

#### 2-metil-1h-benzimidazol-5-karboksilik asit molekülünün yapısal ve titreşimsel spektrumlarının teorik ve deneysel olarak incelenmesi

Emine Tanış\*

#### ÖZ

Bu çalışmada, 2-metil-1h-benzimidazol 5 karboksilik asit (2M1HB5C) molekülü deneysel teknikler (FT-IR, Dispersive Raman, <sup>1</sup>H ve <sup>13</sup>C NMR spektrumu) ve teorik (DFT metodu) hesaplamalar kullanılarak incelendi. Titreşimsel spektrumlar (FT-IR ve dispersive-Raman) gibi deneysel sonuçlar, DFT (B3LYP) metodu ve cc-pVDZ baz seti kullanılarak hesaplanmış teorik sonuçlar ile desteklendi. Uyarılma enerjileri, osilatör şiddeti, dalga boyları, HOMO ve LUMO enerjileri gibi elektronik özellikler araştırıldı. Ayrıca moleküler elektrostatik potansiyeli, termodinamik özellikleri hesaplandı ve natural bağ orbital analizi yapıldı. Sonuç olarak 2M1HB5C molekülünün teorik sonuçları, deneysel spektrumlar ile kıyaslandı ve aralarında iyi bir uyum olduğu görüldü.

Anahtar Kelimeler: 2-metil-1h-benzimidazol-5-karboksilik asit, DFT metodu, NBO analizi, Moleküler elektrostatik potansiyel (MEP)

# Theoretical and experimental investigation structural and vibrational spectra of 2-methyl-1h-benzimidazole-5-carboxylic acid molecule

#### ABSTRACT

In this study, 2-methyl -1h-benzimidazole 5 carboxylic acid (2M1HB5C) molecule was investigated by using experimental (FT-IR, Dispersive Raman, <sup>1</sup>H and <sup>13</sup>C NMR spectra ) techniques and theoretical (DFT approach ) calculations. Experimental results such as vibrational (FT-IR and Dispersive-Raman) spectra were supported by the theoritical results obtained from DFT (B3LYP) method and cc-pVDZ basis set calculations. Electronic characteristics, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies were investigated for 2M1HB5C molecule. Furthermore, molecular electrostatic potential, natural bond orbital analysis and thermodynamic features were calculated. As a conclusion, the calculated results were compared with the experimental spectra of the 2M1HB5C molecule, which were in a good agreement with observed ones.

Keywords: 2-methyl-1h-benzimidazole-5-carboxylic acid, DFT method, NBO analysis, Molecular electrostatic potential (MEP)

\* Sorumlu Yazar / Corresponding Author

Ahi Evran Üniversitesi, Kaman Meslek Yüksekokulu, Kırşehir- eminetanis@yandex.com

#### **1. GİRİŞ (INTRODUCTION)**

Son yıllarda, Benzimidazol ve türevleri, tedavi ajanları [1], antiparazit, serotonin antagonisti, antineoplastik ve antiflarial [2], herbisit ve antihipertensif bileşenlerinin [3] tasarımında yaygın olarak kullanılmaktadırlar. Benzimidazol türevleri göğüs ve akciğer kanseri gibi birkaç tümör hücresine karşı, antitümör aktivitesi sergilediği de bulunmuştur [4]. Yine birçok ümit verici antitümör etken ajanlarında benzimidazol halka sistemi içerdiği bulunmuştur [5-15]. Aynı zamanda B<sub>12</sub> vitamin bileşenlerinde ve kimya alanında bir ligand olarak kullanımı oldukça yaygındır. Çalıştığımız molekülün formülü:  $C_9H_8N_2O_2$  olup; moleküler ağırlığı: 176.172 g/mol' dür.

Benzimidazol ve türevleri ile ilgili birçok çalışma vardır. 1998'de, Özbey ve çalışma arkadaşları tarafından [16] Benzimidazol kristal ve moleküler yapısı, Göker ve arkadaşları tarafından ise [17,18] benzimidazol molekülünün türevleri sentezlenip, onların Candida türlerine karşı potansiyel aktiviteleri belirlendi. Şahin ve arkadaşları [19] benzimidazoleZn(II) kompleksinin yapısını araştırdılar. Yurdakul ve çalışma arkadaşları tarafından [20] metal halidebenzimidazol'ünün titresimsel spektroskopisi belirlendi. Sudha ve arkadaşları tarafından [21] 2-amino benzimidazol molekülünün moleküler yapısı, titreşimsel modlarını ve HOMO-LUMO analizi yapıldı. Sundaraganesan ve arkadaşları tarafından da [22] deneysel ve teorik olarak benzimidazolün titreşimsel spektrumu calısıldı. Güllüoğlu ve arkadaşları tarafından [23,24] 2 ve 5-metil benzimidazol ve 4-phenylimidazole moleküllerinin moleküler yapıları araştırıldı. Son zamanlarda, Şaş ve arkadaşları tarafından [25] Yoğunluk Fonksiyon Teorisi (DFT) ile 2-Bromo-1H-Benzimidazol molekülünün teorik hesaplamaları gerçekleştirildi.

Literatür gözden geçirildiğinde, 2M1HB5C molekülü ile ilgili herhangi bir kuantum mekaniksel çalışma mevcut değildir. Bu çalışmada ise 2M1HB5C molekülünün moleküler geometrik parametreleri, titreşimsel modları, kimyasal kaymaları, HOMO-LUMO, MEP, NMR spektral analizleri ve termodinamik özellikleri kuantum kimyasal DFT/B3LYP metod ve cc-pVDZ temel seti ile elde edilip, yorumlandı.

### 2. HESAPLAMA DETAYLARI (COMPUTATIONAL DETAILS)

2M1HB5C molekülü, Across Organics şirketinden %97 den fazla saf durumda ve katı durumda tedarik edildi. Molekülün FT-IR ve dispersive Raman spektrumları 4000-400 cm<sup>-1</sup> ve 3500 -10 cm<sup>-1</sup> bölgede kaydedildi. FT- IR spektrumu, KBr disk tekniği yardımıyla Perkin Elmer BX spektrometresinden elde edildi. Dispersive Raman spektrumu da, 1064 nm boyutunda uyarılmış YAG lazerin kullanıldığı Bruker RFS 100/S FT-Raman cihazı kullanılarak elde edildi. 2M1HB5C molekülünün NMR (Nükleer Manyetik Rezonans) (<sup>1</sup>H ve <sup>13</sup>C) spektrumu 300 K de VarianInfinity Plus spektrometresiyle gerçekleştirildi. Bileşenler DMSO da çözüldü. Kimyasal kaymalar, TMS (tetrametilsilane) e göre, ppm de kaydedildi.

Teorik olarak bütün hesaplamalar Gaussian 09 programı [26], DFT metodu [27] B3LYP hibrid fonksiyonu [28] cc-pVDZ baz setiyle gerçekleştirildi. İlk önce 2M1HB5C molekülü optimize edildi, ardından optimize sonuçlar kullanılarak, molekülün yapısal geometrik parametreleri, titresimsel frekansları (FT-IR ve FT-Raman), (<sup>1</sup>H ve <sup>13</sup>C) NMR spektrumları hesaplandı. Hesaplanan titreşim deneysel frekanslarını titresim frekanslarına yaklaştırmak için, bu frekanslar, belirli referanslardan alınan ölçeklendirme faktörüyle çarpıldı. Titreşim modları VEDA4 program [29] ına göre belirlendi. Raman saçılmasının yoğunluk teorisinden [30,31] türetilen relative Raman intensities (I<sup>Ra</sup>) ne dönüştürüldü. <sup>1</sup>H ve<sup>13</sup>C NMR izotropik kimyasal kaymaları, GIAO methodu kullanılarak [32-33] B3LYP/cc-pVDZ temel setiyle DMSO, su, etanol çözeltilerinde ve gaz fazında hesaplandı.

2M1HB5C molekülünün molekül içi ve moleküller arası bağlanma ve bağlar arasındaki etkileşmeleri anlamak için Natural bağ orbital (NBO) hesaplamaları, yapıldı. GaussSum 2.2 programı [34] toplam durum yoğunluğu (TDOS veya DOS), kısmi durum yoğunluğu (PDOS) ve overlappopülasyon durum yoğunluğu (OPDOS veya COOP) spektrumlarını ve moleküler orbitallerin grup katkılarını analiz etmek için kullanıldı. Moleküler elektrostatik potansiyel yüzeyi (MEP), bir molekülün elektron voğunluğunu gösteren yüzev haritası, 2D ve 3D boyutlarıyla gösterildi ve değerlendirildi. Başlık molekülünün farklı sıcaklıkları için (100 K den 700 K'e) sıcaklık kapasitesi, entropi ve entalpi değerleri araştırıldı. 2M1HB5C molekülünün dipol moment ve lineer olmayan optik (NLO) özellikleri hesaplandı ve yorumlandı.

#### 3. SONUÇLAR (RESULTS)

## 4. 3.1. Geometrik Optimizasyon (Geometric Optimization)

Çalışılan molekülün kristal yapısı mevcut değildir. Bu yüzden, optimize edilmiş molekül, yapısal olarak benzer olan bir molekül [35] ile aşağıdaki sonuçlarda görüldüğü gibi karşılaştırıldı. 2M1HB5C molekülü, bir benzen halkasına, bir de COOH (Karboksilik) ve CH<sub>3</sub> (metil) grubuna sahiptir. Molekülün geometrik yapısı atomik numaraları ile Şekil1'de görülmektedir. Kaynak [35] teki 2-[4-(1H-1,2,4-Triazol-1-yl)fenil]-1H benzimidazol molekülü bir benzimidazol ve triazol halkasına bir de fenil grubuna sahiptir. 2M1HB5C molekülünün optimize edilmiş parametreleri (bağ uzunlukları ve açıları) karşılaştırmak amacıyla kaynak [35] teki molekülün deneysel X-ray verileri Tablo 1'de verilmiştir. Molekül geometrisinin teorik ve deneysel sonuçları arasında bazı farklılıklar olduğu görülmektedir. Bu farklılıklar teorik sonuçların molekülün gaz haline ait, deneysel sonuçların ise molekülün katı haline ait olduğundan dolayı olabilir.



