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ABSTRACT 

 

In this study, it is described the general forms of fractional-order differential equations and asymtotic stability of 

their system’s equilibria. In addition that, the stability analysis of equilibrium points of the local bacterial infection 

model which is fractional-order differential equation system, is made. Results of this analysis are supported via 

numerical simulations drawn by datas obtained from literature for mycobacterium tuberculosis and the antibiotics 

isoniazid (INH), rifampicin (RIF), streptomycin (SRT) and pyrazinamide (PRZ) used against this bacterial infection.  
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Lokal Bakteriyel enfeksiyon durumunda çoklu antibiyotik tedavisine karşı 

bakteriyel direncin kesirsel mertebeden matematiksel modellemesi 
 

ÖZ 

 

Bu çalışmada kesirsel mertebeden diferansiyel denklemlerin genel biçimi ve bu denklemlerin sistemlerinin 

dengelerinin asimptotik kararlılıkları tanımlandı. Ayrıca kesirsel mertebeden diferansiyel denklem sistemi şeklinde 

ifade edilen lokal bir bakteriyel enfeksiyon modelinin denge noktalarının kararlılık analizi yapıldı. Bu analizin 

sonuçları mycobacterium tuberculosis bakterisi ve bu bakterinin neden olduğu enfeksiyona karşı kullanılan isoniazid 

(INH), rifampicin (RIF), streptomycin (SRT) ve pyrazinamide (PRZ) antibiyotikleri için literatürden elde edilen 

veriler kullanılarak çizilen nümerik simülasyonlar vasıtasıyla desteklendiler.  

 

Anahtar Kelimeler: kesirsel mertebeden diferansiyel denklem sistemi, matematiksel model, kararlılık analizi, denge 

noktaları, çoklu antibiyotik tedavisi 
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1. INTRODUCTION 

 
Infections have been the major cause of disease through 

the human history [1]. There are especially bacterial 

infections among these. The most common procedure to 

combat bacterial infection is through antibiotic therapy. 

Howeover, the most important problem derived from 

this therapy is the development of the bacteria resistance 

ability against the used antibiotic [2]. The expression of 

resistance to antimicrobial agents is both the logical and 

inevitable consequence of using these agents to treat 

human infections [3,4]. 

 

Bacterial resistance to antibiotics is described as the 

ability of bacteria to resist the effects of antibiotics 

designed to eradicate or control them [5]. The 

introduction of every new class of antibiotic has been 

followed by the emergence of new strains of resistant 

bacteria to this class, usually showing up in the clinic a 

few years after the submission of the antibiotic [6-8]. 

Thereby, the development of new therapeutic strategies 

for bacterial infections is of utmost importance [9]. The 

most common method used to combat these infections 

still is through antibiotic treatment. 

 

It has expressed that an antibiotic has bacteriostatic 

action when it’s function is to stop the bacteria growth 

and bactericidal action when it’s function is to eradicate 

the bacteria. But, this difference is not clear, as it 

depends on the drug concentration and the growth stage 

and the species of bacteria [10]. In this sense, multiple 

antibiotics is more convenient than single antibiotic. 

 

Recently, mathematical models describing the dynamics 

of human infectious diseases have played an important 

role in the disease control in epidemiology [11]. 

Mathematical models are important tools used both in 

analyzing the spread of infectious diseases of 

individuals in a population [12,13], and in estimating 

the timing and enlargement of infection and possible 

reinfection processes in an individual [14,15]. While the 

former is generally used for planning, prevention and 

control strategies, the latter can be influence in the 

therapy and intervention programs for treating the 

individuals exposed to the specific pathogen. 

Understanding the early dynamics of acute infections 

and foreseeing the time of occurrence and magnitude of 

the maximum load of the bacteria can be critical in 

choosing effective intervention schemes [16]. 

 

Fractional-order differential equation have been the 

focus of many studies due to their frequent appearance 

in various applications in fluid mechanics, economic, 

viscoelasticity, biology, physics and engineering. 

Lately, a large amount of literature has been developed 

concerning the application of fractional differential 

equations in nonlinear dynamics [17]. 

 

2. ASYMTOTIC STABILITY OF THEIR 

EQUILIBRIUM POINTS IN THE FRACTIONAL-

ORDER DIFFERENTIAL EQUATIONS SYSTEMS 

 

Definition 2.1 The fractional integral of order 𝛽 ∈ 𝑅+ 

of the function 𝑓(𝑡), 𝑡 > 0 is described by 

 

𝐼𝛽𝑓(𝑡) = ∫
(𝑡 − 𝑠)𝛽−1

𝛤(𝛽)
𝑓(𝑠)𝑑𝑠

𝑡

0

                                  (1) 

 

and the fractional derivative of order α ∈ (𝑛 − 1, 𝑛] of 

𝑓(𝑡), 𝑡 > 0 is defined by  

 

𝐷α𝑓(𝑡) = 𝐼𝑛−α𝐷𝑛𝑓(𝑡), 𝐷 =
𝑑

𝑑𝑡
.                        (2) 

 

The following properties are some of the main 

properties of the fractional derivatives and integrals 

[15,18-21]. 

 

Let 𝛽, 𝛾 ∈ 𝑅+ and 𝛼 ∈ (0,1]. Then 

 

i. 𝐼𝑎
β
: 𝐿ı → 𝐿ı, and if 𝑓(𝑥) ∈ 𝐿ı, then 𝐼𝑎

γ
𝐼𝑎
β
𝑓(𝑥) =

𝐼𝑎
γ+β
𝑓(𝑥). 

ii. 𝑙𝑖𝑚
𝛽→𝑛

𝐼𝑎
𝛽
𝑓(𝑥) = 𝐼𝑎

𝑛𝑓(𝑥) uniformly on [𝑎, 𝑏], 𝑛 =

1,2,3, . .. where 𝐼𝑎
𝚤𝑓(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠

𝑥

𝑎
. 

iii. 𝑙𝑖𝑚
𝛽→0

𝐼𝑎
𝛽
𝑓(𝑥) = 𝑓(𝑥) weakly. 

iv. If 𝑓(𝑥) is absolutely continuous on [𝑎, 𝑏], then 

𝑙𝑖𝑚
𝛼→1

𝐷𝛼𝑓(𝑥) =
𝑑𝑓(𝑥)

𝑑𝑥
. 

v. If 𝑓(𝑥) = 𝑘 ≠ 0, 𝑘 is a constant, then 𝐷α𝑘 =

0. 

We have the following lemma which can be easily 

proved [19]. 

