal regresyon (MLR), antioksidan aktivite, 
uygulanabilirlik alanı
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INTRODUCTION

Nowadays, the discovery of effective antioxidant 
agents among small molecules is a recent problem 
that requires new methodological approaches devel-
opment for the synthesis of novel compounds and 
their pharmacological activity screening. At the same 
time, it is also a society-relevant task of life sciences 
(Vieira & Santos, 2017). Environmental stress factors 
like pollution, drought, temperature, excessive light 
intensities, and nutritional limitations can increase 
the production of reactive oxygen and nitrogen spe-
cies (Pizzino et al., 2017). Their highly reactive po-
tential is discussed to be responsible for some human 
diseases, e.g. cancer and cardiovascular diseases. It 
can cause oxidative damage to proteins, DNA, and 
lipids in both humans and microorganisms (Pisos-
chi & Pop, 2015). Despite the tremendous progress in 
natural antioxidants, elaboration with the new purifi-
cation and composition methodologies development 
and novel synthetic antioxidants and drug-like mole-
cules designing, possessing strong antioxidant effects 
is still a challenging task (Kontogiorgis et al., 2005). 

Both thiazole and pyridine scaffolds are of the 
highest priority in modern medicinal chemistry (De et 
al., 2022). Different approaches have been developed 
and introduced for synthesis of new thiazole-based 
and pyridine-based heterocyclic compounds as bio-
logically active substances (Chaban et al., 2018; Nazir 
et al., 2023). Also, numerous reports concerning the 
variety of biological effects possessed by thiazolopyri-
dine annulated system derivatives have been current-
ly published, including their derivatives evaluations as 
potent antioxidant (Shi et al., 2009), antifungal (Oth-
man et al., 2021), anticancer (Chaban et al., 2012), 
antimicrobial (El-Mawgoud, 2019), anti-inflammato-
ry (Kamat et al., 2020) and tuberculostatic (Chaban 
et al., 2014) agents. Diverse kinds of activities, good 
drug-like properties, and structural functionalization 
possibilities have led to increasing interest in the de-
sign, pharmacological evaluation, and virtual screen-
ing proceedings of thiazolopyridine analogs.

In the last decades, virtual screening approaches 
and tools, including quantitative structure-activity 
and structure-property relationship analysis, comput-
er molecular modeling methodologies, and combina-
torial synthesis in combination with high-throughput 
total screening became the current pipeline in hit 
biologically active compounds discovering in ear-
ly stages (Neves et al., 2018). Modern ligand-based 
strategies including structure similarity search, quan-
titative structure-activity relationship (QSAR) analy-
sis and modeling of pharmacophores for libraries of 
low molecular weight compounds, are in the process 
of development (Muegge & Oloffa, 2006; Ekins et al., 
2007). Thus, methods of designing new drug-like 
compounds based on such strategies increase the effi-
ciency of creating potential drugs significantly at the 
stage of lead identification and their structural opti-
mization. QSAR analysis was developed and intro-
duced into the drug design process as the statistically 
significant tool to correlate structural descriptors of 
compounds with their biological activities or toxicity. 
During the recent decades, QSAR became an incred-
ible part of achieving more potent biologically active 
compounds via hit identification and hit-to-lead opti-
mization. Nowadays, drug design with QSAR analysis 
workflow is commonly used as one of the preliminary 
stages of high-throughput screening technologies as 
the labor-, time-, and cost-efficient technique to ob-
tain compounds with desired biological properties. 
Knowledge of structure-activity regularities makes 
it possible to predict ways for the synthesis of novel 
and more effective drug candidates within particular 
chemical series, contributes to a deeper understand-
ing of their action mechanisms and opens the possi-
bility of virtual screening for compounds before their 
direct synthesis using the obtained QSAR models. 

This research aimed to develop interpretable 
QSAR models for a series of 3H-thiazolo(4,5-b)pyr-
idin-2-one derivatives as potential antioxidant drug 
candidates, which can be used further for QSAR-
based in silico screening of virtual libraries in the 
same chemical domain. 
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MATERIAL AND METHODS

Dataset curation workflow

Molecular 2D structures of thiazolo(4,5-b)pyr-
idin-2-ones were drawn with ACD/ChemSketch 
chemical formulas redactor (https://www.acdlabs.
com/, assessed March 30, 2023). Later, they were con-
verted to 3D structures using Hyper-Chem 7.5 soft-
ware. Molecular mechanics energy minimization of 
all compounds was carried out using the MM+ force 
field, and repeated minimization was performed using 
the semi-empirical AM1 quantum-chemical method 
for closed-shell systems until the root-mean-square 
(RMS) deviation of 0.01 kcal/mol was achieved. Con-
formations of compounds were optimized through 
the AM1 method with the global minima selection 
among all energy-minimal conformers. 3D globally 
minimized structures as hin HyperChem output were 
converted into SMILE (.smi) format, structural data 
file (SDF) was prepared with E-BABEL on-line ver-
sion. 20 Subsets of molecular descriptors were calcu-
lated using E-DRAGON software (Tetko et al., 2005). 
The structural parameters calculated after discarding 
the constant and the near constant values were saved 
and further analyzed. Before starting the construction 
of the models, the descriptor normalization proce-
dure was carried out, and the values of all generated 
descriptors were scaled as (1): 