Şekil 1.2M1HB5C in optimize geometrik yapısı (The optimized geometric structure of the 2M1HB5C)

Benzimidazol halkasındaki C-C bağ uzunluklarının hesaplanmış değeri, 2-[4-(1H-1,2,4-Triazol-1-yl)fenil]-1H benzimidazol molekülünün deneysel sonuçlarıyla uyumlu olduğu Tablo 1'den görülmektedir. Gözlenen farklılıklar Metil ve Karboksilik asit grubunun etkisinden olabilir. C-C'nin B3LYP/cc-pVDZ baz setiyle 1.390-1.492 Å aralığında hesaplanmış bağ uzunlukları, 1.374-1.400 Å aralığındaki deneysel değerler ile iyi uyumlu olduğu görülmektedir. Bazı bağ uzunlukları ve bağ açılarının deneysel verilerden daha büyük olduğu Tablo 1'den açıkça görülmektedir. Mevcut molekül için C-H bağ uzunluklarının kristalografik verileri (C<sub>3</sub>-H<sub>8</sub> hariç) bulunamadı. Optimize edilmiş C<sub>3</sub>-H<sub>8</sub> in bağ uzunluğu 1.089 Å olup, kaynak [35] de verilen 0.930 Å deneysel değerinden 0.159 Å daha büyük olduğu görülmektedir.

İmidazol halkasının optimize edilmiş bağ açıları deneysel değerler ile uyumlu olduğu görülmektedir. Örneğin, C3-C2-N14 açısı teorik olarak 132.9°, deneysel olarak 131.2° olarak ölçülmüştür. Benzen halkası ve imidazole halkası arasındaki dihedral açı hesaplanmış değerleri C6-C1-C2-N14=180°, N14-C2-C3-C4=180° ve N12-C1-C2-C3=180° olup, sırasıyla deneysel 177.7°, 176.6° ve 176.2° değerlerle uyumlu olduğu görülmektedir.

Tablo1. 2M1HB5C hesaplanan optimize parametreleri ve kaynak [35] X-ray verileri (Calculated optimized parameter values of the 2M1HB5C and X-ray data of the Reference [35])

| <u>Bağ</u><br>Uzunluğu | 2M1HB5C | <u>x-ray</u> | Bağ Açısı  | 2M1HB5C | <u>x-ray</u> |
|------------------------|---------|--------------|------------|---------|--------------|
|                        |         |              |            |         |              |
| C1-C2                  | 1.419   | 1.400        | C2-C1-C6   | 122.6   | 121.3        |
| C1-C6                  | 1.400   | 1.387        | C2-C1-N17  | 104.3   | 107.2        |
| C1-N17                 | 1.380   | 1.377        | C6-C1-N17  | 133.1   | 131.5        |
| C2-C3                  | 1.397   | 1.386        | C1-C2-C3   | 119.8   | 120.6        |
| C2-N16                 | 1.390   | 1.395        | C1-C2-N16  | 110.4   | 108.1        |
| C3-C4                  | 1.400   | 1.368        | C3-C2-N16  | 129.8   | 131.2        |
| C3-H8                  | 1.089   | 0.930        | C2-C3-C4   | 118.1   | 117.8        |
| C4-C5                  | 1.416   | 1.392        | C2-C3-H8   | 120.8   | 121.1        |
| C4-C18                 | 1.485   |              | C4-C3-H8   | 121.2   | 121.1        |
| C5-C6                  | 1.390   | 1.374        | C3-C4-C5   | 121.2   | 121.7        |
| C5-H9                  | 1.090   | 0.930        | C3-C4-C18  | 121.6   |              |
| C6-H10                 | 1.091   | 0.930        | C5-C4-H18  | 117.2   |              |
| C7-C12                 | 1.492   |              | C4-C5-C6   | 121.6   | 121.4        |
| C7-N16                 | 1.312   | 1.352        | C4-C5-H9   | 117.7   | 119.3        |
| C7-N17                 | 1.387   | 1.338        | C6-C5-H9   | 120.7   | 119.3        |
| H11-N17                | 1.011   | 0.860        | C1-C6-C5   | 116.8   | 117.3        |
| C12-H13                | 1.096   |              | C1-C6-H10  | 122.1   | 121.4        |
| C12-H14                | 1.103   |              | C5-C6-H10  | 121.2   | 121.4        |
| C12-H15                | 1.103   |              | C12-C7-N16 | 125.5   |              |
| C18-O19                | 1.215   |              | C12-C7-N17 | 122.0   |              |
| C18-O20                | 1.358   |              | N16-C7-N17 | 112.6   | 112.7        |
| O20-H21                | 0.973   |              | C7-C12-H13 | 108.8   |              |

# 3.2.Titreşim Spektrumlarının Analizi (Analysis of vibration spectra)

Titreşimsel spektroskopi, bir molekül tarafından absorplanan ışığın dalga boylarının ölçümünü sağlar. Bu calışmada, titreşimsel spektrumları tayin etmek ve spektroskopik isaretlemeleri elde etmek icin frekans analizleri yapıldı. DFT/B3LYP/cc-pVDZ baz setiyle hesaplanan teorik sonuçlar, deneysel olan sonuçlardan bazı sapmalar göstermiştir. Bu sapmaları minimize etmek için, hesaplanmış frekanslar, skala faktörüyle carpilmiştir [36]. Bu deneysel ve hesaplanmış frekanslar arasındaki sapmalar iki durumdan dolayı olabilir. İlki, deneysel sonuçlar katı faza, teorik sonuçlar gaz fazına aittir. Diğeri de harmonik olmayan salınımların ihmal edilmesi ve kısmen kuantum mekaniksel metodun kendi doğasından dolayı olmaktadır. 2M1HB5C molekülü için deneysel FT-IR, dispersive Raman spekturumu ve teorik Infrared ve Raman spektrumu Şekil. 2 de gösterilmektedir.





Şekil 2. 2M1HB5C deneysel IR-dispersive Raman ve teorik IRdispersive Raman spektrumu (The experimental IR-dispersive Raman and calculated IR-dispersive Raman spectra of the 2M1HB5C)

C<sub>1</sub> simetri grubuna sahip olan 2M1HB5C molekülü, 21 atoma ve 57 temel titreşime sahiptir. Deneysel (FT-IR ve dispersive Raman ) dalga sayıları, molekülün PED işaretlemesiyle birlikte teorik titreşimsel dalga sayıları karşılaştırmak amacıyla Tablo 2'de verildi. Deneysel ve teorik frekanslar arasındaki uyumu araştırmak için Şekil 3'te korelasyon grafiği çizildi. Aşağıdaki eşitlikler deneysel ve teorik dalga sayıları arasındaki bağlantıyı lineer olarak tanımlamaktadır.

 $v_{teorik} = 0.9745 v_{denevsel} + 24.737$  (1)

(Toplam R<sup>2</sup>=0.9976)

$$v_{teorik} = 0.9384 v_{deneysel} + 50.454 \tag{2}$$

(Infrared-R<sup>2</sup>=0.9977)

$$v_{teorik} = 0.995 v_{deneysel} + 7.619 \tag{3}$$

 $(Raman-R^2=0.9993)$ 

Tablo 2. 2M1HB5C molekülünün deneysel ve hesaplanan titreşim spektrumlarının karşılaştırılması (Comparison of the calculated and experimental vibrational spectra and proposal assignments of 2M1HB5C molecule)