 

Lemma 2.1 Let 𝛽 ∈ (0,1) if 𝑓 ∈ 𝐶[0, 𝑇], then 

𝐼β𝑓(𝑡)|𝑡=0 = 0. 

Let 𝛼 ∈ (0,1] and consider the system [20,22-25]. 

 
𝐷α𝑦1(𝑡) = 𝑓1(𝑦1, 𝑦2)

𝐷α𝑦2(𝑡) = 𝑓2(𝑦1, 𝑦2)
                                                    (3) 

 

with the initial values 

 

http://tureng.com/tr/turkce-ingilizce/through%20the%20human%20history
http://tureng.com/tr/turkce-ingilizce/through%20the%20human%20history
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𝑦1(0) = 𝑦𝑜1  and  𝑦2(0) = 𝑦𝑜2 .                                   (4) 
 

 

 
Figure 1. Stability region of fractional-order system in (3) 

 

To evaluate the equilibrium points, we have assumed 

𝐷α𝑦𝑖(𝑡) = 0 ⇒ 𝑓𝑖(𝑦1
𝑒𝑞
, 𝑦2
𝑒𝑞
) = 0 for 𝑖 = 1,2 . 

Therefore, we can get the equilibrium point (𝑦1
𝑒𝑞
, 𝑦2
𝑒𝑞
) 

of system (3). 

To evaluate the asymptotic stability of equilibrium 

points, the Jacobian matrix, 𝐽 = [

∂𝑓1

∂𝑦1

∂𝑓1

∂𝑦2
∂𝑓2

∂𝑦1

∂𝑓2

∂𝑦2

], is used. If 

both the eigenvalues, 𝜆1 and 𝜆2, obtained from the 

equation  𝐽(𝑦1,𝑦2)=(𝑦1
𝑒𝑞
,𝑦2
𝑒𝑞
) = 0 satisfies the conditions 

 

(|𝑎𝑟𝑔(𝜆1)| >
𝛼𝜋

2
,    |𝑎𝑟𝑔(𝜆2)| >

𝛼𝜋

2
) ,                    (5) 

 

then, the equilibrium point (𝑦1
𝑒𝑞
, 𝑦2
𝑒𝑞
) is locally 

asymptotically stable point for system (3). The stability 

region of the fractional-order system with 𝛼-order is 

observed in Figure 1 (in which 𝜎, 𝜔 refer to the real and 

imaginary parts of the eigenvalues, respectively, and 

𝑗 = √−1). From this Figure, it is clearly seen that the 

stability region of the fractional-order case is greater 

than the stability region of the integer-order case. 

 

Characteristic equation of  𝐽(𝑦1,𝑦2)=(𝑦1
𝑒𝑞
,𝑦2
𝑒𝑞
) = 0 has the 

following generalized polynomial: 

 

𝑝(𝜆) = 𝜆2 + 𝑎1𝜆 + 𝑎2 = 0.                                         (6) 
 

When both the conditions (5) and the polynomial (6) are 

considered together,  the conditions for locally 

asymptotically stability of  the equilibrium point 

(𝑦1
𝑒𝑞
, 𝑦2
𝑒𝑞
) are either Routh–Hurwitz conditions 

(𝑎1, 𝑎2 > 0) [2,26] 

 

or: 

 

𝑎1 < 0, 4𝑎2 > (𝑎1)
2,

|𝑡𝑎𝑛−1 (
√4𝑎2 − (𝑎1)

2

𝑎1
)| >

𝛼𝜋

2
.
                              (7) 

 

In this study, a continuous time model considering the 

main mechanisms of bacterial resistance occuring due to 

effect of antibiotic has been presented. In this context, 

the aim is to obtain the certain conditions dependent on 

the development of susceptible and resistant bacteria 

population under the pressure of antibiotic. 

 

3. THE FRACTIONAL - ORDER 

MATHEMATICAL MODEL OF LOCAL 

BACTERIAL INFECTION 

 

The proposed model in this study is fractional-order 

form of model suggested in [1].  In this respect,  the 

population sizes of sensitive and resistant bacteria to 

multiple antibiotics at time 𝑡 is denoted by 𝑆(𝑡)
 
and 

𝑅(𝑡), respectively. In addition that, the concentration of 

the 𝑖-th antibiotic, 𝑖 = 1,2, … , 𝑛 is showed by 𝐶𝑖(𝑡). 
Therefore, it is obtained the following system of 

(𝑛 + 2) fractional-order differential equation: 

 

𝐷𝛼𝑆(𝑡) = 𝑆 (𝛽𝑠 (1 −
𝑆+𝑅

𝐾
) − [∑ (𝑞𝑖 + 𝛼𝑖)

𝑛
𝑖=1 𝐶𝑖] − 𝜇𝑠)

𝐷𝛼𝑅(𝑡) = 𝛽𝑟𝑅 (1 −
𝑆+𝑅

𝐾
) + 𝑆[∑ 𝑞𝑖

𝑛
𝑖=1 𝐶𝑖] − 𝜇𝑟𝑅

𝐷𝛼𝐶𝑖(𝑡) = 𝛬𝑖 − 𝜇𝑖𝐶𝑖 ,            𝑖 = 1,2, . . . , 𝑛

(8)

.

 

where α ∈ (0,1]. The parameters used in the model (8) 

are as follows: it is presumed that bacteria follow a 

logistic growth with carrying capacity 𝐾. The parameter 

𝛽𝑆 and 𝛽𝑟 are the birth rate of susceptible and resistant 

bacteria, respectively. Specific mutations emerging 

resistance to chemical control often include an inherent 

fitness cost which may be outcomed through reduced 

reproductive capacity and/or competitive ability. Thus, 

it is 

 

𝛽𝑆 > 𝛽𝑅                                                                              (9) 
 

The sensitive and resistant bacteria to multiple 

antibiotics have per capita natural death rates 𝜇𝐵1and 

𝜇𝐵2, respectively. During the administration of the 𝑖-th 

antibiotic, a number of resistant bacteria to it can be 

showed up due to mutations of exposed sensitive 

bacteria to such antibiotic, it is modeled this situation by 

the term 𝑞𝑖𝐶𝑖𝑆 where 𝑞𝑖 is the mutation rate of sensitive 

bacteria due to exposure to 𝑖-th antibiotic. Sensitive 

bacteria also die due to the action of the antibiotics, and 

it is assumed that this situation in model is by the term 

𝛼𝑖𝐶𝑖𝑆, where 𝛼𝑖 is the death rate of sensitive bacteria 

due to exposure to 𝑖-th antibiotic. Finally, the 𝑖-th 
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antibiotic concentration is supplied at a constant rate 𝛬𝑖, 
and is taken up at a constant per capita rate 𝜇𝑖. 
 