X X X
X X
, ,

,

max min

min
ij
n

i j

ij j
= -

-
                                           (1),

where Xij and Xij
n are the original and normalized 

values of the descriptor j (j = 1, 2, … , К) for ith com-
pound (i = 1, 2,…, 32), respectively; Xj,min and Xj,max  
are the minimal and the maximal values for the jth 
descriptor. Thus, for all normalized descriptors, the 
following criteria are fair: min ( Xij

n )= 0 and max (      
Xij

n ) = 1. The overall data set was then split into train-
ing and test (validation) sets manually using the ac-
tivity sampling approach in the ratio 24:8, according 
to which the training set consisted of 24 compounds 
(75% of all), and the validation set contained 8 com-
pounds (25%). The selection of the optimal set of mo-

lecular descriptors was carried out using the genetic 
algorithm. Variables selection was carried out within 
each of the descriptor modules (0D‐,1D‐, 2D, 3D, and 
module “Other”) firstly using a previously reported 
approach (Suleiman et al., 2014). The Multiple Linear 
Regression (MLR) method was applied to generate 
structure-antioxidant activity QSAR models with the 
training set compounds using the BuiltQSAR pro-
gram (de Oliveira & Gaudio, 2000).

Statistical data analysis, internal prediction of 
models` stability, and external validation

The constructed models were evaluated by the val-
ues of the statistical indicators such as the coefficient 
of determination R2, the standard deviation s and the 
value of the Fisher test F. Adjusted regression coef-
ficient R2

adj was used to ensure that all independent 
variables (predictors) contribute with the equal signif-
icance to explain dependent (target) variable. R2

adj was 
defined as (2) (Ouattara, 2017):

R n k
R n

1 1
1 1

adj
2

2

= - - -
- -^ ^h h

                    (2),

where n – total set size, k – the number of indepen-
dent variables (the number of descriptors in the mod-
el), n-k-1 – degrees of freedom. The Sum of squares 
for the regression (SSregression or SSR) was estimated as 
the sum of the differences between the predicted val-
ue of the activity  and the mean of the dependent vari-
able for the training set compounds  (3). In contrast, 
the Mean square for the regression (MSregression or MSR) 
was an estimate of the variance of the regression (4):

( )SSR Y Yi pred training
i

n 2

1
= -

=
/  (3).

MSR = SSR / DFregression   (4),

where DFregression is the degree of freedom for the 
regression: DFregression = k. The internal validation of de-
rived models was carried out with the leave-one-out 
cross-validation coefficient (Q2

LOO), predicted residual 
sums of squares standard deviation (SPRESS), the stan-
dard deviation error in prediction (SDEP), and leave-
one-out C.V. (cross-validation) estimator. The leave-
one-out (LOO) cross-validation technique involves 
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removing an observation from the training set, then 
constructing a new model, and finally predicting, by 
this model, the activity of the observation removed. 
The cross-validation coefficient  is calculated at the 
end of the cycle (He &Jurs, 2005) (formula 5):

( )SSR Y Yi pred training
i

n 2

1
= -

=
/  (5) ,

where  and  are the experimental and predicted bi-
ological activity values for molecule i of the training 
set, respectively. The summation in this and all the 
following equations are done over all n compounds 
of the training set. SSE is the Sum of squares for er-
rors (6), that is, the sum of the differences between 
the observed values of the activity  and the predicted 
ones  (formula 6). The Mean square error (MSE) (for-
mula 7) is the average squared distance between the 
observed and predicted values. 

SSR Y Yexpi ipredi

n 2

1
= -

=
^ h/  (6); 

MSE = SSE / DFres   (7),

where DFres is the degree of freedom for the resid-
uals: DFres = n – k – 1. For the training set compounds 
DFres (training)= 24 – 3 – 1 = 20. MSE is a risk function 
corresponding to the  expected value  of the  squared 
error loss. The predictive power of models was val-
idated with the external set compounds. The value 
of leave-group-out cross-validation coefficient Q2

LGO 
was used as the quantitative characteristics of the ex-
ternal validation (Golbraikh &Tropsha, 2002), which 
was calculated as (8):

( )
Q

Y Y
Y Y

1
exp

exp
LGO

i test test

i test ipred test2
2

2

/
/

= -
-
-^ ^

^

^ hh

h

h
 (8),

where  and  are the activity values for the valida-
tion set compounds, observed and predicted with the 
corresponding model, respectively;  is the mean value 
of the experimental activity of the validation (test) set 
compounds. 

Applicability domain (AD) determining

The applicability domain (AD) was assessed us-
ing the Williams plot (Weaver & Gleeson, 2008). The 
standardized residuals di for predicted free radical 
scavenging activity for the validation set compounds 

were calculated as the residuals in activity  divided by 
their standard deviations (9):

d
MS
e

MS
Y Yexp

i

res

i

res

i test i pred test
= =

-^ ^h h
  (9),

where  (10) is the Mean square for residuals (11) 
(the mean square in an estimate of the activity vari-
ance).

MSres = SSres / DFres (test) (10);

( )SSres Y Y( )expi test ipred testi

n 2

1
= -

= ^ h/  (11).