|    | Deneysel dalga sayısı Teorik dalga sayısı |                     |                             |                 | PED (10%) |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|-------------------------------------------|---------------------|-----------------------------|-----------------|-----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No | FT-IR                                     | Dispersive<br>Raman | Skalandırılmış <sup>b</sup> | I <sub>IR</sub> | $S_{Ra}$  | I <sub>Ra</sub> | İşaretleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1  |                                           |                     | 68                          | 0.55            | 0.01      | 10.00           | $\Gamma OCCC(71) + \Gamma CCCC(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2  |                                           |                     | 82                          | 5.08            | 0.71      | 9.43            | $\Gamma$ CNCN(15)+ $\Gamma$ CCNC(15)+<br>$\Gamma$ OCCC(13)+ $\Gamma$ CCCC(11)+ $\Gamma$ CNNC(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3  |                                           |                     | 102                         | 1.75            | 1.07      | 7.82            | $\frac{\Gamma}{\Gamma} \frac{\Gamma}{\Gamma} \frac{\Gamma}$ |
| 4  |                                           |                     | 154                         | 1.85            | 0.87      | 7.14            | $\delta CCC(53) + \delta OCC(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5  |                                           |                     | 165                         | 0.24            | 0.85      | 6.56            | $\Gamma CNCN(40) + \Gamma CNNC(16) + \Gamma CCCC(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6  |                                           | 204                 | 266                         | 1.92            | 0.34      | 6.45            | $\delta CCN(57) + \delta OCC(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7  |                                           |                     | 277                         | 0.91            | 0.65      | 6.26            | ГСССС(39)+ ГСNCN(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8  |                                           | 303                 | 327                         | 3.27            | 6.60      | 5.70            | $\upsilon$ CC(33)+ $\delta$ CCC(24)+ $\delta$ OCO(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9  |                                           | 360                 | 331                         | 0.85            | 0.11      | 5.57            | $\Gamma CCCN(32) + \Gamma CNNC(26) + \Gamma CCCC(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10 |                                           |                     | 428                         | 12.30           | 0.04      | 4.35            | $\Gamma CNCC(42) + \Gamma CCCC(21) + \Gamma HCCC(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11 | 429                                       |                     | 430                         | 3.19            | 1.94      | 3.68            | $\delta CCN(39) + \delta OCC(29)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12 |                                           |                     | 451                         | 64.88           | 2.38      | 3.52            | <u>ГНNCC(85)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13 |                                           | ~                   | 510                         | 14.59           | 0.51      | 3.33            | $\frac{\delta CCC(34) + \delta OCC(33)}{\delta CCC(34) + \delta OCC(33)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14 | 531                                       | 544                 | 534                         | 10.67           | 5.24      | 2.93            | $\frac{\upsilon CC(21) + \upsilon NC(13) + \delta OCO(13)}{FUOCO(40) + FOCON(47)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 15 |                                           |                     | 54/                         | 60.76           | 0.20      | 2.80            | $\frac{1 \text{HOCC}(49) + 1 \text{CCCN}(17)}{\text{EUOCC}(44)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 | 644                                       |                     | 632                         | 17.70           | 1.00      | 2.54            | $\frac{1}{80} \frac{1}{100} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19 | 044                                       |                     | 657                         | 0.05            | 1.99      | 2.33            | $\frac{1}{10000} \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10 |                                           |                     | 0.57                        | 9.95            | 1.42      | 2.44            | $\Gamma CNNC(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19 | 681                                       | 677                 | 668                         | 1.62            | 10.03     | 2.19            | $\mathcal{D}C(23) + \delta CNC(22) + \delta NCN(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20 | 001                                       | 077                 | 738                         | 11.53           | 11.06     | 2.12            | $\frac{\delta CCC(17) + \delta CNC(14) + \nu CC(13)}{\delta CCC(17) + \delta CNC(14) + \nu CC(13)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21 |                                           |                     | 753                         | 58.24           | 0.62      | 2.02            | $\Gamma OCOC(45) + \Gamma HCCN(11) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                           |                     |                             |                 |           |                 | $\Gamma CNCN(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 22 | 774                                       |                     | 771                         | 9.23            | 0.27      | 2.00            | ΓCNCN(26)+ ΓCCCC(16)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                           |                     |                             |                 |           |                 | $\Gamma HCCC(14) + \Gamma OCOC(12) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                           |                     |                             |                 |           |                 | $\Gamma CCNC(11) + \Gamma CNCC(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23 |                                           |                     | 820                         | 1.64            | 2.50      | 1.77            | $\Gamma HCCN(50) + \Gamma OCOC(18) + \Gamma HCCC(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24 | 839                                       | 837                 | 835                         | 4.58            | 9.55      | 1.7             | $\upsilon$ CC(25)+ $\delta$ NCN(24)+ $\delta$ CNC(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25 |                                           |                     | 916                         | 4.98            | 1.05      | 1.66            | ГНССС(72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26 |                                           |                     | 920                         | 9.28            | 4.56      | 1.65            | $\frac{\delta \text{CCC}(27) + \delta \text{CNC}(10)}{\delta \text{CCC}(27) + \delta \text{CNC}(10)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 27 | 070                                       | 937                 | 946                         | 0.96            | 2.73      | 1.59            | $\frac{\partial NC(37) + 1 HCCN(30)}{EUCCC(20) + EUCCN(20)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28 | 970                                       | 982                 | 953                         | 0.09            | 0.48      | 1.49            | $\frac{1 \text{HCCC}(62) + 1 \text{HCCN}(28)}{\text{NCC}(15) + \text{SNCN}(12) + \text{NCCC}(11)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29 |                                           |                     | 1002                        | 3.37            | 20.62     | 1.30            | $\frac{\text{UNC}(15) + \text{ONCN}(15) + \text{UCC}(11)}{\text{EHCCN}(50) + \text{SHCH}(28) + \text{ECNNC}(11)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 31 | 1041                                      |                     | 1010                        | 1.05            | 1.53      | 1.23            | $pOC(27) + \delta HCC(15) + pNC(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 32 | 1041                                      | 1078                | 1099                        | 82.00           | 7.62      | 1.22            | $\delta HCC(47) + \delta CCC(13) + \nu CC(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 33 |                                           | 1120                | 1144                        | 210.0           | 13.45     | 1.08            | $\frac{\delta HOC(32) + \psi OC(20)}{\delta HOC(32) + \psi OC(20)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 34 |                                           | 1120                | 1167                        | 28.10           | 3.05      | 1.07            | $\frac{\delta HOC(42) + \psi CC(10)}{\delta HNC(49) + \psi CC(10)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 35 | 1209                                      |                     | 1206                        | 2.68            | 7.95      | 0.97            | $\delta$ HCC(52)+ $\nu$ CC(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 36 |                                           | 1221                | 1236                        | 47.24           | 86.02     | 0.96            | $\delta$ HOC(19)+ $\delta$ HCC(13)+ $\delta$ CCC(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 37 |                                           | 1278                | 1287                        | 22.80           | 33.81     | 0.84            | $\upsilon$ NC(19)+ $\upsilon$ CC(13)+ $\delta$ HCC(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38 |                                           |                     | 1335                        | 59.23           | 6.43      | 0.71            | υNC(10)+ δHCH(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39 | 1349                                      | 1356                | 1345                        | 159.2           | 56 41     | 0.66            | $\delta HOC(21) + \upsilon OC(18) + \upsilon CC(15) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                           |                     |                             |                 |           |                 | δΟCO(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40 |                                           |                     | 1362                        | 74.57           | 3.76      | 0.63            | $\delta HCH(34) + \upsilon NC(23)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 41 |                                           |                     | 1394                        | 32.74           | 10.17     | 0.54            | $\upsilon NC(13) + \delta HCH(13) + \upsilon CC(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 42 |                                           |                     | 1409                        | 8.31            | 17.75     | 0.48            | $\frac{OHCH(78) + 1 HCCN(15)}{SUCH(27) + nCC(22)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 43 | 1442                                      | 1451                | 1414                        | 27.30           | 101.1     | 0.42            | $\frac{OHCH(27) + OCC(25)}{SHCH(17) + SHCC(12)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 44 | 1442                                      | 1431                | 45                          | 12.62           | 17.30     | 0.40            | vCC(34) + vNC(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45 | 1550                                      | 1497                | 1545                        | 34.23           | 98 24     | 0.39            | WNC(38) + WCC(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 47 | 1550                                      | 1574                | 1586                        | 7 23            | 46.48     | 0.35            | $\frac{\delta CCC(24) + \nu CC(13) + \delta CCN(10)}{\delta CCC(24) + \nu CC(13) + \delta CCN(10)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 48 | 1629                                      | 1632                | 1626                        | 63.16           | 60.01     | 0.23            | vCC(57) + vNC(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9  | 1890                                      |                     | 1749                        | 368.70          | 99.00     | 0.22            | vCO(82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50 |                                           | 2935                | 2940                        | 29.17           | 373.62    | 0.19            | vCH(99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 51 |                                           | 3003                | 2996                        | 12.46           | 140.46    | 0.15            | vCH(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 52 |                                           |                     | 3064                        | 1.89            | 79.91     | 0.11            | vCH(88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 53 |                                           | 3088                | 3091                        | 8.75            | 100.11    | 0.09            | vCH(94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 54 |                                           |                     | 3122                        | 2.63            | 109.74    | 0.08            | vCH(94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 55 | 3310                                      |                     | 3134                        | 0.01            | 77 09     | 0.07            | vCH(99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 56 |                                           |                     | 3528                        | 62.51           | 137.25    | 0.02            | vNH(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 57 |                                           |                     | 3611                        | 89.81           | 199.80    | 0.01            | υOH(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



Şekil 3.2M1HB5C teorik ve deneysel korelasyon grafiği (Correlation graphic of calculated and experimental frequencies for 2M1HB5C)

#### 3.2.1. C-H titreşimleri (C-H vibrations)

C-H gerilme modları, karakteristik bir bölge olan 3000-3100 cm<sup>-1</sup> aralığında gözlenir [37,38]. Bu çalışmada, C-H gerilme modları, DFT/B3LYP/cc-pVDZ metodu kullanılarak 3134-3094 cm<sup>-1</sup> olarak hesaplanmış, FT-IR ile 3310 cm<sup>-1</sup> ve dispersive Raman ile 3088 cm<sup>-1</sup> de gözlenmiştir. Bu aromatik C-H gerilme modlarının PED katkıları, oldukça saf olarak hesaplanmıştır. C-H titreşimlerinin düzlem açı bükülme titreşimleri genellikle 1000-1300 cm<sup>-1</sup> aralığında görülmektedir [39,40]. C-H titreşimlerinin düzlem dışı açı bükülme titreşimleri, güclü bağlasımlı titresimler olup. 1000-750 cm<sup>-1</sup> aralığında görülmektedir [41,42]. Benzimidazol'ün C-H düzlem açı bükülme titreşimleri, Tablo 2'nin PED sütununda görüldüğü gibi C=N ve C-C bağlarıyla bağlantılıdır. Bu çalışmada, C-H düzlem açı bükülme titreşimleri 1437,1362, 1335,1016 cm<sup>-1</sup> olarak tespit edildi ve FT-IR spektrumunda 1442 cm<sup>-1</sup>, dispersive Raman'da 1451 cm<sup>-1</sup>olarak gözlemlendi. C-H düzlem dışı açı bükülme titreşimleri 1414, 1409,1394 cm<sup>-1</sup> olarak hesaplandı.

#### 3.2.2. C-C titreşimleri (C-C vibrations)

Benzenin spektrumunda C-C halka gerilme titreşimleri çok önemli olup, aromatik halka için oldukça karakteristik bir titreşimdir. Varsanyi [43] bu C-C gerilme bandını 1625-1590, 1575-1590, 1470-1540, 1430-1465 ve 1280-1380 cm<sup>-1</sup> frekans bölgesinde beş bant arasında gözlemledi. 2M1HB5C molekülü için, dalgasayıları B3LYP metodu kullanılarak, 1626-1465, 1414, 1394, 1345, 1287, 1206, 1167, 1099, 1002, 835, 738, 668, 534, 327 cm<sup>-1</sup> olarak hesaplandı, FT-IR spektrumunda 1629, 1574, 1550, 1349, 1209, 839, 681, 531 cm<sup>-1</sup> de, dispersive Raman spektrumunda ise 1632, 1574, 1550, 1349, 1078, 837, 677, 544, 303 cm<sup>-1</sup> de ölçüldü. C-C gerilme titreşiminin en büyük %57 PED katkısı, 1626 cm<sup>-1</sup> bandında görülmektedir. Sonuçlardan teorik değerleri ile deneysel değerlerin uyumlu olduğu görülmektedir. C-C-C düzem içi açı bükülme titreşim band modu genellikle 1000-600 cm<sup>-1</sup> arasında görülmektedir [44]. Bu çalışmada, bu band B3LYP metoduyla 738, 920, 1099, 1236, cm<sup>-1</sup> hesaplandı, dispersive Raman spektrumunda 1078, 1221, cm<sup>-1</sup> gözlemlendi.

#### 3.2.3. C-N ve C=N titreşimleri (C-N and C=N vibrations)

C-N ve C=N titreşimleri belirlemek zordur, çünkü benzimidazol halkasında diğer titreşimler ile bağlaşımlı halde bulunurlar. Fakat Karabacak ve arkadaşları [45] C-N ve C=N gerilmelerini FT-IR spektrumunda, sırasıyla 1689 ve 1302 cm<sup>-1</sup> de kaydettiler. Sundaraganesan ve arkadaşları benzimidazol için C-N titreşim modunu 1281 cm<sup>-1</sup> de gözlemlediler [46]. Şimdiki çalışmada, C=N gerilme frekansı sırasıyla, 1629 cm<sup>-1</sup> (FT-IR) ve 1632 cm<sup>-1</sup> (dispersive Raman) da ölçüldü. Teorik olarak da C=N gerilme titreşimi 1626 cm<sup>-1</sup> değerinde hesaplandı. C-N titreşim modu da dispersive Raman 937 cm<sup>-1</sup> de gözlemlendi ve 946 cm<sup>-1</sup>olarak hesaplandı.