These interacts between bacteria and antibiotic have 

depicted a generalised model of a local bacterial 

infection, such as wound infection or tuberculosis. 

 

3.1. Matrix form of model in (8) 

 

Here, the fractional-order model (8) can be rewritten in 

the following matrix form 

 
𝐷α𝑋(𝑡) = 𝐴𝑋(𝑡) + 𝑆(𝑡)𝐵1𝑋(𝑡) + 𝑅(𝑡)𝐵2𝑋(𝑡)

        +𝐶1(𝑡)𝐵3𝑋(𝑡)+. . . +𝐶𝑛(𝑡)𝐵𝑛+2𝑋(𝑡) + 𝐻

𝑋(0) = 𝑋0

  (10) 

 

where 0 < 𝛼 ≤ 1, 𝑡 ∈ (0,1], and 

𝑋(𝑡) =

(

 
 
 

𝑆(𝑡)

𝑅(𝑡)

𝐶1(𝑡)

𝐶2(𝑡)
. . .
𝐶𝑛(𝑡))

 
 
 

=

(

 
 
 

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)
. . .
𝑥𝑛+2(𝑡))

 
 
 

, 𝑋0 =

(

 
 
 

𝑆(0)

𝑅(0)

𝐶1(0)

𝐶2(0)
. . .
𝐶𝑛(0))

 
 
 

, 𝐴 =

(

 
 
 

𝛽𝑠 − 𝜇𝑠 0 0 0 . . . 0
0 𝛽𝑟 − 𝜇𝑟 0 . . . 0 0
0 0 −𝜇1 0 . . . 0
0 0 0 −𝜇2 0 0
. . . . . . 0 0 . . . . . .
0 0 0 0 0 −𝜇𝑛)

 
 
 

, 𝐻 =

(

 
 
 

0
0
𝛬1
𝛬2
. . .
𝛬𝑛)

 
 
 

, 𝐵1 =

(

 
 
 
 

−
𝛽𝑠

𝐾
−
𝛽𝑠

𝐾
0 0 . . . 0

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 )

 
 
 
 

, 𝐵2 =

(

 
 
 

0 0 0 0 . . . 0

−
𝛽𝑟

𝐾
−
𝛽𝑟

𝐾
0 0 . . . 0

0 0 0 0 . . . 0
0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 )

 
 
 

, 𝐵3 =

(

 
 
 

−(𝑞1 + 𝛼1) 0 0 0 . . . 0

𝑞1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 )

 
 
 

,…, 𝐵𝑛+2 =

(

 
 
 

−(𝑞𝑛 + 𝛼𝑛) 0 0 0 . . . 0

𝑞𝑛 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 )

 
 
 

 

           (11) 

Definition 3.1 For 𝑋(𝑡) = (𝑆(𝑡) 𝑅(𝑡) 𝐶1(𝑡) …𝐶𝑛(𝑡))
T

, 

let 𝐶∗[0, 𝑇] be the set of continuous column vectors 

𝑋(𝑡) on the interval [0, 𝑇]. The norm of 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇] 
is given by ‖𝑋(𝑡)‖ = ∑ 𝑠𝑢𝑝𝑡|𝑥𝑖(𝑡)|

𝑛
𝑖=1  [27]. 

 

Proposition 3.1 System (8) has a unique solution if 

𝑋(𝑡) ∈ 𝐶∗[0, 𝑇]. 
 

Proof Let  

𝐹(𝑋(𝑡)) = 𝐴𝑋(𝑡) + 𝑆(𝑡)𝐵1𝑋(𝑡) + 𝑅(𝑡)𝐵2𝑋(𝑡) +

𝐶1(𝑡)𝐵3𝑋(𝑡)+. . . +𝐶𝑛(𝑡)𝐵𝑛+2𝑋(𝑡) + 𝐻, then 𝑋(𝑡) ∈

𝐶∗[0, 𝑇] implies 𝐹(𝑋(𝑡)) ∈ 𝐶∗[0, 𝑇]. Furthermore, 

considering 𝑋(𝑡), 𝑌(𝑡) ∈ 𝐶∗[0, 𝑇] and 𝑋(𝑡) ≠  𝑌(𝑡); it 

has holded the following inequality: 

 

‖𝐹(𝑋(𝑡)) − 𝐹(𝑌(𝑡))‖ 

 

= ||(𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) +⋯ 
+ 𝑥𝑛+2(𝑡)𝐵𝑛+2𝑋(𝑡) + 𝐻) − (𝐴𝑌(𝑡) + 𝑦1(𝑡)𝐵1𝑌(𝑡)
+ 𝑦2(𝑡)𝐵2𝑌(𝑡)+. . . +𝑦𝑛+2(𝑡)𝐵𝑛+2𝑌(𝑡) + 𝐻)|| 
 

= ||𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) + ⋯
+ 𝑥𝑛+2(𝑡)𝐵𝑛+2𝑋(𝑡) − 𝐴𝑌(𝑡) − 𝑦1(𝑡)𝐵1𝑌(𝑡)
− 𝑦2(𝑡)𝐵2𝑌(𝑡)−. . . −𝑦𝑛+2(𝑡)𝐵𝑛+2𝑌(𝑡)|| 
 

= ||𝐴(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡)

+ ⋯+ 𝑥𝑛+2(𝑡)𝐵𝑛+2𝑋(𝑡) − 𝑦1(𝑡)𝐵1𝑌(𝑡)
− 𝑦2(𝑡)𝐵2𝑌(𝑡)−. . . −𝑦𝑛+2(𝑡)𝐵𝑛+2𝑌(𝑡)

− (𝑥1(𝑡)𝐵1𝑌(𝑡) − 𝑥1(𝑡)𝐵1𝑌(𝑡))

− (𝑥2(𝑡)𝐵2𝑌(𝑡) − 𝑥2(𝑡)𝐵2𝑌(𝑡))−. . . −(𝑥𝑛(𝑡)𝐵𝑛+2𝑌(𝑡)

− 𝑥𝑛+2(𝑡)𝐵𝑛+2𝑌(𝑡))|| 
 

= ||𝐴(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥1(𝑡)𝐵1(𝑋(𝑡) − 𝑌(𝑡))

+ 𝑥2(𝑡)𝐵2(𝑋(𝑡) − 𝑌(𝑡))+. . . +𝑥𝑛+2(𝑡)𝐵𝑛+2(𝑋(𝑡)