The applicability domain is the mechanical struc-
tural requirements derived from interactive hypothe-
sis generation and testing in the design of the training 
set. AD was employed to confirm that the obtained 
model can be considered reliable. Williams plot or 
leverage approach was used to measure the influence 
of descriptors on the model (Tropsha et al., 2003). The 
leverage value (hi) shows the distance of a compound 
from the centroid of X, which is defined as: , where 
xi is the descriptor row vector of the query molecule; 
X is (m × p) characteristic matrix of the data set (m 
is the number of the training set samples and p is the 
number of descriptors). The diagonal elements in this 
matrix represent the leverage values (hi) for the mol-
ecules in the dataset. The critical leverage value (h*) 
is defined as: h* = 3(k + 1) / n, where k is the number 
of descriptors in the model and n is the total number 
of compounds in the training set. For our data set: h* 
= 3 (3+1)/24 = 0.50. The leverage values for activities 
of the training and validation sets compounds were 
calculated with a Hi-Calculator by DTC Lab (Roy et 
al., 2015). 

RESULTS AND DISCUSSION

Data set preparation

Synthesis and molecular modeling of novel drug 
candidates based on fused 3H-thiazolo(4,5-b)pyri-
din-2-one scaffold had extensive development during 
the recent decade (Chaban et al., 2013; Chaban et al., 
2016; Klenina et al., 2017). The synthesis of a series 
of N3-substituted 3H-thiazolo(4,5-b)pyridin-2-one 
derivatives as potential antioxidant drug candi-
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dates was previously reported (Chaban et al., 2016; 
Chaban et al., 2019).  The set of compounds used in 
the present study comprises a series of N’-(2-(5,7-di-
methyl-2-oxo-thiazolo(4,5-b)pyridine-3-yl)-acetyl) 
carboxylic acids hydrazides 1-10 (Figure 1), hetaryl-
sulfanyl derivatives of N’-(5,7-dimethyl-2-oxo-thi-
azolo(4,5-b)pyridine-3-yl)-acetyl hydrazide acetic 
acid (compounds 11-14), 3-(5-mercapto-(1,3,4)
oxodiazole-2-yl-methyl)-5,7-dimethyl-3H-thi-
azolo(4,5-b)pyridine-2-one (compound 15), 
2-(5,7-dimethyl-2-oxo-thiazolo(4,5-b)pyridine-3-
yl)-N-(4-oxo-2-thioxo-thiazolydine-3-yl)-acetamide 
(compound 16), N-(5-(4-arylidene)-4-oxo-2-thi-
oxo-thiazolydine-3-yl)-2-(5,7-dimethyl-2-oxo-thi-
azolo(4,5-b)pyridine-3-yl)-acetamides (compounds 
17-22) and S-substituted 3-(5-mercapto-(1,3,4)oxodi-
azole-2-yl-methyl)-5,7-dimethyl-3H-thiazolo(4,5-b)
pyridine-2-ones (compounds 23-32). Thus, a data set 
of thirty-two compounds was generated. The antiox-
idant activity evaluation of all tested compounds was 
reported as a spectrophotometric DPPH assay based 
on the ability of antioxidant drug candidates to pos-

sess free radical scavenging potency. The percentage 
of free-radical-scavenging activity expressed via per-
cent inhibition is listed in Table 1S of the Supplemen-
tary materials.  

In the present research, the overall set of com-
pounds was split into training and validation (test) 
sets manually based on the criterion of their antiox-
idant activity (Golbraikh & Tropsha, 2000; Golbraikh 
et al., 2003). All compounds were divided into four 
groups according to their activity values: the most ac-
tive compounds with radical scavenging activity val-
ues of 34.27 and 36.14% (compounds 1 and 3) com-
posed the first group, followed by compounds pos-
sessing high antioxidant activity at the level of 10.05 
- 20.55% (namely compounds 4, 10, 13, 16, 19, 26, 27 
and 28). The third group contained compounds ex-
hibiting moderate antioxidant activity in the range of 
8.11 - 9.74% (compounds 2, 8, 9, 11, 12, 14, 15, 17, 18, 
22, 23, 24, 29, and 31), and the low-active compounds 
composed the fourth group with their antioxidant ac-
tivity evaluated within 4.95 – 7.43% and contained 
compounds 5, 6, 7, 20, 21, 25, 30 and 32.

Figure 1.  General structures of N3 substituted 3H-thiazolo(4,5-b)pyridin-2-one derivatives and chemical 
structures of R substituents
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The database was split into training and valida-
tion sets in proportion of 75% and 25%, respective-
ly.  The test set was composed of all four groups of 
compounds in the appropriate ratio: one compound 
(3) from the first group, three compounds (4, 10, 16) 
from the second one, and two compounds each from 
the third (compounds 14, 31) and the fourth (com-
pounds 5, 25) groups.

Chemical structures optimization and molecu-
lar descriptors calculation 

We have used 2D structures of thiazolo(4,5-b)
pyridin-2-ones, which were then converted into 3D 
ones, optimized, and utilized for molecular descrip-
tors calculation. The structural parameters calculat-
ed after discarding descriptors with the constant and 
near-constant values were saved. Before starting the 
construction of QSAR models, the descriptor normal-
ization procedure was carried out, and the values of 
all generated descriptors were scaled in the range of 
0÷1. Descriptors with high pairwise correlation, de-
termined based on correlation matrix analysis, were 
excluded from the multidimensional descriptor space. 
As a result, a set of 571 descriptors was obtained for 
both training and test sets compounds.