#### 3.2.4. N-H titreşimleri (N-H vibrations)

Genellikle N-H gerilme titreşimleri 3500–3300 cm<sup>-1</sup> aralığında gözlenir [47,48,49]. Çalışılan molekül için deneysel titreşimler gözlenmedi fakat teorik olarak B3LYP metoduyla 3528 cm<sup>-1</sup> değeri elde edildi. Bu bandın %100 katkısı PED sütununda saf modda işaretlendi.

#### 3.2.5. CH3 titreşimleri (CH3 vibrations)

CH<sub>3</sub> de gerilmeler, aromatik halkanınkinden (3000-3100cm<sup>-1</sup>) daha düşük frekanslarda meydana gelir. 2M1HB5C molekülü bir tane CH<sub>3</sub> grubuna sahiptir. Daha önceki literatür çalışmalarından CH<sub>3</sub> ün asimetrik C-H gerilim modu 2980 cm<sup>-1</sup> civarında, simetrik modu ise 2870 cm<sup>-1</sup> de işaretlenmiştir [50-53]. Bu çalışmada, CH<sub>3</sub> ün asimetrik C-H gerilim modu dispersive Raman spektrumunda 3003 cm<sup>-1</sup> de ölçüldü, B3LYP metoduyla teorik olarak 2996 ve 3064 cm<sup>-1</sup> olarak hesaplandı. Simetrik gerilim modu ise 2940 da hesaplandı ve dispersive Raman da 2935 cm de gözlendi. CH<sub>3</sub> ün makaslama titreşimleri %78 den daha fazla PED katkısıyla B3LYP metoduyla 1409 cm<sup>-1</sup> de hesaplandı.

3.2.6. COOH titreşimleri (COOH vibrations)

2M1HB5C molekülünün COOH titreşim bandları C-O, C=O ve O-H olmak üzere 3 grup titreşim moduna sahiptir. Karboksilik asit grubunun titreşim analizi C=O grubu ve O-H grubu üzerinden yapıldı. C=O çift bağı, karbon ve oksijen arasındaki  $\pi - \pi$ bağı ile oluşmaktadır. Karbon ve oksijen atomlarının farklı elektronegatifliğinden dolayı, bağ elektronları C ve O atomları arasında eşit bir şekilde dağılım göstermez [54]. Karboksilik asitin C=O gerilme bandı 1740-1660 cm<sup>-1</sup> arası bölgede tek bir band halinde meydana gelir [55]. Bu çalışmada, bu band FT-IR spektrumunda 1890 cm<sup>-1</sup> de tek band halinde gözlemlendi, cc-pVDZ temel seti yardımıyla %82 PED katkısıyla 1749 cm<sup>-1</sup> de işaretlendi. Moleküle bağlı OH hidroksil grubu, 3550 ve 3200 cm<sup>-1</sup> bölgede güçlü bir absorbansa sahiptir [56]. Fakat moleküller arası hidrojen bağ oluşumunun yoğunluk ve genisliğinin artmasıyla 3500-3200 cm<sup>-1</sup> bölgesinde de oluşabilir [56,57]. 2M1HB5C molekülünün O-H gerilme titreșim modu, Tablo 1 de verildiği gibi, B3LYP metodu ile 3611 cm<sup>-1</sup> olarak hesaplandı. O-H gerilme titreşimi PED hesaplamalarına göre saf bir mod halinde elde edildi.

#### 3.3. NBO analizi (Natural bond orbital analysis)

Hesaplamalı kimyada, Fock matrisinin ikinci dereceden pertürbasyon analizi, NBO analizindeki alıcı (boş)–verici (dolu) orbitaller arası etkileşimleri hesaplamak için kullanılır [58]. 2M1HB5C molekülünün DFT/B3LYP/cc-pVDZ baz setinde moleküller arası elektron yoğunluğunun (ED) delokalizasyonunu anlamak için NBO 3.1 programıyla [59] Gaussian 09W yazılımı [26] birlikte kullanılarak, molekülün elektron verici (dönor (i)), elektron alıcı (akseptör(j)) ve delokalizasyonla ilgili E(2) stabilizasyon enerjisi elde edildi ve Tablo 3'te verildi.

i-j kuantum durumları arasındaki geçiş için stabilizasyon enerjisi;

$$E_2 = \Delta E_{ij} = q_i F(i,j)^2 / C_j - C_i$$
(4)

Burada q<sub>i</sub>, verici orbital doluluk oranı,  $\varepsilon_i$  ve  $\varepsilon_j$  diagonal elemanlar ve F(i,j) NBO Fock Matris elemanlarının diagonal olmayan elemanını göstermektedir [60]. Molekül içi kuvvetli hiperkonjugatif etkileşim C1-C2 nin  $\sigma$  bağından C1-C6 ve C2-C3  $\sigma^*$  anti bağ orbitaline geçişte 4.46 ve 3.68 KJ/mol'lük düşük bir stabilizasyon enerjisi olarak gerçekleştiği görülmektedir. Bu etkileşim C3-C4 ve C5-C6 nın  $\pi^*$ anti bağ orbitaline~21.8 ve 16.98 KJ/mol'lük kuvvetli bir delokalizasyona neden olmuştur. C1-C2 nin  $\pi^*$  anti bağ orbitalinden C3-C4  $\pi^*$  anti bağ orbitaline geçiş ise 301.8 kJ/mol'lük çok büyük bir stabilizasyon enerjisiyle sonuçlanmıştır. $\pi$  C(18-O19) ve  $\sigma$ (C18-O20) bağlarından  $\pi^*$ (C3-C4) ve  $\sigma^*$ (C4-C5)

bağlarına geçiş yaklaşık 4 ve 2 KJ/mol'lük düşük bir stabilizasyon enerjisi ile olmuştur. Bu da bize  $\sigma$ (C-O)

bağlarının fenil halkasında herhangi bir değişikliğe sebep olmak için bir kararlılığa sahip olmadığını gösterir. Ancak (C18-O19)  $\pi$ bağından, (C3-C4)  $\pi$ bağına geçişte 101.25kJ/mol stabilizasyon enerjisini meydana getirmiştir.

#### 3.4.<sup>1</sup>H ve <sup>13</sup>C NMR analizi (<sup>1</sup>H and <sup>13</sup>C NMR analysis)

Kimyasal kayma analizi, organik bileşiklerin yapısal analizlerinde kullanılan en önemli tekniklerden biridir. Aynı zamanda büyük biyomoleküllerin yapısını anlamak ve yorumlamak için NMR spektroskopik tekniği ile bilgisavar simülasyon teknikleri beraber kullanılmaktadır [61]. Bu yüzden biz de, molekül hakkında daha fazla bilgiye sahip olmak için, bu yaygın ve faydalı tekniği kullandık. 2M1HB5C molekülünün geometrik optimizasyondan sonra, <sup>1</sup>H ve <sup>13</sup>C NMR kaymaları GIAO [32,33] metodu, B3LYP fonksiyoneli, cc-pVDZ temel setivle su, etanol, DMSO cözeltilerinde ve gaz fazında hesaplanmıştır. Molekülün deneysel <sup>1</sup>H, <sup>13</sup>C spektrumları DMSO çözücüsünde alınmış ve sırasıyla Şekil.5a ve Şekil.5b de gösterildi. DFT/B3LYP metoduyla elde edilen deneysel ve teorik kimyasal kaymalar (toplam) arasındaki korelasyon Sekil 6'da gösterildi.

<sup>1</sup>H NMR kimyasal kayma değerleri DMSO, su ve etanol de 2.85-8.87 ppm aralığında, gaz fazı için 3.05-7.98 ppm aralığında hesaplandı. DMSO da hazırlanan çözücülerin deneysel kimyasal kaymaları 2.52-8.07 ppm de ölçüldü. H11 ve H21 deneysel değerleri gözlenmedi. Bu durum N17 ve O20 gibi elektronegatifliği fazla olan atomlara bağlı olduklarından dolayı olabilir.

### 3.5. Sınır moleküler orbital analizi (Frontier molecular orbital analysis)

Bir molekülün elektronik ve optik özelliklerinde önemli rol oynayan sınır moleküler orbitaller (FMO), en yüksek dolu moleküler orbital (HOMO) ve en düşük boş moleküler orbital (LUMO), bir molekülde en önemli orbitallerdir. HOMO enerjisi elektron verme potansiyeli ile LUMO enerjisi de elektron alma ilgisi ile ilgilidir [62]. HOMO-LUMO enerji değerleri arasındaki fark, enerji aralığı, molekülün elektriksel özelliklerinin belirlenmesinde önemli bir parametredir. Enerji aralığı aynı zamanda molekülün kimyasal kararlılığını ve molekül içinde yer alan yük transferini açıklar. Temel olarak, enerji aralığı, molekül içinde en kararlı olan temel durumdan, uyarılmış bir duruma geçmek için sahip olunması gereken enerjiyi belirler [63]. 2M1HB5C molekülünün, sınır orbitalleri (HOMO, LUMO, LUMO+1, HOMO-1) ve enerji aralığı Şekil 6'da çizildi.