− 𝑌(𝑡)) + (𝑥1(𝑡) − 𝑦1(𝑡))𝐵1𝑌(𝑡)

+ (𝑥2(𝑡) − 𝑦2(𝑡))𝐵2𝑌(𝑡)+. . . +(𝑥𝑛+2(𝑡)

− 𝑦𝑛+2(𝑡))𝐵𝑛+2𝑌(𝑡)|| 
 

= ‖𝐴(𝑋(𝑡) − 𝑌(𝑡))‖ + ‖𝑥1(𝑡)𝐵1(𝑋(𝑡) − 𝑌(𝑡))‖

+ ‖𝑥2(𝑡)𝐵2(𝑋(𝑡) − 𝑌(𝑡))‖+. . . +‖𝑥𝑛+2(𝑡)𝐵𝑛+2(𝑋(𝑡)

− 𝑌(𝑡))‖ + ‖(𝑥1(𝑡) − 𝑦1(𝑡))𝐵1𝑌(𝑡)‖

+ ‖(𝑥2(𝑡) − 𝑦2(𝑡))𝐵2𝑌(𝑡)‖+. . . +‖(𝑥𝑛+2(𝑡)

− 𝑦𝑛+2(𝑡))𝐵𝑛+2𝑌(𝑡)‖ 

 

≤ ‖𝐴‖‖𝑋(𝑡) − 𝑌(𝑡)‖ + ‖𝐵1‖|𝑥1(𝑡)|‖𝑋(𝑡) − 𝑌(𝑡)‖
+ ‖𝐵2‖|𝑥2(𝑡)|‖𝑋(𝑡)
− 𝑌(𝑡)‖+. . . +‖𝐵𝑛+2‖|𝑥𝑛+2(𝑡)|‖𝑋(𝑡) − 𝑌(𝑡)‖

+ ‖(𝑥1(𝑡) − 𝑦1(𝑡))‖‖𝐵1‖‖𝑌(𝑡)‖

+ ‖(𝑥2(𝑡) − 𝑦2(𝑡))‖‖𝐵2‖‖𝑌(𝑡)‖+. . . +‖(𝑥𝑛+2(𝑡)

− 𝑦𝑛+2(𝑡))‖‖𝐵𝑛+2‖‖𝑌(𝑡)‖ 
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≤ (‖𝐴‖ + ‖𝐵1‖|𝑥1(𝑡)| + ‖𝐵1‖‖𝑌(𝑡)‖ + ‖𝐵2‖|𝑥2(𝑡)|
+ ‖𝐵2‖‖𝑌(𝑡)‖+. . . +‖𝐵𝑛+2‖|𝑥𝑛+2(𝑡)|

+ ‖𝐵𝑛+2‖‖𝑌(𝑡)‖)‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

 

≤ (‖𝐴‖ + ‖𝐵1‖(|𝑥1(𝑡)| + ‖𝑌(𝑡)‖)
+ ‖𝐵2‖(|𝑥2(𝑡)| + ‖𝑌(𝑡)‖)+. . . +‖𝐵𝑛+2‖(|𝑥𝑛+2(𝑡)|

+ ‖𝑌(𝑡)‖))‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

 

and so, we have 

 

‖𝐹(𝑋(𝑡)) − 𝐹(𝑌(𝑡))‖ ≤ 𝐿‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

 

where 𝐿 = (‖𝐴‖ + ‖𝐵1‖ + ‖𝐵2‖+. . . +‖𝐵𝑛+2‖)(𝑀1 +
𝑀2) > 0, and 𝑀1 and 𝑀2 are positive and satisfy 

 ‖𝑋(𝑡)‖ ≤ 𝑀1, ‖𝑌(𝑡)‖ ≤ 𝑀2 as a result of 𝑋(𝑡), 𝑌(𝑡) ∈
𝐶∗[0, 𝑇]. In this sense, the system (8) has a unique 

solution. 

 

4. QUALITATIVE ANALYSIS OF MODEL IN (8) 

 

The existence and stability of equilibria of the system 

(8) are characterized in here. 

 

4.1. Equilibrium Points 

 

That the general term of equilibria of the system (8) 

show as (𝑆𝑒𝑞 , 𝑅𝑒𝑞 , 𝐶1
𝑒𝑞
, 𝐶2

𝑒𝑞
, . . . , 𝐶𝑛

𝑒𝑞
) have accepted. 

 

Proposition 4.1 Let 

 

𝑆0 =
𝛽𝑠 − [∑ (𝑞𝑖 + 𝛼𝑖)

𝑛
𝑖=1

𝛬𝑖

𝜇𝑖
] − 𝜇𝑠

𝛽𝑠
, 𝑅𝑟 =

𝛽𝑟 − 𝜇𝑟
𝛽𝑟

(12) 

 

The system (8) always has the equilibrium points 

𝐸0 (0,0,
𝛬1

𝜇1
,
𝛬2

𝜇2
, . . . ,

𝛬𝑛

𝜇𝑛
) (namely, the infection-free 

equilibrium point. If 𝑅𝑟 > 0, then 

𝐸1 (0, 𝐾𝑅𝑟 ,
𝛬1

𝜇1
,
𝛬2

𝜇2
, . . . ,

𝛬𝑛

𝜇𝑛
) exists.  Moreover, if 𝑆0 > 0 

and 𝑆0 > 𝑅𝑟, then 

  

𝐸2

(

 
 𝐾𝑆0 (

𝛽𝑟(𝑆0−𝑅𝑟)

[∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]+𝛽𝑟(𝑆0−𝑅𝑟)

) , 𝐾𝑆0
[∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]

[∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]+𝛽𝑟(𝑆0−𝑅𝑟)

,
𝛬1

𝜇1
,
𝛬2

𝜇2
, . . . ,

𝛬𝑛

𝜇𝑛 )

 
 

  

 

exists as another equilibrium points. 