Descriptors Selection Strategy, QSAR Models 
Generation 

In the present work, the selection of the optimal 
set of molecular descriptors was carried out using a 
genetic algorithm within each of the descriptor mod-
ules, namely 0D‐,1D‐, 2D, 3D, and module “Other” 
firstly. The most significant descriptors from each 
dimensionality module were introduced to the final 
data set. MLR was used to generate structure - anti-
oxidant activity models as multivariate linear regres-
sions within the training set compounds.  

Minimally recommended values of validation pa-
rameters for a generally acceptable QSAR model  if 
the following conditions are satisfied: R2 > 0.6; Q2 > 
0.6, and R2

pred > 0.5 (Golbraikh et al., 2002). The most 
reliable models were evaluated using the following 
statistical parameters: n (the number of compounds 

in regression), determination coefficient R2, standard 
deviation s, and F-test, which reflected the ratio of the 
variance explained by the model and the variance due 
to the error in the regression. The following validation 
parameters were also calculated: Q2

LOO as leave-one-
out cross-validation coefficient, standard deviation 
of the sum of squares of prediction error SPRESS, and 
standard deviation of error of prediction SDEP. Among 
the generated models, four three-parameter QSAR 
models were selected with the highest statistical char-
acteristics and predictive ability:

Inhibition, % = - 26.5686 MATS4m + 12.7944 
Mor13u – 33.0080 ALOGPS_logP + 34.3967 (1)

(n = 24; R = 0.901; s = 2.972; F = 28.867; p < 0.0001; 
Q2

LOO = 0.7480; SPress = 4.458; SDEP = 4.157);

Inhibition, % = + 18.4827 GATS2m + 16.7743 
GATS5m – 30.3645 SPAN + 9.6505                (2)

(n = 24; R = 0.894; s = 3.077; F = 26.485; p < 0.0001; 
Q2

LOO = 0.7106; SPress = 4.307; SDEP = 4.017);

Inhibition, % = - 27.2730 MATS4m -10.5559 
RDF130m -22.8937 ALOGPS_logP + 39.1485 (3)

(n = 24; R = 0.865; s = 3.449; F = 19.728; p < 0.0001; 
Q2

LOO = 0.7060; SPress = 5.234; SDEP = 4.881);

Inhibition, %  = + 18.7576 GATS5m - 26.5965 
BEHm8 + 9.6814 G1e + 15.2389                      (4)

(n = 24; R = 0.865; s = 3.443; F = 19.816; p < 0.0001; 
Q2

LOO = 0.7230; SPress = 5.172; SDEP = 4.823).

Models 1-4 were constructed using molecu-
lar descriptors of 2D and 3D groups and descriptor 
ALOGPS_logP from the subset “Others” with low 
pairwise correlation. The normalized values of mo-
lecular descriptors used to build models 1-4 are listed 
in Tables 2S and 3S of the Supplementary materials. 
To assess the prediction accuracy of the generated 
models, the prediction errors and the prediction error 
standard deviations were calculated for each model 
(Tables 4S and 5S of the Supplementary materials).

The coefficients of the molecular descriptors sug-
gest that the “Molecular properties” ALOGPS_logP 
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for Model 1, 3D Geometrical descriptor SPAN for 
Model 2, 2D autocorrelation descriptor MATS4m for 
Models 1 and 3, and 2D Eigenvalue of Burden matrix 
BEHm8 descriptor for Model 4 are the most impact-
ful descriptors for enhancing antioxidant activity of 
3H-thiazolo(4,5-b)pyridine-2-one derivatives.

QSAR models interpretation

According to the 5th principle for the validation 
for regulatory purposes of QSAR models adopted by 
OECD, a mechanistic interpretation for a generated 
QSAR model should be made, if possible. Thus, when 
a mathematical model is established, the researcher 
should be in a position of the activity mechanism in-
terpretation.

All constructed models contain 2D autocorrela-
tion descriptors. In particular, models 1 and 2 contain 
Moran autocorrelation coefficient with lag 4, weight-
ed by atomic masses (MATS4m), while models 2 and 
4 contain Geary autocorrelation coefficients with lags 
2 and 5, weighted by atomic masses (GATS2m and 
GATS5m). In general, 2D autocorrelation descriptors 
represent the topological structure of compounds and 
describe the mutual correlation of certain properties 
of atoms in intervals equal to the sums of topological 
distances in the corresponding structural fragments 
(Helguera et al., 2008). The presence of lags 4 2D Au-
tocorrelations in QSAR regressions 1 and 3 may be re-
viewed as the association of activity information con-
tent with structural fragments of such size. It should 
be noted that mass-weighted Moran auto-correlation 
coefficient MATS4m negatively contributed to the 
free radical scavenging activity. Based on these mod-
els’ interpretation, it can be stated that the presence 
of structural fragments with the sum of topological 
distances (lag) equal to 4 in the molecules of the train-
ing set substances, whose terminal atoms have high 
atomic masses, is undesirable. Multiply regressions 
also utilize 2D Geary autocorrelations; namely, model 
2 contains a GATS2m descriptor while GATS5m is 
introduced into models 2 and 4. For both mentioned 
descriptors, the regression coefficients have posi-