| Verici (i) | <u>Tipi</u> | ED/e  | <u>Alıcı(j)</u> | <u>Tipi</u> | <u>ED/e</u> | E <sup>(2)a</sup> (KJ mol <sup>-1</sup> ) | <u>E(j)-E(i)<sup>b</sup></u><br>(a.u) | <u>F(i.j)<sup>c</sup> (a.u)</u> |
|------------|-------------|-------|-----------------|-------------|-------------|-------------------------------------------|---------------------------------------|---------------------------------|
| C1-C2      | σ           | 1.962 | C1-C6           | σ*          | 0.02        | 4.46                                      | 1.26                                  | 0.067                           |
| C1-C2      | σ           | 1.962 | C2-C3           | σ*          | 0.02        | 3.68                                      | 1.28                                  | 0.061                           |
|            | σ           | 1.962 | H11-N17         | σ*          | 0.02        | 5.18                                      | 1.07                                  | 0.067                           |
| C1-C2      | π           | 1.573 | C3-C4           | π*          | 0.04        | 21.8                                      | 0.29                                  | 0.072                           |
|            | π           | 1.573 | C5-C6           | π*          | 0.03        | 16.98                                     | 0.29                                  | 0.064                           |
|            | π           | 1.573 | C7-N16          | π*          | 0.03        | 12.86                                     | 0.27                                  | 0.054                           |
| C1-C6      | σ           | 1.974 | C1-C2           | σ*          | 0.04        | 4.51                                      | 1.26                                  | 0.068                           |
|            | σ           | 1.974 | C1-N17          | σ*          | 0.03        | 2.15                                      | 1.15                                  | 0.044                           |
|            | σ           | 1.974 | C2-N16          | σ*          | 0.02        | 1.57                                      | 1.18                                  | 0.038                           |
|            | σ           | 1.974 | C5-C6           | σ*          | 0.01        | 2.68                                      | 1.31                                  | 0.053                           |
|            | σ           | 1.974 | С5-Н9           | σ*          | 0.01        | 2.65                                      | 1.18                                  | 0.05                            |
| C1-N17     | σ           | 1.983 | C1-C2           | σ*          | 0.04        | 1.04                                      | 1.36                                  | 0.034                           |
|            | σ           |       | C1-C6           | σ*          | 0.02        | 2.06                                      | 1.4                                   | 0.048                           |
|            | σ           |       | C2-C3           | σ*          | 0.02        | 3.14                                      | 1.42                                  | 0.06                            |
|            | σ           |       | C2-N16          | σ*          | 0.02        | 0.6                                       | 1.28                                  | 0.025                           |
|            | σ           |       | C5-C6           | σ*          | 0.01        | 1.07                                      | 1.41                                  | 0.035                           |
|            | σ           |       | C7-C12          | σ*          | 0.02        | 3.75                                      | 1.24                                  | 0.061                           |
|            | σ           |       | C7-N17          | σ*          | 0.05        | 2.01                                      | 1.23                                  | 0.045                           |
|            | σ           |       | H11-N17         | σ*          | 0.01        | 0.96                                      | 1.21                                  | 0.03                            |
| C2-C3      | σ           | 1.974 | C1-C2           | σ*          | 0.04        | 3.57                                      | 1.25                                  | 0.06                            |
|            | σ           |       | C1-N17          | σ*          | 0.03        | 1.54                                      | 1.14                                  | 0.037                           |
| C2-N16     | σ           | 1.974 | C1-C2           | σ*          | 0.04        | 1.11                                      | 1.3                                   | 0.034                           |
| C3-C4      | σ           | 1.971 | C2-C3           | σ*          | 0.02        | 3.02                                      | 1.3                                   | 0.056                           |
|            | σ           |       | C2-N16          | σ*          | 0.02        | 5.53                                      | 1.15                                  | 0.071                           |
| C3-C4      | π           | 1.678 | C1-C2           | π*          | 0.47        | 17.59                                     | 0.28                                  | 0.065                           |
|            | π           |       | C3-C4           | π*          | 0.35        | 2.25                                      | 0.29                                  | 0.011                           |
|            | π           |       | C5-C6           | π*          | 0.3         | 21.53                                     | 0.29                                  | 0.07                            |
|            | π           |       | C18-O19         | π*          | 0.25        | 23.87                                     | 0.27                                  | 0.073                           |
| C3-H8      | σ           | 1.977 | C1-C2           | $\sigma^*$  | 0.04        | 4.64                                      | 1.06                                  | 0.063                           |
|            | σ           |       | C4-C5           | σ*          | 0.02        | 4.84                                      | 1.08                                  | 0.065                           |
| C4-C5      | σ           | 1.97  | C3-C4           | σ*          | 0.02        | 4.18                                      | 1.27                                  | 0.065                           |
|            | σ           |       | C18-O20         | σ*          | 0.09        | 2.17                                      | 1.02                                  | 0.043                           |
| C4-C18     | σ           | 1.972 | C2-C3           | σ*          | 0.02        | 2.34                                      | 1.27                                  | 0.049                           |
|            | σ           |       | C3-C4           | σ*          | 0.02        | 2.55                                      | 1.26                                  | 0.051                           |

Tablo 3.2M1HB5C için NBO bazında Fock matrisinin ikinci mertebeden pertürbasyon teorisi analizi (Second order perturbation theory analysis of Fock matrix in NBO basis for 2M1HB5C)

|         | σ  |       | C4-C5   | $\sigma^*$ | 0.02 | 1.9    | 1.23 | 0.043 |
|---------|----|-------|---------|------------|------|--------|------|-------|
|         | σ  |       | C5-C6   | $\sigma^*$ | 0.01 | 2.82   | 1.27 | 0.054 |
|         | σ  |       | O20-H21 | σ*         | 0.01 | 2.97   | 1.06 | 0.05  |
| C5-C6   | σ  | 1.973 | C1-C6   | σ*         | 0.02 | 3.36   | 1.28 | 0.059 |
|         | σ  |       | C1-N17  | σ*         | 0.02 | 7.08   | 1.13 | 0.08  |
| C5-C6   | π  |       | C1-C2   | π*         | 0.47 | 21.22  | 0.28 | 0.073 |
|         | π  |       | C3-C4   | π*         | 0.35 | 16.16  | 0.3  | 0.063 |
| С5-Н9   | σ  | 1.977 | C1-C6   | π*         |      | 4.2    | 1.09 | 0.06  |
|         | σ  |       | C3-C4   | π*         | 0.35 | 4.94   | 1.1  | 0.066 |
|         | σ  |       | C4-C5   | π*         |      | 0.69   | 1.07 | 0.024 |
|         | σ  |       | C5-C6   | π*         | 0.3  | 0.74   | 1.11 | 0.026 |
| C6-H10  | σ  | 1.98  | C1-C2   | σ*         | 0.04 | 4.55   | 1.08 | 0.063 |
|         | σ  |       | C1-C6   | σ*         | 0.02 | 0.63   | 1.11 | 0.024 |
|         | σ  |       | C4-C5   | σ*         | 0.02 | 4.11   | 1.09 | 0.06  |
|         | σ  |       | C5-C6   | σ*         | 0.01 | 0.98   | 1.12 | 0.03  |
| C7-C12  | σ  | 1.983 | C1-N17  | σ*         | 0.02 | 2.52   | 1.11 | 0.047 |
|         | σ  |       | C2-N16  | σ*         | 0.02 | 2.97   | 1.14 | 0.052 |
|         | σ  |       | C7-N16  | σ*         | 0.01 | 1.72   | 1.24 | 0.041 |
| C7-N16  | σ  | 1.982 | C2-C3   | $\sigma^*$ | 0.02 | 5.59   | 1.45 | 0.08  |
|         | σ  |       | C2-N16  | σ*         | 0.02 | 1.06   | 1.31 | 0.033 |
|         | σ  |       | C7-C12  | σ*         | 0.02 | 1.8    | 1.27 | 0.043 |
|         | σ  |       | H11-N17 | σ*         | 0.01 | 2.58   | 1.24 | 0.05  |
| C7-N16  | π  |       | C1-C2   | π*         | 0.47 | 18.24  | 0.34 | 0.077 |
| C7-N17  | σ  |       | C1-C6   | σ*         | 0.02 | 5.24   | 1.4  | 0.077 |
| C12-H13 | σ  | 1.98  | C7-N17  | σ*         | 0.05 | 7.06   | 0.93 | 0.073 |
| C18-O19 | π  | 1.99  | C3-C4   | π*         | 0.35 | 4.31   | 0.41 | 0.041 |
| O20-H21 | σ  | 1.98  | C4-C18  | σ*         | 0.06 | 4.94   | 1.19 | 0.069 |
| C1-C2   | π* | 1.57  | C3-C4   | π*         | 0.35 | 301.8  | 0.01 | 0.085 |
| C7-N16  | π* | 1.98  | C1-C2   | π*         | 0.47 | 119.01 | 0.01 | 0.057 |
| C18-O19 | π* | 1.98  | C3-C4   | π*         | 0.35 | 101.25 | 0.02 | 0.073 |





Şekil 6. Gaz fazı için 2M1HB5C nin sınır molekül orbitalleri (The frontier molecular orbitals of the 2M1HB5Cfor gas phase)

HOMO orbitalleri karboksilik asit grubu hariç, molekülün tamamında, LUMO orbitalleri de molekülün tamamında yerleşmiştir. Gaz, DMSO ve etanol için HOMO'nun enerji değerleri sırasıyla -6.34, -6.45 ve -6.45 eV olarak hesaplanmıştır. Benzer şekilde LUMO enerji değerleri -1.04, -1.25, -1.24 eV'dur. Çalışılan molekülde, HOMO ve LUMO arasındaki enerji farkı sırasıyla gaz, DMSO ve etanol için 5.3, 5.21, 5.21 eV olarak hesaplandı.

Molekül için ayrıca kimyasal sertlik, elektronegatiflik, kimyasal potansiyel ve elektrofillik indeks değerleri de hesaplanmış ve sırasıyla gaz fazında kimyasal sertlik, elektronegatiflik, kimyasal potansiyel ve elektrofillik değerleri 2.65, 3.69, 3.69, 2.57 eV olarak hesaplanıp Tablo 4'da listelenmiştir.

# **3.6.** Toplam, kısmi ve overlap popülasyon durum yoğunluğu (Total, partial, and overlap population density-of-states)

Sınır bölgesinde birbirine yakın orbitaller yarı dejenere enerji seviyeleri gösterebilirler. Bu gibi durumlarda sadece HOMO ve LUMO' nun dikkate alınması, sınır orbitallerinin gerçek tanımını sağlamayabilir. Bu sebeble TDOS, PDOS ve OPDOS (veya COOP) yoğunluk durumları [64-66] hesaplandı ve GaussSum2.2 programı [34] kullanılarak 0.3 eV' un yarı maksimumda Full genişlik (FWHM) ve birim uzunluğun Gaussian eğrileri ile moleküler orbital bilgi karışımı yardımıyla oluşturuldu. TDOS, PDOS ve OPDOS grafikleri sırasıyla Şekil 8-10'da çizilmiştir. OPDOS (COOP) diyagramları



16.0 15.0 14.0 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.

atom ya da gruplarda iki orbitalin bağ, anti bağ ve bağ yapmayan orbitallerin etkileşimini göstermektedir. Pozitif, negatif ve sıfır değerleri sırasıyla bağ, anti bağ ve bağ yapmayan orbitallerin etkilesimlerini göstermektedir [67]. Ayrıca OPDOS diyagramı bağ, bağ yapmayan PDOS esas olarak, moleküler orbitallere katkı sağlayan avrı avrı orbitallerin birlesiminden olusur. HOMO orbitalleri benzimidazol halka (C7H6N2 grup), metil (CH3 grup) ve karboksil (COOH grup) üzerine yayılmışken, LUMO orbitalleri benzimidazol halka (C<sub>7</sub>H<sub>6</sub>N<sub>2</sub> grup) ve karboksil (COOH grup) üzerine yerleşmiştir. Fakat molekülde moleküler parçaların veya atomik orbitallerin yüzde paylaşımına göre, bağ ve anti bağ özellikleri hakkında bilgi sahibi olmak çok zordur. Bu yüzden belirli gruplar arasındaki, orbital enerji değerlerinin bazılarını gösteren OPDOS divagramı Sekil 10'da cizilmistir. Bu etkileşimler örneğin benzimidazol halkasının metil grubuyla etkileşimi (yeşil çizgi) pozitif (bağ etkileşimi), karboksil grubunun benzimidazol halkası ile (kırmızı çizgi) negatif (anti bağ etkileşimi), diğer bir çizgi (mavi cizgi) karboksil ve metil grubunun etkileşimi sıfıra yakın (bağ olmayan) etkileşimlerdir.