 

Proof For the fractional-order model in (8) to evaluate 

the equilibrium points, let 𝐷α𝑆 = 0, 𝐷α𝑅 = 0 and 

𝐷α𝐶𝑖 = 0 for 𝑖 = 1,2, . . . , 𝑛. Then, we have following 

system 

 

𝑆 (𝛽𝑠 (1 −
𝑆 + 𝑅

𝐾
) − [∑(𝑞𝑖 + 𝛼𝑖)

𝑛

𝑖=1

𝐶𝑖] − 𝜇𝑠) = 0

𝛽𝑟𝑅 (1 −
𝑆 + 𝑅

𝐾
) + 𝑆 [∑𝑞𝑖

𝑛

𝑖=1

𝐶𝑖] − 𝜇𝑟𝑅 = 0

𝛬𝑖 − 𝜇𝑖𝐶𝑖 = 0,            𝑖 = 1,2, . . . , 𝑛

(13) 

 

For all the equilibrium points, it is clear that 𝐶𝑖
𝑒𝑞
=

𝛬𝑖

𝜇𝑖
 

for 𝑖 = 1,2, . . . , 𝑛. Therefore, (13) transforms to 

 

𝑆 (𝛽𝑠 (1 −
𝑆 + 𝑅

𝐾
) − [∑(𝑞𝑖 + 𝛼𝑖)

𝑛

𝑖=1

𝛬𝑖
𝜇𝑖
] − 𝜇𝑠) = 0

𝛽𝑟𝑅 (1 −
𝑆 + 𝑅

𝐾
) + 𝑆 [∑𝑞𝑖

𝑛

𝑖=1

𝛬𝑖
𝜇𝑖
] − 𝜇𝑟𝑅 = 0

(14)

  

In (14), it is 𝑆𝑒𝑞 = 0 or 𝛽𝑠 (1 −
𝑆𝑒𝑞+𝑅𝑒𝑞

𝐾
) −

[∑ (𝑞𝑖 + 𝛼𝑖)
𝑛
𝑖=1

𝛬𝑖

𝜇𝑖
] − 𝜇𝑠 = 0.  

 

Let 𝑆𝑒𝑞 = 0. Then 𝑅𝑒𝑞 = 0 or 𝑅𝑒𝑞 = 𝐾
𝛽𝑟−𝜇𝑟

𝛽𝑟
.  Thereby, 

there are disease-free equilibrium point 

𝐸0 (0,0,
𝛬1

𝜇1
,
𝛬2

𝜇2
, . . . ,

𝛬𝑛

𝜇𝑛
) and endemic equilibrium point 

𝐸1 (0, 𝐾
𝛽𝑟−𝜇𝑟

𝛽𝑟
,
𝛬1

𝜇1
,
𝛬2

𝜇2
, . . . ,

𝛬𝑛

𝜇𝑛
), that is, 

𝐸1 (0, 𝐾𝑅𝑟 ,
𝛬1

𝜇1
,
𝛬2

𝜇2
, . . . ,

𝛬𝑛

𝜇𝑛
)
 
with respect to (12). 

 

In addition that, let  

𝛽𝑠 (1 −
𝑆𝑒𝑞+𝑅𝑒𝑞

𝐾
) − [∑ (𝑞𝑖 + 𝛼𝑖)

𝑛
𝑖=1

𝛬𝑖

𝜇𝑖
] − 𝜇𝑠 = 0, that is, 

𝑆𝑒𝑞 + 𝑅𝑒𝑞 = 𝐾
𝛽𝑠−[∑ (𝑞𝑖+𝛼𝑖)

𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]−𝜇𝑠

𝛽𝑠
. In this case, The 

components of equilibrium point obtained from (14) has 

founded as  

𝑆𝑒𝑞 =

𝐾
𝛽𝑠−[∑ (𝑞𝑖+𝛼𝑖)

𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]−𝜇𝑠

𝛽𝑠

(

 
 

𝛽𝑟(
𝛽𝑠−[∑ (𝑞𝑖+𝛼𝑖)

𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]−𝜇𝑠

𝛽𝑠
−
𝛽𝑟−𝜇𝑟
𝛽𝑟

)

[∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]+
𝛽𝑟−𝜇𝑟
𝛽𝑟

(
𝛽𝑠−[∑ (𝑞𝑖+𝛼𝑖)

𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]−𝜇𝑠

𝛽𝑠
−
𝛽𝑟−𝜇𝑟
𝛽𝑟

)

)

 
 

. 

and 

  

𝑅𝑒𝑞 =

𝐾
𝛽𝑠−[∑ (𝑞𝑖+𝛼𝑖)

𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]−𝜇𝑠

𝛽𝑠

[∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]

[∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]+𝛽𝑟(

𝛽𝑠−[∑ (𝑞𝑖+𝛼𝑖)
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]−𝜇𝑠

𝛽𝑠
−
𝛽𝑟−𝜇𝑟
𝛽𝑟

)

.

.  
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In this sense, we have positive equilibrium point 

𝐸2 (𝐾𝑆0 (
𝛽𝑟(𝑆0−𝑅𝑟)

[∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]+𝛽𝑟(𝑆0−𝑅𝑟)

) , 𝐾𝑆0
[∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]

[∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
]+𝛽𝑟(𝑆0−𝑅𝑟)

,
𝛬1

𝜇1
,
𝛬2

𝜇2
, . . . ,

𝛬𝑛

𝜇𝑛
) 

by (12). 

 

 

In Table 1, biological existence conditions of 

equilibrium points of system (8) are showed. 

 
Table 1. Biological existence conditions of the equilibria of system (8) 

 

Equilibrium Points 

Biological 

Existence 

Conditions 

𝐸0 (0,0,
𝛬1

𝜇1
, . . . ,

𝛬𝑛

𝜇𝑛
). Always exists 

𝐸1 (0, 𝐾𝑅𝑟 ,
𝛬1

𝜇1
, . . . ,

𝛬𝑛

𝜇𝑛
). 𝑅𝑟 > 0 

𝐸2

(

 
 

𝐾𝑆0
𝛽𝑟(𝑆0−𝑅𝑟)

∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
+𝛽𝑟(𝑆0−𝑅𝑟)

,

𝐾𝑆0
∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖

∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖
𝜇𝑖
+𝛽𝑟(𝑆0−𝑅𝑟)

,
𝛬1

𝜇1
, . . . ,

𝛬𝑛

𝜇𝑛)

 
 
.

.

 

 

 

𝑆0 > 0, 𝑆0 >
𝑅0 

 

4.2. Stability analysis of equilibrium points of model 

in (8) 

 

Proposition 4.2 The equilibrium points of system (8) 

satisfy 

(i) If 𝑆0 < 0 and 𝑅𝑟 < 0, then 𝐸0 is locally 

asymtotically stable. 

(ii) Let 𝑅𝑟 > 0. If 𝑆0 < 𝑅𝑟, then 𝐸1 is locally 

asymtotically stable. 

(iii) Let 𝑆0 > 0 and 𝑆0 > 𝑅𝑟. Then 𝐸2 is locally 

asymtotically stable. 