tive signs. Based on the interpretation and analysis 
of Geary autocorrelations contribution in activity 
according to models 2 and 4 it can be asserted that 
the presence of structural fragments with sums of 
topological distances equal to 2 and 5, whose termi-
nal atoms have high atomic masses in the molecules 
corresponds to the antioxidant activity enhancing. 
Model 4 also incorporates the 2D descriptor BEHm8 
(Highest eigenvalue n. 8 of Burden matrix / weight-
ed by atomic masses). It belongs to the BCUT group, 
where the descriptor is based on a weighted version of 
the Burden matrix, which considers both the connec-
tivity and atomic properties (Consonni & Todeschini, 
2009). The weights are various atom properties placed 
along the diagonal of the Burden matrix. The atomic 
mass weighting scheme is employed in the BEHm8 
descriptor. Derived model 4 comprises the BEHm8 
descriptor, which makes a negative contribution to 
the activity. This fact could be related to the impor-
tance of the Burden matrix eigenvalues on the anti-
oxidant activity and may be interpreted as follows: 
the increase in radical scavenging activity is observed 
when the molecules contain only lightweight atoms 
characterized by low electronegativities. At the same 
time, the electron density redistribution between dis-
tant atoms and groups of atoms is undesirable. Model 
2 contains the value of the 3D descriptor SPAN, one of 
the numerous geometrical descriptors subsets. Geo-
metrical descriptors set consolidates different confor-
mationally dependent descriptors based on the mo-
lecular geometry. The simplest geometrical descriptor 
is the SPAN size descriptor, which is defined as the ra-
dius of the smallest sphere, centered at the molecule`s 
center of mass, that completely comprises all atoms 
of the molecule (Consonni & Todeschini, 2009): R = 
maxі ri. Normalized SPAN descriptor values contrib-
ute negatively to the antioxidant activity, as evidenced 
by the negative sign of the regression coefficient in 
model 2. So, it may be suggested that the molecules` 
sizes increasing due to the increasing the distances 
between certain atoms and fragments and the centers 
of masses leads to a decrease in the radical scaveng-
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ing activity of compounds. Model 3 incorporates a 3D 
RDF130m descriptor (Radial Distribution Function 
- 13.0 / weighted by atomic masses) with a negative 
regression coefficient. RDF descriptors are molecular 
descriptors obtained by radial basis functions cen-
tered on different interatomic distances (from 0.5Ǻ 
to 15.5 Ǻ) (González et al., 2008). The radial distri-
bution function (RDF) is a 3D conformational mo-
lecular descriptor defined based on the distribution 
of interatomic distances in a molecule. Formally, the 
RDF of a group of n atoms can be interpreted as the 
probability of finding an atom in a spherical volume 
with the radius R. Based on the analysis of model 5, it 
can be argued that free radical scavenging activity en-
hancing for compounds under study is ensured by the 
negative contribution of RDF130m descriptor, which 
corresponds to the atomic radius of 13.0 Å. The inter-
pretation of the obtained QSAR model in the sense 
of specific contributions of substituents and other 
features of the molecular steric structure indicates the 
presence of the linear relationship between the activi-
ty of the compounds and 3D molecular distribution of 
atomic masses in a spherical volume with the radius of 
13.0 Å. Thus, the decreasing antioxidant activity may 
be caused by heavy atoms availability within this vol-
ume. Model 1 was derived with 3D-MoRSE descrip-
tor Mor13u (signal 13 / unweighted). 3D-MoRSE 
(3D Molecule Representation of Structures based 
on Electron diffraction) descriptors are calculated 
from the model of the IR spectrum using the general 
scattering function (Consonni & Todeschini, 2009).
Thus, 3D Molecule Representation of Structure based 
on Electron diffraction (MoRSE) descriptors provide 
3D information from the 3D coordinates by using the 
same transform as electron diffraction (which uses it 
to prepare theoretical scattering curves). 3D-MoRSE 
– signal 13/unweighted descriptor Mor13u is incor-
porated into regression 1 for antioxidant activity of 
N3 substituted of 3H-thiazolo(4,5-b)pyridin-2-ones 
making the positive contribution in the activity en-
hancing. Thus, the increase in activity occurs when 
the electron beam scattering would be possibly more 