Şekil 8. 2M1HB5C toplam elektronik durum yoğunluğu (TDOS) (The total electronic density of states (TDOS) diagram of the 2M1HB5C)





orbitalleri ortaya çıkarmaya ve ligandın verici-alıcı özelliklerini karşılaştırmaya yardımcı olur.



Şekil. 10.2M1HB5C molekülünün overlap popülasyonunun elektronik durum yoğunluğu (OPDOS) (The overlap population electronic density of states OPDOS diagram of the 2M1HB5C)

#### 3.7. Moleküler Elektrostatik Potansiyel (MEP) (Molecular Electrostatic Potential)

Moleküllerin MEP yüzey diyagramları, renk derecelendirilmesine bağlı olarak pozitif, negatif ve nötral elektrostatik potansiyel bölgeler gibi görünüşünü göstermesi bakımından önemli ve fizikokimyasal özellikleriyle bağlantılı moleküler yapının araştırılmasında faydalı bir diyagramdır [68,69]. Yani bir moleküldeki nükleofilik ve elektrofilik ataklar gibi etkilere karar vermek icin sıklıkla kullanılan bir hesaplama tekniğidir. Kimyasal aktivitenin bu görsel sunumunda, MEP in negatif (kırmızı) bölgeleri elektrofilik reaktivite (elektron verme reaksiyonu) ve pozitif (mavi) bölgeleri nükleofilik reaktiviteyle, (elektron alma reaksiyonu) ile ilgilidir. MEP çalışmaları B3LYP/cc-pVDZ temel seti kullanılarak gerçekleştirildi ve Şekil 11'de gösterildi. Kırmızıdan maviye bu aralıktaki bütün renkler kullanıldı. MEP yüzey haritasındaki farklı renkler elektrostatik potansiyelin farklı değerlerini göstermektedir. Potansivel kırmızıdan maviye doğru artmaktadır. Negatif potansiyele sahip bölgeler O19 ve N16 atomları üzerinde yoğunlaşırken, pozitif potansiyele sahip bölgeler H atomları etrafında yoğunlaşmıştır.



Şekil 11.2M1HB5C molekülünün 3D moleküler elektrostatik potansiyeli ve 2D kontör haritası (Molecular electrostatic potential (MEPs) 3D map and 2D contour map for .2M1HB5C molecule)

#### 3.9. Mulliken atomik yükleri (Mulliken atomic charges)

Molekülün Mulliken atomik yüklerinin değerleri Tablo 5'de listelenerek yük dağılımı Sekil 12'de gösterilmiştir. Moleküler sistemlerde, reaktif atomik yükler kuantum mekaniksel hesaplamaların uygulamalarında önemli bir rol oynamaktadır. Bu calısmada birbirine benzer moleküllerin mulliken yükleri, farklı temel set kullanılarak hesaplanmış sonuçları birbirleriyle karsılastırılarak yorumlandı. 2Br1HB ve benzimidazol'ün yük dağılımları B3LYP/6-311+G(d,p) temel setiyle, bu çalışmadaki 2M1HB5C molekülü için Mulliken atomik yükleri de DFT/B3LYP metodu ve ccpVDZ temel setiyle hesaplandı. 2M1HB5C molekülü için sonuçlar, COOH grubunun fenil halkasının elektron yoğunluğunun yeni bir dağılıma sebep olduğu görüldü. Fenil halkası karbon atomu -0.063 e negatif vüke, benzimidazol icin C3/C4/C5/C6 atomları -0.680, -0.189, -0.274, -0.687 e, 2Br1HB molekülü için ise aynı atomlar -0.807, -0.186, -0.290, -0.956 e negatif yüküne sahipken diğerleri pozitif yüke sahip oldukları görüldü. Aynı farklılıklar C1 ve C2 atomları üzerinde de görülmektedir. Bunun sebebi COOH ve CH3 gruplarının etkisinden ve hesaplamada kullanılan temel setlerinden olabilir.



Şekil 12. 2M1HB5C a) 2Br1HB ve b) Benzimidazol için Mulliken yük dağılımı (The Mulliken charge distribution for 2M1HB5C a) 5Br1HB and b) 2Br1HB)

## 3.10. Termodinamik özellikler (Thermodynamic properties)

2M1HB5C molekülü için sabit basınçta ısı kapasitesi (C), entropi (S) ve entalpi parametreleri ( $\Delta H$ )elde edildi. Termodinamik fonksiyonların değişimini görmek için sıcaklık 100 den 700 K e kadar artırıldı ve Tablo 6'da listelendi.

Moleküler titreşim yoğunlukları sıcaklıkla arttığından, termodinamik fonksiyonların da ısı artışıyla arttıkları gözlemlendi [70]. Bunların korelasyon grafikleri Şekil 13'te gösterildi. Isı kapasitesi, entropi ve entalpinin sıcaklıkla değişimleri aşağıda verilmiştir.

Uygun fit eşitlikleri;

$$C = -0.252 + 1.161T + 7x10^{-5}T^{2} \quad R^{2} = 0.999$$
(5)  $S = 54.6 + 1.170T + 4x10^{-5}T^{2} \quad R^{2} = 1.000$ 
(6)  
 $\Delta H = -0.521 + 0.01T + 5x10^{-5}T^{2} \quad R^{2} = 0.999$ 
(7)

| C <sub>1</sub> simetri       | Gaz       | DMSO      | Etanol    |
|------------------------------|-----------|-----------|-----------|
| Etoplam (Hartree)            | -474.5699 | -474.5813 | -474.4034 |
| E <sub>HOMO</sub> (eV)       | -6.34     | -6.45     | -6.45     |
| E <sub>LUMO</sub> (eV)       | -1.04     | -1.25     | -1.24     |
| E <sub>HOMO-1</sub> (eV)     | -6.53     | -6.62     | -6.61     |
| $E_{LUMO+1}$ (eV)            | -0.54     | -0.62     | -0.62     |
| EHOMO-1-LUMO+1 fark (eV)     | 5.99      | 6.00      | 6.00      |
| EHOMO-LUMO fark (eV)         | 5.30      | 5.21      | 5.21      |
| Kimyasal Sertlik (h)         | 2.65      | 2.60      | 2.61      |
| Elektronegativite ( $\chi$ ) | 3.69      | 3.85      | 3.84      |
| Kimyasal Potansiyel (µ)      | -3.69     | -3.85     | -3.84     |
| Elektrofilik İndeks (ω)      | 2.57      | 2.85      | 2.83      |

Tablo 4.2M1HB5C ün hesaplanan enerji değerleri (The calculated energies values of 2M1HB5C)

Tablo 5. 2M1HB5C, 2Br1HB ve Benzimidazol için Mulliken yük dağılımı (The Mulliken charge distribution for 2M1HB5C, 2Br1HB and Benzimidazole molecule

| Atomlar | 2M1HB5C | 2Br1HB | Benzimidazol |
|---------|---------|--------|--------------|
| C1      | 0.112   | 0.505  | 0.616        |
| C2      | 0.055   | 0.912  | 0.515        |
| C3      | 0.020   | -0.807 | -0.680       |
| C4      | -0.063  | -0.186 | -0.189       |
| C5      | 0.063   | -0.290 | -0.274       |
| C6      | 0.031   | -0.956 | -0.687       |
| C7      | 0.021   | 0.241  | 0.230        |
| H8      | -0.027  | 0.131  | 0.129        |
| H9      | -0.025  | 0.128  | 0.125        |
| H10     | -0.033  | 0.116  | 0.113        |
| H11     | 0.085   | 0.329  | 0.301        |
| C12     | 0.041   | _      | —            |
| H13     | 0.054   | _      | —            |
| H14     | 0.043   | _      | —            |
| H15     | 0.043   | _      | —            |
| N16     | -0.218  | -0.069 | -0.186       |
| N17     | -0.218  | -0.153 | -0.261       |
| C18     | 0.188   | _      | —            |
| 019     | -0.245  | _      | _            |
| O20     | -0.163  | _      | —            |
| H21     | 0.145   | _      | _            |

| T(K)   | C (calmol <sup>-1</sup> K <sup>-1</sup> ) | S(calmol <sup>-1</sup> K <sup>-1</sup> ) | H(kcalmol <sup>-1</sup> ) |
|--------|-------------------------------------------|------------------------------------------|---------------------------|
| 100    | 16.272                                    | 70.941                                   | 1.2474                    |
| 150    | 22.195                                    | 79.449                                   | 2.3066                    |
| 200    | 28.518                                    | 87.264                                   | 3.6727                    |
| 250    | 35.035                                    | 94.770                                   | 5.3601                    |
| 298.15 | 41.279                                    | 101.827                                  | 7.2940                    |
| 300    | 41.516                                    | 102.095                                  | 7.3737                    |
| 350    | 47.746                                    | 109.273                                  | 9.7062                    |
| 400    | 53.569                                    | 116.300                                  | 12.3405                   |
| 450    | 58.897                                    | 123.156                                  | 15.2534                   |
| 500    | 63.709                                    | 129.824                                  | 18.4204                   |
| 550    | 68.024                                    | 136.292                                  | 21.8152                   |
| 600    | 71.886                                    | 142.552                                  | 25.4140                   |
| 650    | 75.345                                    | 148.604                                  | 29.1954                   |
| 700    | 78.451                                    | 154.451                                  | 33.1412                   |

Tablo 6.2M1HB5C molekülünün farklı sıcaklıklardaki termodinamik parametreleri (Thermodynamic properties at different temperatures at the for 2M1HB5C)



Şekil 13.2M1HB5C molekülü için sıcaklık kapasitesi, entropi, entalpi ve sıcaklık korelasyon grafiği (The correlation graphic of heat capacity, entropy, entalpy and temperature for 2M1HB5C)