Proof For the stability analysis, the functions of the 

right side of the system (8) are assigned as: 

 

𝑓(𝑆, 𝑅, 𝐶1, . . . , 𝐶𝑛) = 𝑆 (𝛽𝑠 (1 −
𝑆+𝑅

𝐾
) − [∑ (𝑞𝑖 + 𝛼𝑖)

𝑛
𝑖=1 𝐶𝑖] − 𝜇𝑠)

𝑔(𝑆, 𝑅, 𝐶1, . . . , 𝐶𝑛) = 𝛽𝑟𝑅 (1 −
𝑆+𝑅

𝐾
) + 𝑆[∑ 𝑞𝑖

𝑛
𝑖=1 𝐶𝑖] − 𝜇𝑟𝑅

ℎ𝑖(𝑆, 𝑅, 𝐶1, . . . , 𝐶𝑛) = 𝛬𝑖 − 𝜇𝑖𝐶𝑖 ,            𝑖 = 1,2, . . . , 𝑛

(15)

. 

That jacobian matrix obtained from (15) is  

 

𝐽 =

(

 
 

𝑓𝑆 𝑓𝑅 𝑓𝐶1 . . . 𝑓𝐶𝑛
𝑔𝑆 𝑔𝑅 𝑔𝐶1 . . . 𝑔𝐶𝑛
(ℎ1)𝑆 (ℎ1)𝑅 (ℎ1)𝐶1 . . . (ℎ1)𝐶𝑛
. . . . . . .
(ℎ𝑛)𝑆 (ℎ𝑛)𝑅 (ℎ𝑛)𝐶1 . . . (ℎ𝑛)𝐶𝑛)

 
 

,  

 

that is, 

 

𝐽 =

(

 
 
 
 
 
 
 
 

𝛽𝑠 − 2
𝑆𝛽𝑠

𝐾
−
𝑅𝛽𝑠

𝐾

−∑ (𝑞𝑖 + 𝛼𝑖)
𝑛
𝑖=1 𝐶𝑖
−𝜇𝑠

−
𝑆𝛽𝑠

𝐾
−𝑆 (

𝑞1
+𝛼1

) . . . −𝑆 (
𝑞𝑛
+𝛼𝑛

)

−
𝛽𝑟𝑅

𝐾
+∑ 𝑞𝑖

𝑛
𝑖=1 𝐶𝑖

𝛽𝑟 −
𝛽𝑟𝑆

𝐾

−2
𝛽𝑟𝑅

𝐾
−𝜇𝑟

+𝑆𝑞1 . . . +𝑆𝑞𝑛

0 0 −𝜇1 . . . 0
… … … . . . …
0 0 0 . . . −𝜇𝑛 )

 
 
 
 
 
 
 
 

(16)

. 

Since 𝐶𝑖
𝑒𝑞
=

𝛬𝑖

𝜇𝑖
 for 𝑖 = 1,2, . . . , 𝑛 in all equilibria of the 

system (8), the jacobian matrix showed in (16) can be 

rewritten as follows: 

 

𝐽 =

(

 
 
 
 
 
 
 
 𝛽𝑠 (

𝑆0 − 2
𝑆

𝐾

−
𝑅

𝐾

) −
𝑆𝛽𝑠

𝐾
−𝑆 (

𝑞1
+𝛼1

) . . . −𝑆 (
𝑞𝑛
+𝛼𝑛

)

−
𝛽𝑟𝑅

𝐾
+ ∑ 𝑞𝑖

𝛬𝑖

𝜇𝑖

𝑛
𝑖=1 𝛽𝑟 (

𝑅𝑟

−
𝑆

𝐾

−2
𝑅

𝐾

) +𝑆𝑞1 . . . +𝑆𝑞𝑛

0 0 −𝜇1 . . . 0
… … … . . . …
0 0 0 . . . −𝜇𝑛 )

 
 
 
 
 
 
 
 

(17)

. 

For ease of examination, the 𝜏-th eigenvalue of 

equilibrium point 𝐸𝑘 has shown as 𝜆𝑘,𝜏 for 𝑘 = 0,1,2 

and 𝜏 = 1,2, . . . , 𝑛 + 2,    𝑛 ∈ 𝑁. 

 

(i) For 𝐸0,  the jacobian matrix evaluated in (17) 

is 

𝐽(𝐸0) =

(

 
 
 
 

𝛽𝑠𝑆0 0 0 . . . 0

∑𝑞𝑖
𝛬𝑖
𝜇𝑖

𝑛

𝑖=1

𝛽𝑟𝑅𝑟 0 . . . 0

0 0 −𝜇1 . . . 0
… … … . . . …
0 0 0 . . . −𝜇𝑛)

 
 
 
 

(18) 

 

The eigenvalues obtained from (18) are that 
𝜆0,1 = 𝛽𝑠𝑆0, 𝜆0,2 = 𝛽𝑟𝑅𝑟 and 𝜆0,𝑖+2 = −𝜇𝑖   <
0

 
 for 𝑖 = 1,2, . . . , 𝑛. Because 𝛼 ∈ (0,1] and 

𝜆0,1, 𝜆0,2 ∈ 𝑅, it is sufficient to examine the 

Routh-Hurwitz conditions for  𝜆0,1, 𝜆0,2. In this 

respect, if 𝑆0 < 0 and 𝑅𝑟 < 0, then 𝐸0 is 

locally asymtotically stable. 

 

(ii) Let 

𝑅𝑟 > 0.                                                           (19) 
Jacobian matrix evaluated at the equilibrium 

point 𝐸1 is 
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𝐽(𝐸1) = −

(

 
 
 
 

𝛽𝑠(𝑅𝑟 − 𝑆0) 0 0 . . . 0

(
𝛽𝑟𝑅𝑟 −

∑ 𝑞𝑖
𝛬𝑖

𝜇𝑖

𝑛
𝑖=1

) 𝛽𝑟𝑅𝑟 0 . . . 0

0 0 𝜇1 . . . 0
… … … . . . …
0 0 0 . . . 𝜇𝑛)

 
 
 
 

(20). 

 

The eigenvalues obtained from (20) are that 
𝜆1,1 = 𝛽𝑠(𝑆0 − 𝑅𝑟), 𝜆1,2 = −𝛽𝑟𝑅𝑟 and 

𝜆1,𝑖+2 = −𝜇𝑖   < 0 
 for 𝑖 = 1,2, . . . , 𝑛. From 

(19), it is 𝜆1,2 ∈ 𝑅
−. it is sufficient to examine 

the Routh-Hurwitz conditions for 𝜆1,1 due to 

𝛼 ∈ (0,1] and  𝜆1,1 ∈ 𝑅. In this sense, if 𝑆0 <
𝑅𝑟, then the equilibrium point  𝐸1 is locally 

asymtotically stable. 