intensive, mainly on account of groups of any atoms 
located at a distance of 13 Å. Model 4 contains 3D de-
scriptor G1e from the WHIM group (1st component 
directional WHIM index / weighted by Sanderson 
electronegativity). WHIM descriptors (Weighted Ho-
listic Invariant Molecular descriptors) are geometri-
cal descriptors based on statistical indices calculated 
on the projections of the atoms along principal axes 
(Todeschini & Gramatica, 2002). WHIM descriptors 
capture relevant molecular 3D information regarding 
molecular size, shape, symmetry, and atom distribu-
tion concerning invariant reference frames. Derived 
model 4 for antioxidant activity of the compounds 
under study comprises 1st component directional 
WHIM index / weighted by Sanderson electronega-
tivity G1e, which makes a positive contribution to the 
activity. This fact could be related to the importance 
of strong symmetry keeping with the atoms possess-
ing high electronegativity, like Oxygen or Chlorine, 
along the 1st principal component axe. QSAR models 
1 and 3 also incorporate ALOGPS_logP descriptor 
(Ghose–Crippen octanol-water partition coefficient), 
which refers to a group of molecular properties cal-
culated from models and some empirical descriptors 
(Ghose et al., 1999). Ghose–Crippen octanol-wa-
ter partition coefficient ALOGPS_logP is calculated 
based on a model of the specific contribution of each 
functional group to the overall value of the partition 
coefficient of the compound. The analysis of models 
1 and 3, in which the regression coefficients for the 
normalized ALOGPS_logP descriptor have negative 
signs, indicates that the antioxidant activity of 3H-thi-
azolo(4,5-b)pyridin-2-ones increases with a decrease 
in the values of ALOGPS_logP, which corresponds to 
their hydrophilic properties increasing.

Statistical evaluation of the constructed models

Based on the validation parameters of the gener-
ated models (Table 1), it may be stated that they all 
satisfy the statistical requirements for their goodness 
of fit with no current overfitting.
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Table 1. Statistical parameters for QSAR models 1 – 4

No Statistical parameter Model 1 Model 2 Model 3 Model 4

1. n 24 24 24 24

2. k 3 3 3 3

3. r (observed vs. predicted) 0.9674 0.7989 0.7474 0.7483

4. R
2 

(observed vs. predicted) 0.9359 0.9064 0.8915 0.8318

5. R2
adj 0.7842 0.7687 0.7095 0.7105

6. R2 – R2
adj 0.1168 0.1253 0.1555 1.1545

7. s 2.9721 3.077 3.4485 3.4428

8. DFregression 3 3 3 3

9. SSR 764.9861 752.2926 703.8127 704.6043

10. MSR 254.9954 250.7642 234.6042 234.8681

11. F 28.8667 26.4848 19.7275 19.8157

The goodness of fitting for QSAR models gener-
ated with k parameters for the training set consisting 
of n compounds was assured by maximizing Pearson 
correlation coefficient r, determination coefficient R2, 
adjusted regression coefficient R2

adj and F-test criteri-
on while minimizing R2 – R2

adj  and standard deviation 
s. It should be noted that the degree of freedom for 
the regression equals the number of independent pa-
rameters: DFregression = k. SSregression (SSR) means the Sum 
of squares for the regression, while MSregression (MSR) 
means the Mean square for the regression. The regres-
sion sum of squares is interpreted as the amount of to-
tal variation explained by the model. SSR is a variation 
in Yi associated with the regression line, . It may be 
referred to as the measure that describes how well our 
line fits the data. MSregression is an estimate of the regres-

sion variance, MSregression = SSregression / DFregression. If this 
value of SSregression is equal to the sum of squares total, it 
means our regression model captures all the observed 
variability and is perfect. Correlation coefficients and 
coefficients of determination between observed and 
predicted activities for the training set compounds 
were estimated as internal validation predictivity. 
Figure 2 shows the regression between experimental 
and predicted values of free radical scavenging activ-
ity for Models 1-4. The determination coefficients for 
observer endpoints versus experimental oner for the 
derived models are between 0.8318 and 0.9359, so the 
linear models explain 83.18% - 93.59% of variation in 
experimental activity. R2

adj values for the models cal-
culated as 0.7095 - 0.7842 ensure high enough signifi-
cance of all introduced variables.
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Figure 2. Correlation between observed and predicted activity values for constructed Models 1 - 4 for the 
training set compounds together with linear fit statistical parameters
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The statistical significance of the constructed 
models given by the F-test in the range of 19.7275 - 
28.8667 is also satisfactory. Thus, generated QSAR 
models could approximate the experimental values 
properly according to their statistical analysis perfor-
mance parameters.

Internal and external validation of the derived 
models

The predictive ability (or predictive power) of a 
model is ensured by using test set data on the mod-
el, which in turn is developed by the training set. To 
validate the constructed QSAR models, we applied 
leave-one-out (LOO) and leave-group-out (LGO) 
cross-validation procedures. In the case of an inter-
nal validation procedure, each object is removed from 
the original training dataset in turn, and the remain-
ing reduced data set is converted into a new train-

ing set used for model generation and the response 
prediction for the excluded compound. The outcome 
of this procedure is a leave-one-out cross-validation 
coefficient Q2

LOO. For the developed models 1-4, we 
evaluated the accuracies of QSAR models also using 
the difference |R2 - Q2

LOO | absolute value, supposing 
that it tends to minimize for a truly predictive model. 
The values of Q2

LOO  (0.7060 ÷ 0.7480) are reasonable, 
showing that the models are significant and robust 
to predict the free radical scavenging activity of the 
compounds under the study. The absolute values of 
the difference between R2 and Q2

LOO are in the range 
of 0.0252 - 0.0886, within the suggested limit (Kiralj & 
Ferreira 2009) of |R2 - Q2

LOO | < 0.3, which is an indi-
cation that the model does not have data overfitting. 
Internal validation parameters are summarized in Ta-
ble 2. 