#### 3.11. Lineer olmayan optik özellikleri ve dipol moment

#### (Nonlinear optical properties and dipole moment)

Çalışmanın bu kısmında molekülümüz için dipol moment, moleküler polarizebilite, ortalama polarizebilite ( $\alpha$ ), polarizebilite anizotropisi ( $\Delta \alpha$ ) ve moleküler hiperpolarizebilite ß gibi lineer olmayan özellikler hesaplandı. Molekülün polarizebilite ve hiperpolarizebilite tensörleri Gaussian çıktı dosyasından alınıp, birimleri atomik birimden (a.u.), elektronik birime (esu) çevrildi  $\alpha$ , için; 1 a.u.= 0.1482 × 10<sup>-</sup>24 esu,  $\beta$  için; 1 a.u.=  $8.6393 \times 10^{-33}$  esu). Ortalama polarizebilite ( $\alpha$ ), polarizebilite anizotropisi  $(\Delta \alpha)$ ve moleküler hiperpolarizebilite β değerleri aşağıdaki eşitlikler yardımıyla hesaplandı.

$$\alpha_{top} = \frac{1}{3} \left( \alpha_{xx} + \alpha_{yy} + \alpha_{zz} \right)$$

$$\Delta \alpha = \frac{1}{\sqrt{2}} \left[ \left( \alpha_{xx} - \alpha_{yy} \right)^2 + \left( \alpha_{yy} - \alpha_{zz} \right)^2 + 6\alpha_{xz}^2 + 6\alpha_{xy}^2 + 6\alpha_{yz}^2 \right]^{\frac{1}{2}}$$
(8)

$$\langle \beta \rangle = \left[ \left( \beta_{xxx} + \beta_{xyy} + \beta_{xzz} \right)^2 + \left( \beta_{yyy} + \beta_{yzz} + \beta_{yxx} \right)^2 + \left( \beta_{zzz} + \beta_{zxx} + \beta_{zyy} \right)^2 \right]^{\frac{1}{2}}$$
(9)

2M1HB5C molekülü için üstte tanımlanan elektronik dipol moment  $\mu_i(i = x, y, z)$  ve toplam dipol moment  $\mu_{top}$  parametreleri Tablo 7 da listelendi. Toplam dipol moment aşağıdaki eşitlik kullanılarak hesaplandı.

$$\mu_{top} = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{\frac{1}{2}}$$
(10)

Tablo 7. 2M1HB5C molekülünün dipol moment (D), polarizebilite (a.u.), ortalama polarizebilite (x10-24 esu), polarizebilite anizotropisi (x10-24 esu) ve hiperpolarizebilite (x10-33 esu) değerleri (The dipole moments  $\mu$  (D), the polarizability $\alpha$  (a.u.), the average polarizability  $\alpha_o$  (x10<sup>-24</sup>esu), the anisotropy of the polarizability $\Delta \alpha$  (x10<sup>-24</sup>esu), and the first hyperpolarizability  $\beta$  (x10<sup>-33</sup>esu) of 2M1HB5C)

| nyperpola        | inducting p (A10 cou) | 01 20111110.     | ,0)        |
|------------------|-----------------------|------------------|------------|
| $\mu_x$          | 3.0637                | β <sub>xxx</sub> | 4027.3800  |
| $\mu_{y}$        | 2.4612                | $\beta_{xxy}$    | -1460.1447 |
| $\mu_z$          | 0.9252                | $\beta_{xyy}$    | -32.0729   |
| $\mu_0$          | 4.037296              | β <sub>yyy</sub> | 544.8028   |
| $\alpha_{xx}$    | 27.89103353           | $\beta_{xxz}$    | 0.7238     |
| $\alpha_{xy}$    | 0.350768785           | $\beta_{xyz}$    | -0.2412    |
| $\alpha_{yy}$    | 16.83841965           | $\beta_{yyz}$    | -0.3303    |
| $\alpha_{xz}$    | 0.002448205           | $\beta_{xzz}$    | -403.1734  |
| $\alpha_{yz}$    | -0.002594152          | $\beta_{yzz}$    | 138.6524   |
| α <sub>zz</sub>  | 7.242971501           | β <sub>zzz</sub> | -0.1433    |
| $\alpha_{total}$ | 17.32414156           | $\beta_x$        | 3592.1337  |
| $\Delta \alpha$  | 51.51715186           | $\beta_{y}$      | -776.6895  |
|                  |                       | $\beta_z$        | 0.2502     |
|                  |                       | β                | 3675.1423  |

Lineer olmavan optik (NLO) özelliklerinin daha aktif olması icin dipol moment, polarizebilite ve hiperpolarizebilite değerlerinin yüksek olması gerekir. 2M1HB5C molekülü homojen bir yük dağılımına sahiptir. Bu sebeple molekül büyük bir dipol momente sahip değildir. Dipol moment 4.0373 Debye olarak hesaplanmıştır. En yüksek dipol moment değeri  $\mu_x$ (3.0637 Debye) bileşeninde ve en küçük dipol moment değeri  $\mu_z$  (0.9252 Debye) bileşeninde gözlenmiştir. Moleküler hiperpolarizebilite değerinin büyüklüğü NLO sistemleri için önemli bir faktördür. Bu değer 3675.1423x10<sup>-33</sup> esu olarak B3LYP/cc-pVDZ metodu kullanılarak hesaplandı. 2M1HB5C molekülünün polarizebilite ve polarizebilite anizotropisi sırasıyla 17.3242 x10<sup>-24</sup> esu, 56.3182 x10<sup>-24</sup> esu olarak hesaplandı.

#### 4. TARTIŞMA (DISCUSSION)

Bu çalışmada, 2M1HB5C molekülünün FT-IR, FT-Raman, <sup>1</sup>H ve <sup>13</sup>C NMR spektroskopileri ve titreşimsel isaretlemeleri tanımlavan kuantum kimvasal hesaplamalar. elektronik ve magnetik özellikler incelenmiştir. Optimize edilmiş geometrik parametreleri (bağ uzunlukları ve bağ açıları) teorik olarak B3LYP/ccpVDZ metoduyla belirlenmiş ve yapısal olarak benzer molekül ile karşılaştırılmıştır. Molekülün magnetik özellikleri ölçülmüş ve hesaplanmıştır. Kimyasal kaymalar DMSO çözücüsündeki deneysel sonuçlar karsılastırılmış ve hem <sup>1</sup>H hem de <sup>13</sup>C icin sonucların uyum içerisinde olduğu görülmüştür. Aynı zamanda, molekülün sınır moleküler orbitalleri, durum

yoğunlukları (TDOS, PDOS ve COOP veya OPDOS), MEPs kontor/yüzey çizimleri yapıldı. İstatistiksel termodinamikler ve sıcaklık arasındaki korelasyonlar elde edildi. Isi kapasitesi, entropi ve entalpi değerlerinin sıcaklıkla arttığı görüldü.

#### 5. KAYNAKLAR (REFERENCES)

[1] E. Palosi, K. Dezso, M. Erzsebet, I. Szvoboda, H. Laszlo, S. Gyorgy, V. Sandor, G. Vera, M. Katalin, European Patent Appl. EP. 324, 988, Chem. Abstr., vol. 112, pp. 55864, 1990.

[2] S. Ram, D.S. Wise, L.L. Wotring, J.W, McCall, L.B. Townsend, "Synthesis and biological activity of certain alkyl 5-(alkoxycarbonyl)-1H-benzimidazole-2carbamates and related derivatives: a new class of potential antineoplastic and antifilarial agents", J. Med. Chem., vol. 539, pp 539–547, 1992.

[3] K. Kubo, Y. Inada, Y. Kohara, Y. Sugiura, M. Ojima, K. Itoh, Y. Furukawa, N. Nishikawa, T. Naka, "Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazole", J. Med. Chem., vol. 36, pp 1772-1784, 1993.

[4] D. Kumar, M.R. Jacob, M.B. Reynolds, S.M. Kerwin, "Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1", Med. Chem., vol. 10, 3997–4004, 2002.

[5] M. Boiani, M. Gonzalez, "Imidazole and Benzimidazole Derivatives as Chemotherapeutic Agents", Mini Rev. Med. Chem. vol.25, pp. 409-424, 2005.

[6]. A. Hori, Y. Imaeda, K. Kubo, M. Kusaka, "Novel benzimidazole derivatives selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo" M. Cancer Lett. vol. 183, pp. 53-60, 2002.

[7]. H.T. Abdel-Mohsen, F.A.F. Ragab, M.M. Ramla, H.I. Diwani, "Novel benzimidazole derivatives selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo", Eur. J. Med. Chem, vol. 183, pp. 2336-2344, 2010.

[8]. U. Velaparthi, P. Liu, B. Balasubramanian, J. Carboni, R. Attar, M. Gottardis, A. Li, A. Greer, M. Zoeckler, M.D. Wittman, D. Vyas, "Imidazole moiety replacements in the 3-(1*H*-benzodimidazol-2-yl)pyridin-2(1*H*)-one inhibitors of insulin-like growth factor receptor-1 (IGF-1R) to improve cytochrome P450 profile", Bioorg. Med. Chem. Lett., vol. 17, pp. 3072-3076, 2007.

[9]. M.A. Pagano, M. Andrzejewska, M. Ruzzene, S. Sarno, L. Cesaro, J. Bain, M. Elliott, F. Meggio, Z. Kazimierczuk, L.A. Pinna, "Optimization of Protein Kinase CK2 Inhibitors Derived from 4,5,6,7-Tetrabromobenzimidazole", J. Med. Chem., vol. 47, pp. 6239-6247, 2004.

[10]. M.A. Pagano, F. Meggio, M. Ruzzene, M. Andrzejewska, Z. Kazimierczuk, L.A. Pinna, "2-Dimethylamino-4,5,6,7-tetrabromo-1*H*-benzimidazole:a novel powerful and selective inhibitor of protein kinase CK2", Biochem. Biophys. Res. Commun., vol. 321, pp. 1040-1044, 2004.

[11]. D.K. Neff, A. Lee-Dutra, J.M. Blevitt, F.U. Axe, M.D. Hack, J.C. Buma, R. Rynberg, A. Brunmark, L. Karlsson, G. Breitenbucher, "2-Aryl benzimidazoles featuring alkyl-linked pendant alcohols and amines as inhibitors of checkpoint kinase Chk2", Bioorg.Med.Chem.Lett., vol. 17, pp. 6467-6471, 2007.

[12]. K.L. Arienti, A. Brunmark, F.U. Axe, K. McClure, A. Lee, J. Blevitt, D.K. Neff, L. Huang, S. Crawford, C.R. Pandit, L. Karlsson, J.G. Breitenbucher, "Checkpoint Kinase Inhibitors: SAR and Radio protective Properties of a Series of 2-Arylbenzimidazoles", J. Med. Chem., vol. 48, pp. 1873-1885, 2005.