 

(iii) Lastly, let 𝑆0 > 0 and 𝑆0 > 𝑅𝑟. For 𝐸2,  the 

jacobian matrix evaluated in (17) is 

 

𝐽(𝐸2) =

(

 
 
 
 
 
 
 
 
−𝛽𝑠

𝑆∗𝑒𝑞

𝐾
−𝛽𝑠

𝑆∗𝑒𝑞

𝐾
−𝑆∗𝑒𝑞 (

𝑞1
+𝛼1

) . . . −𝑆∗𝑒𝑞 (
𝑞𝑛
+𝛼𝑛

)

(

 
 ∑𝑞𝑖

𝛬𝑖
𝜇𝑖

𝑛

𝑖=1

−
𝛽𝑟𝑅

∗𝑒𝑞

𝐾 )

 
 

𝛽𝑟(

𝑆0
−𝑅𝑟

+
𝑅∗𝑒𝑞

𝐾

) +𝑆∗𝑒𝑞𝑞1 . . . +𝑆∗𝑒𝑞𝑞𝑛

0 0 −𝜇1 . . . 0
… . . . … . . . …
0 0 0 . . . −𝜇𝑛 )

 
 
 
 
 
 
 
 

(21) 

 

where 𝑆∗𝑒𝑞 and 𝑅∗𝑒𝑞  are as illustrated in 𝐸2. 

The eigenvalues of matrix (21) are 𝜆2,𝑖+2 =
−𝜇𝑖 < 0 

 for 𝑖 = 1,2, . . . , 𝑛 and the others
 
are 

found from following matrix; 

 

𝐽𝐵(𝐸2) =

(

 
 
−𝛽𝑠

𝑆∗𝑒𝑞

𝐾
−𝛽𝑠

𝑆∗𝑒𝑞

𝐾

(−𝛽𝑟
𝑅∗𝑒𝑞

𝐾
+∑𝑞𝑖

𝛬𝑖
𝜇𝑖

𝑛

𝑖=1

) 𝛽𝑟 (𝑅𝑟 −
𝑅

𝐾
− 𝑆0)

)

 
 

(22) 

 

where matrix 𝐽𝐵(𝐸2) is the block matrix of (21). 

Characteristic equation of (22) is 

𝜆2 + 𝑎1𝜆 + 𝑎2 = 0,                                       (23) 
Where 

 

𝑎1 = (𝛽𝑠
𝑆∗𝑒𝑞

𝐾
+ 𝛽𝑟

𝑅∗𝑒𝑞

𝐾
) + 𝛽𝑟(𝑆0 − 𝑅𝑟) 

𝑎2 = 𝛽𝑠
𝑆∗𝑒𝑞

𝐾
[∑𝑞𝑖

𝛬𝑖
𝜇𝑖

𝑛

𝑖=1

+ 𝛽𝑟(𝑆0 − 𝑅𝑟)] 

 

Because the biological existence condition of 

𝐸2 is 𝑆0 > 𝑅𝑟, it is 𝑎1, 𝑎2 > 0. Therefore the 

eigenvalues 𝜆2,1 and 𝜆2,2 are negative or have 

negative reel parts in accord with Routh-

Hurwitz criteria. In this respect, the 

equilibrium point 𝐸2 is locally asymtotically 

stable.  Hence, proof is completed. 

 

For equilibria of system (8), the conditions found for 

locally asymtotically stability and biological existence  

are summarized in the Table (2). 

 
Table 2: The biological existence and locally asymtotically stability 

conditions of the equilibria of system (8) 

 

Equilibrium Points 

Biological Existence 

and Locally 

Asymtotically 

Stability Conditions 
 

𝐸0 (0,0,
𝛬1
𝜇1
, . . . ,

𝛬𝑛
𝜇𝑛
) 

 

 

𝑆0, 𝑅𝑟 < 0 

 

𝐸1 (0, 𝐾𝑅𝑟 ,
𝛬1
𝜇1
, . . . ,

𝛬𝑛
𝜇𝑛
) 

 

max{𝑆0, 0} < 𝑅𝑟 
 

𝐸2

(

 
 
 
 
 
 
𝐾𝑆0

𝛽𝑟(𝑆0 − 𝑅𝑟)

∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖

𝜇𝑖
+ 𝛽𝑟(𝑆0 − 𝑅𝑟)

,

𝐾𝑆0

∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖

𝜇𝑖

∑ 𝑞𝑖
𝑛
𝑖=1

𝛬𝑖

𝜇𝑖
+ 𝛽𝑟(𝑆0 − 𝑅𝑟)

,

𝛬1
𝜇1
, . . . ,

𝛬𝑛
𝜇𝑛 )

 
 
 
 
 
 

 

 

max{𝑅𝑟 , 0} < 𝑆0 

 

 

 

 

5. NUMERICAL STUDY FOR MODEL (8) 

 

Among the treatment regimen recommended by WHO 

includes isoniazid (INH), rifampicin (RIF), 

streptomycin (SRT) and pyrazinamide (PZA) for some 

bacterial infections caused by bacteria such as 

mycobacterium tuberculosis [28]. In this respect, the 

aforementioned bacteria and antibiotics were used in 

our numerical study. For this infection, treatment time is 

about 6 months, antibiotics INH, RIF, SRT and PZA are 

used in the first two months and antibiotics INH and 

RIF are used in the remaining four months. 