Table 2. Internal validation parameters for QSAR models 1 – 4

No Validation parameter Model 1 Model 2 Model 3 Model 4

1. Q2
LOO 0.7480 0.7106 0.7060 0.7230

2. |R2 - Q2
LOO | 0.0638 0.0886 0.0422 0.0252

3. SPress 4.4575 4.3073 5.2342 5.1716

4. SDEP 4.1567 4.0165 4.8809 4.8225

5. DFres (training) 20 20 20 20

6. SSE 176.6712 189.3646 237.8446 237.053

7. MSE 8.8336 9.4682 11.8922 11.8526

8. C.V. 29.3314 30.3669 34.0328 33.9761

For internal validation, we also applied SDEP (stan-
dard deviation of error of predictions) and the stan-
dard deviation of the predicted residual error sum of 
squares SPRESS. Both SPRESS and SDEP values display a ten-
dency to depreciation to ensure that generated models 
possess enough predictive power.  Mean squared er-
ror (MSE) measures error in statistical models using 
the average squared difference between observed and 
predicted values. Highly predictive linear regression 
should display minimized SSE. The degree of freedom 
for residuals (errors) for the training set compounds 
DFres(training) = n – k – 1, where n is the number of ob-

servations, and k is the number of parameters in the 
model. The cross-validation C.V. estimator for leave-
one-out validation is used to indicate the lowest MSE. 
Many authors have suggested that the only way to 
estimate the true predictive power of a QSAR mod-
el is to compare the predicted and observed activities 
for the validation set compounds (Golbraikh et al., 
2003; Gramatica, 2020). Following this guideline, we 
fulfilled predictive ability external validation of the 
constructed models. The experimental and predicted 
values and the residues obtained for the compounds 
of the two sets, are given in Table 3. 
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Table 3. Experimental and predicted values of free radical scavenging activity for the test set compounds, 
Q2

LGO, and standardized residues for developed Models 1 - 4 

Com-
pound

Observed 
activity, % 
Inhibition

Predicted activity, % Inhibition Standardized residues

Models Models

1 2 3 4 1 2 3 4

3 34.27 27.872 25.676 26.342 26.749 0.925 0.830 1.041 1.223

4 11.25 7.026 8.393 9.036 4.557 0.627 0.925 0.238 0.711

5 6.12 6.534 7.195 4.420 2.241 -0.259 0.081 0.075 0.023

10 10.45 13.477 13.610 14.150 7.724 -0.799 -0.968 -0.634 -0.076

14 9.50 15.054 12.587 12.608 7.124 -1.292 -0.863 -1.177 -0.170

16 20.55 14.430 16.619 14.038 23.898 0.948 0.481 0.948 -0.959

25 7.15 12.234 12.960 10.480 12.271 -1.186 -1.210 -0.791 -1.181

31 8.70 2.472 6.082 4.538 2.060 1.036 1.064 0.893 0.628

Q2
LGO 0.7208 0.7477 0.7711 0.6647

Additionally, the standardized residuals in free 
radical scavenging activity prediction using Mod-
els 1-4 were calculated (Table 3). All the residuals of 
predicted activity values were between -1.292 and 
1.223, which indicated that developed models have 
good accuracy and reliability for predicting the anti-
oxidant activity of N3-substituted 3H-thiazolo(4,5-b)
pyridin-2-ones. 

Acceptable QSAR predictive models should satisfy 
the following conditions (Golbraikh & Tropsha, 2002; 
Gramatica, 2020): (i) Q2

LGO > 0.5; (ii) R2
ext > 0.6; (iii) 

(R2
ext − R2

0 ext)/R2
ext  < 0.1 and 0.85 ≤ k ≤ 1.15 or (R2

ext – 

R`2
0 ext)/R2

ext < 0.1 and 0.85 ≤ k` ≤ 1.15; (iv) |R2 – R`2
0 

ext | < 0.1, where R2
ext is the coefficient of determination 

between the predicted and observed activities; , and  
are the coefficients of determination for predicted ver-
sus observed activities and observed versus predicted 
activities, respectively, for regressions through the or-
igin; slopes k and k⁄ of the regression lines through the 
origin.  The values of leave-group-out cross-validation 
coefficients Q2

LGO for all developed models ranged 
from 0.6647 to 0.7711, as listed in Table 3. The values 
of the external validation criteria are well illustrated in 
Figure 3 and are summarized in Table 4. 

Table 4. External validation criteria values for Models 1 – 4 

No. Validation criteria
Models

Model 1 Model 2 Model 3 Model 4

(ii)
rext 0.8347 0.8988 0.8905 0.8787

R2
ext 0.6968 0.8078 0.7930 0.7721

(iii)

R2
0 ext 0.9121 0.9317 0.9367 0.9057

(R2
ext − R2

0 ext)/R2
ext -0.3090 -0.1534 -0.1812 -0.1730

k 0.8450 0.8468 0.8155 0.8274

k` 1.0746 1.1002 1.1486 1.0946

(iv) | R2 – R`2
0 ext | 0.0238 0.0253 0.0452 0.0739
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Figure 3. Experimental endpoints vs. Predicted endpoints for Models 1 – 4

According to Table 4, we demonstrated that de-
veloped QSAR models displayed sufficient predictive 
results under the external validation as they met all 
the above-listed criteria demands, which ensured the 
adequate predictive ability of Models 1-4.