 

The parameter values used in the system (8) for 

numerical study are given in Table 3. 
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Table 3.  Interpretation and considered values of the parameters. Data 

are deduced from the literature (references) 

 

Parameter  Description   Value   Reference 

𝛽𝑠 
Growth rate of 

sensitive Mtb 
0.8 day-1 [1] 

𝛽𝑟 
Growth rate of 

resistant Mtb 
0.4 day-1 [1] 

𝜇𝑠 
Natural death 

rate of sensitive 

Mtb 

0.312 day-1 [1] 

𝜇𝑟 
Natural death 

rate of resistant 

Mtb 

0.312-0.42 

day-1 

[1]-

Hypothesis 

𝐾 
Carrying 

capacity of Mtb 

109  

bacteria 
[29] 

𝑞1 
Mutation rate of 

INH 

10−6 

mutxgen 
[30] 

𝑞2 
Mutation rate of 

RIF 

10−8 

mutxgen 
[30] 

𝑞3 
Mutation rate of 

SRT 
0 [1] 

𝑞4 
Mutation rate of 

PZA 
0 [1] 

𝛼1 

Elimination rate 

of sensitive Mtb 

due INH 

0.0039 day-

1 
[31] 

𝛼2 

Elimination rate 

of sensitive Mtb 

due RIF 

0.00375 

day-1 
[1] 

𝛼3 

Elimination rate 

of sensitive Mtb 

due SRT 

0.0025 day-

1 
[29] 

𝛼4 

Elimination rate 

of sensitive Mtb 

due PZA 

0.00001625 

day-1 
[29] 

𝛥1 
Daily dose of 

INH 

5 

mg/kg/day 
[30] 

𝛥2 Daily dose RIF 
10 

mg/kg/day 
[30] 

𝛥3 Daily dose SRT 
15-25 

mg/kg/ day 
[30] 

𝛥4 Daily dose ZPA 
20-35 

mg/kg/ day 
[30] 

𝜇1 
Uptake rate of 

INH 
0.06 day-1 [32] 

𝜇2 
Uptake rate of 

RIF 
0.05 day -1 [32] 

𝜇3 
Uptake rate of 

SRT 
0.04 day -1 [32] 

𝜇4 
Uptake rate of 

PZA 
0.03 day -1 [32] 

 

The values for the first case (𝜇𝑟 = 0.312, 𝛥3 = 15, 𝛥4 =
20 and the remaining parameters have the values shown 

in the Table (3)) obtained from this Table are 𝑆0 =

𝛽𝑠−[∑ (𝑞𝑖+𝛼𝑖)
4
𝑖=1

𝛬𝑖
𝜇𝑖
]−𝜇𝑠

𝛽𝑠
=

0.8−(
(10−6+0.0039)

5

0.06
+(10−8+0.00375)

10

0.05

+(0+0.0025)
15

0.04
+(0+0.00001625)

20

0.03

)−0.312

0.8
=

−1.9180  

 

and 𝑅𝑟 =
𝛽𝑟−𝜇𝑟

𝛽𝑟
=

0.4−0.312

0.4
= 0.22. 

We have max{𝑆0, 0} < 𝑅𝑟 from Table 2. Therefore, 

locally asymtotically stable equilibrium point is  

 

𝐸 = (𝑆𝑒𝑞 , 𝑅𝑒𝑞 , 𝐶1
𝑒𝑞
, 𝐶2

𝑒𝑞
, . . . , 𝐶𝑛

𝑒𝑞
) =

𝐸1

(

 
 
0, 22.107,

{
 
 

 
 250

3
, 200,375,

2000

3

⏞          
0−2 𝑡ℎ 𝑚𝑜𝑛𝑡ℎ𝑠

250

3
, 200,0,0⏟      

2−6 𝑡ℎ 𝑚𝑜𝑛𝑡ℎ𝑠 }
 
 

 
 

)

 
 

.   

 

This case with initial condition [10000 0 0 0 0 0] has 

monitored in Figures 2, 3 and 4. 

 

 

 

 
 
Figure 2. In case of 𝛼 = 0.50, 0.75 and 0.90 in system (8), 
respectively, temporal courses of antibiotics concentrations obtained 
by using first column datas in the Table 3. 
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Figure 3. In case of 𝛼 = 0.50, 0.75 and 0.90 in system (8), 
respectively, temporal course of susceptible bacteria to multiple 

antibiotics obtained by using first column datas in the Table 3 

 
 

 
 

Figure 4. In case of 𝛼 = 0.50, 0.75 and 0.90 in system (8), 
respectively, temporal course of resistant bacteria to multiple 

antibiotics obtained by using first column datas in the Table 3 

 

 

Let 𝜇𝑟 = 0.312, 𝛥3 = 15, 𝛥4 = 20 and the remaining 

parameters have the values shown in the Table (3). The 

values for the second case are founded as  

 

𝑆0 =
𝛽𝑠−[∑ (𝑞𝑖+𝛼𝑖)

2
𝑖=1

𝛬𝑖
𝜇𝑖
]−𝜇𝑠

𝛽𝑠
=

0.8−((10−6+0.0039)
5

0.06
+(10−8+0.00375)

10

0.05
)−0.312

0.8
=

−0.73260. 

 

and  

 

𝑅𝑟 =
𝛽𝑟−𝜇𝑟

𝛽𝑟
=

0.4−0.42

0.4
= −0,05.  

 

By Table 2, it is 𝑆0, 𝑅𝑟 < 0. In this respect, locally 

asymtotically stable equilibrium point is 

 

𝐸 =

(𝑆𝑒𝑞, 𝑅𝑒𝑞 , 𝐶1
𝑒𝑞
, 𝐶2

𝑒𝑞
, . . . , 𝐶𝑛

𝑒𝑞)𝐸0

(

 
 
0, 0,

{
 
 

 
 250

3
, 200,

2500

4
,
3500

3

⏞          
0−2 𝑡ℎ 𝑚𝑜𝑛𝑡ℎ𝑠

250

3
, 200,0,0⏟      

2−6 𝑡ℎ 𝑚𝑜𝑛𝑡ℎ𝑠 }
 
 

 
 

)

 
 

. 

 

Figures 5, 6 and 7 obtained from initial condition 

[10000 0 0 0 0 0] are following: 

 

 

 
 

Figure 5. In case of 𝛼 = 0.75 and 0.90 in system (8), respectively, 

temporal course of antibiotics concentrations obtained by using 
second column datas in the Table 3 
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Figure 6. In case of 𝛼 = 0.50, 0.75 and 0.90 in system (8), 
respectively, temporal course of susceptible bacteria to multiple 

antibiotics obtained by using second column datas in the Table 3 

 

 

 
 

Figure 7. In case of 𝛼 = 0.50, 0.75 and 0.90 in system (8), 
respectively, temporal course of resistant bacteria to multiple 

antibiotics obtained by using second column datas in the Table 3 

 

6. RESULTS AND DISCUSSION 

 

As seen in the Figures, these results in the model 

analysis highlight the fact that some of the bacterial 

infections like tuberculosis believed its have limited or 

destroyed, may recur again. In this respect, the effects of 

antibiotics are much than assumed, since these are used 

probable inappropriately or random.  Thus, the 

appropriate dose and duration of antibiotics play the 

major role in these infections. In the individuals who 

receive not in the appropriate dose and duration of 

antibiotic coctail according to the type and characteristic 

of the bacteria causing infection, infection is limited but 

persistence [33]. 
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