Applicability domain defining

The applicability domain (AD) defining for the 
developed models is one of the most critical aspects 
of the validation workflow. The AD expresses that 
QSARs are inescapably associated with restrictions in 
the categories of chemical structures, physicochem-
ical properties, and mechanisms of action for which 
the models can generate reliable predictions. The 
model applicability domain is the theoretical chem-
ical space of the compounds defined by the descrip-
tors and the modeled activity in which the acceptable 
QSAR model can make reliable predictions (He & 
Jurs, 2005; Weaver & Gleeson, 2008). The structur-

al features of drug-like molecules should be in close 
proximity, and a model should be able to outlier those 
compounds that are far away in their structures from 
the majority of the set used to construct and validate 
the model. One of the standard tools used to visualize 
the AD of a QSAR model is the Williams plot created 
as standardized residuals in prediction versus leverage 
values (hi) for each  ith sample. Leverage is a measure 
of how far away the  independent variable  values of 
an observation are from those of the other observa-
tions. It is a standardized measure of the distance of xi 
from the center of x space. Thus, after generating and 
evaluating the model, the AD defining technique was 
employed to confirm that the obtained models can be 
considered reliable. Williams plots for both training 
and test sets compounds were generated for Models 
1-4 (Figure 4). The threshold leverage was defined at 
the level of h* = 0.50. 
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As shown in Figure 4, for Models 1 and 2, just 
compound 1 from the training set lies out of the do-
main of applicability, while for Models 3 and 4, in 
addition to compound 1, compound 31 from the val-
idation set, is also out of AD. It may be pointed out 
that these compounds have the highest observed free 
radical scavenging activity: 36.14% and 34.27%, re-
spectively. Thus, the developed models are applicable 
for drug-like compounds possessing moderate anti-
oxidant activity, as the most active compounds from 
both sets fell outside of the AD as outliers. 

CONCLUSION

The present study allows us to conclude that GA-
MLR QSAR analysis can explain the free radical scav-
enging activity of N3 substituted 3H-thiazolo(4,5-b)
pyridin-2-one derivatives. It was shown that a set of 
highlighted 2D, 3D, and Molecular properties descrip-
tors play the defining role in antioxidant activity esti-
mation of the compounds. Interpretation of generat-
ed QSAR models allows to conclude that the presence 
of structural fragments with the sum of topological 
distances equal to 2 and 5 with heavy terminal atoms 
enhances the antioxidant activity of the compounds 
under study (Geary autocorrelations GATS2m and 
GATS5m with lags 2 and 5/weighted by atomic mass-
es make positive contributions to the activity). In con-

trast, similar fragments presence with the sum of to-
pological distances equal to 4 (Moran autocorrelation 
MATS4m of lag 4 weighted by mass) is undesirable. 
The presence of SPAN geometrical 3D descriptor and 
BEHm8 Burden eigenvalue matrix 2D descriptor in 
derived models, both contributing negatively, ensures 
that free radical scavenging activity increasing corre-
sponds to small molecules with the minimal distance 
of specific atoms and fragments from the center of 
mass and to the molecules without heavy atoms, the 
electronic density redistribution between the distant 
atoms and groups of atoms should be neglectable. 
The linear relationship between the activity and 3D 
molecular distribution of atomic masses in spherical 
volume with a radius of 13.0 Å indicates that the an-
tioxidant activity decreasing may be caused by heavy 
atoms availability within this volume (negative contri-
bution of RDF130m descriptor). The positive contri-
bution of 3D-MoRSE – signal 13/unweighted Mor13u 
descriptor in the activity ensures that the increase in 
activity occurs when the electron beam scattering is 
more intensive, mainly on account of groups of any 
atoms located at a distance of 13 Å. Some symmetry 
rules should be complied in the molecules of potent 
antioxidants, namely strong symmetry of atoms pos-
sessing high electronegativity, like Oxygen or Chlo-

Figure 4. Williams plots for applicability domains of Models 1-4 
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rine, along the 1st principal component axe (positive 
contribution of 1st component directional WHIM 
index/weighted by Sanderson electronegativity G1e 
in the activity). The antioxidant activity of the com-
pounds also increases with the hydrophilic properties 
of the substances increasing (negative contribution 
of Ghose-Crippen octanol-water partition coefficient 
ALOGPS_logP in activity). The developed models can 
be considered reliable, robust, and efficient, capable of 
predicting the antioxidant effect of novel thiazolopyr-
idines, which is proved by considering their statistical 
accuracy and the appropriate values of the statistical 
estimators. The applicability domains were defined 
for the models. The AD indicated that most structures 
were adequately represented by the chemical space of 
the models, so the developed models are applicable 
for drug-like compounds possessing moderately high 
antioxidant activity. Models resulting from the pre-
dictive QSAR modeling workflow may be used for the 
virtual screening of antioxidant activity to prioritize 
the selection of 3H-thiazolo(4,5-b)pyridin-2-one de-
rivatives for the experimental activity validation.
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