[13]. J.P. Hajduk, S. Boyd, D. Nettesheim, V. Nienaber, J. Severin, R. Smith, D. Davidson, T. Rockway, S.W. Fesik, "Privileged Molecules for Protein Binding Identified from NMR-Based Screening", J. Med. Chem., vol. 43, pp. 3443-3447, 2000.

[14]. D. Kumar, M.R. Jacob, M.B. Reynolds, S.M. Kerwin, "Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1", Bioorg.Med.Chem., vol. 10, pp. 3997–4004, 2002.

[15]. A.S. Aboraia, H.M. Abdel-Rahman, N.M. Mahfouz, M.A. EL-Gendy, "Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-

oxadiazole-2-thione derivatives: Promising anticancer agents", Bioorg.Med.Chem., vol.14, pp. 1236-1246, 2006.

[16] S. Ozbey, S. Ide, E. Kendi, "The crystal and molecular structure of two benzimidazole derivatives: 1-(phenylmethyl)-2-(4-methoxyphenylmethyl)-1H-

benzimidazole-5-carboxylic acid (I) and 1,2-di-(phenylmethyl)-1H-benzimidazole-5-carboxylic acid (II)", Journal of Molecular Structure, vol. 442, pp. 23-30,1998.

[17] H. Göker, C. Kus, W.D. Boykin, S. Yildiz and N. Altanlar, "Synthesis of bi functionalised flavins for incorporation into well defined redox systems", Bioorganic and Medicinal Chemistry, vol.10, pp. 2589-2596, 2002.

[18] S. Ozden, D. Atabey, S. Yildiz and H. Göker, "({4-[4-(1H-Benzimidazol-2-yl)phenyl]-1H-1,2,3-triazol-1-

yl}methoxy) ethanol" Bioorganic and Medicinal Chemistry, vol.13, pp. 1587-1597, 2005.

[19] E. Sahin, S. İde, M. Kurt, S. Yurdakul, "Structural investigation of dibromobis (benzimidazole) Zn(II) complex", Journal of Molecular Structure, vol. 616, pp. 259-264, 2002.

[20] S. Yurdakul, M. Kurt, "Molecular structure and vibrational spectra of 1,2-bis(4-pyridyl) ethane by density functional theory and ab initio Hartree-Fock calculations" Journal of Molecular Structure, vol. 650, pp. 181-190, 2003.

[21] S. Sudha, M. Karabacak, M. Kurt, M. Cinar, N. Sundaraganesan, "FT-IR, FT-Raman, NMR and UV–vis spectra, vibrational assignments and DFT calculations of 4-butyl benzoic acid" Spectrochim Acta A, vol. 84, pp. 184-190, 2011.

[21] M.T. Gulluoglu., M. Ozduran, M. Kurt, S. Kalaichelvan, N. Sundaraganesan, "Molecular structure and vibrational spectra of 2- and 5-methyl benzimidazole molecules by density functional theory", Molecular and Biomolecular Spectroscopy, vol. 76, 107-114, 2010.

[22] N. Sundaraganesan, S. Ilakiamani, P. Subramani, B.D. Joshua, "Molecular structure, vibrational, UV and NBO analysis of 4-chloro-7-nitrobenzofurazan by DFT calculations", Spectrochimica Acta A, vol. 67, pp. 628-635, 2007.

[23] S. Sudha, M. Karabacak, M. Kurt, M. Cınar, N. Sundaraganesan, "Molecular structure, vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 2-amino benzimidazole", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.84, pp. 184-195, 2010.
[24] M.T. Gulluoglu, Y. Erdogdu, J. Karpagam, N. Sundaraganesan, S. Yurdakul, "DFT, FT-Raman, FT-IR and FT-NMR studies of 4-phenylimidazole", Journal of Molecular Structure, vol. 990, pp. 14-20, 2011.

[25] E. Babur Sas, M. Kurt, M. Karabacak, A. Poiyamozhi, N. Sundaraganesan, "Structural investigation of a self-assembled monolayer material 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid for organic light-emitting devices", Journal of Molecular Structure, vol. 1081, pp. 506-518, 2015.

[26] M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. R. Cross, J.B. Cheeseman, Gaussian 09, Revision A. 1 edn, Gaussian. Inc., Wallingford, CT, 2009.

[27] P. Hohenberg, W. Kohn, "Inhomogeneous Electron Gas", Physical Review, vol. 136, pp. B864, 1964.

[28] A.D. Becke, "Density-functional thermochemistry.

III. The role of exact exchange", Journal of Chemical

Physics, vol. 98, pp. 5648, 1993.

[29] M.H. Jamroz, "Vibrational Energy Distribution (VEDA):Scopes and limitations", Analysis Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 114, pp. 220-230, 2013. [30] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. Durig. "Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab *initio* calculations of *S*-methyl-*N*,*N*-dimethyl thiocarbamate", Spectrochimica Acta Part A, vol. 49, pp. 1993, 2007.

[31] G. Keresztury, J.M. Chalmers, P.R. Griffith (Eds.), "Raman Spectroscopy: Theory, Handbook of Vibrational Spectroscopy", vol. 1, John Wiley&Sons Ltd., New York, 2002.

[32] R. Ditchfield, "Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility", Journal of Chemical Physics, vol. 56, pp. 5688–5691, 1972.

[33] K. Wolinski, J.F. Hinton, P. Pulay, "Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations", Journal of the American Chemical Society, vol. 112, pp. 8251–8260, 1990.

[34] N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, "A library for package-independent computational chemistry algorithms", Journal of Computational Chemistry, vol. 29, pp. 839–845, 2008.

[35] L-H. Cheng, Z. Zheng, Z-L. Han, Z-C. Wu, H-P. Zhou, "2-[4-(1H-1,2,4-Triazol-1-yl)phenyl]-1Hbenzimidazole", Acta Crystallographica Section E, pp. 68, 2012.

[36] P. Sinha, S. E. Boesch, C. Gu, R.A. Wheeler andA.K.Wilson, "Harmonic VibrationalFrequencies: Scaling Factors for HF, B3LYP, and MP2Methods in Combination with Correlation Consistent

Basis Sets", The Journal of Physical Chemistry, vol. 108, pp. 9213-9217, 2004.

[37] J. Coates, R.A. Meyers, "Introduction to Infrared Spectrum, A Practical Approach", John Wiley and Sons Ltd, Chichester, 2000.

[38] M. Karabacak, M. Kurt, A. Atac, "Experimental and theoretical FT-IR and FT-Raman spectroscopic analysis of N1-methyl-2-chloroaniline", Journal of Physical Organic Chemistry, vol. 22, pp. 321-330, 2009.

[39] G. Thilagavathi, M. Arivazhagan, "Density functional theory calculation and vibrational spectroscopy study of 2-amino-4,6-dimethyl pyrimidine (ADMP)", Spectrochimica Acta, vol. 79A, pp. 389-395, 2010. [40] M. Govindarajan, K. Ganasan, S. Periandy, M. Karabacak, "Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene" Spectrochimica Acta A, vol.79, pp. 646–653, 2011.

[41] R. Shanmugam, D. Sathyanarayana, "Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene", Spectrochimica Acta, vol.40A, pp. 757, 1984.

[42] M. Govindarajan, M. Karabacak, A. Suvitha, S. Periandy, "FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO–LUMO and electronic structure calculations on 4-chloro-3-nitrotoluene", Spectrochimica Acta A, vol.89, pp. 137-148, 2012.

[43] G. Varsanyi, "Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives", Halsted Press, 1974.

[44] A. Fu, D. Du, Z. Zhou, "Density functional theory study of vibrational spectra of acridine and phenazine", Spectrochimica Acta, vol. 59, pp. 245, 2003.

[45] M. Karabacak, E. Sahin, M. Cinar, I. Erol, M. Kurt, "X-ray, FT-Raman, FT-IR spectra and ab initio HF, DFT calculations of 2-[(5-methylisoxazol-3-yl)amino]-2-oxoethyl methacrylate", Journal of Molecular Structure, vol. 886, pp. 148-157, 2008.

[46] N. Sundaraganesan, S. Ilakiamani, P. Subramani, B.D. Joshua, "Comparison of experimental and ab initio HF and DFT vibrational spectra of benzimidazole", Spectrochimica Acta, vol. 67A, pp. 628-635, 2007.

[47] Y. Wang, S. Saebo, C.U. Pittman, "The structure of aniline by ab initio studies", Journal of Molecular Structure: THEOCHEM, vol. 281, pp. 91-98, 1993.

[48] A. Altun, K. Golcuk, M. Kumru, "Structure and vibrational spectra of *p*-methylaniline: Hartree-Fock, MP2 and density functional theory studies", Journal of Molecular Structure THEOCHEM, vol. 637 pp. 155–169, 2003.

[49] T. Sivaranjini, S. Periandy, M. Govindarajan, M. Karabacak, A.M. Asiri, "Spectroscopic (FT-IR, FT-Raman and NMR) and computational studies on 3-methoxyaniline", Journal of Molecular Structure, vol. 1056, pp. 176–188, 2014.

[50] G. Socrates, "Infrared Characteristic Group Frequencies Tables and Charts", 3rd Edition, John Wiley and Sons, New York, 1980.

[51] D.A. Kleinman, "Nonlinear Dielectric Polarization in Optical Media", Physical Review, vol. 126, pp. 1962, 1977.

[52] N.B. Colthup, L.H. Daly, S.E. Wiberly, "Introduction to Infrared and Raman Spectroscopy", Academic Press, Third Edition New York, 1990. [53] B. Venkataram Reddy, G. Ramana Rao, "Transferable valence force fields for substituted benzenes: Part I. Monohalogenated anisoles", Vibrational Spectroscopy, vol. 6, pp. 231-250, 1994.

[54] P.B. Nagabalasubramanian, M. Karabacak, S. Periandy, "Vibrational frequencies, structural confirmation stability and HOMO–LUMO analysis of nicotinic acid ethyl ester with experimental (FT-IR and FT-Raman) techniques and quantum mechanical calculations", Journal of Molecular Structure, vol. 1017, pp. 1-13, 2012.

[55] D.L. Vein, N.B. Colthup, W.G. Fateley, J.G. Grasselli, "The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules", Academic Press, San Diego, 1991.

[56] R.M. Silverstein, F.X. Webster, "Spectroscopic Identification of Organic Compound", Sixth edition, John Willey&Sons, New York, 1998.

[57] B. Smith, "Infrared Spectral Interpretation. A Systematic Approach", CRC Press, Washington, DC, 1999.

[58] C.R. Kumar, I.H Joe, V.S. Jayakumar, "Charge transfer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: A vibrational approach", Chemical Physics Letter, vol. 460, pp. 552-558, 2008.

[59] E.D. Glendening, C.R. Landis, F. Weinhold, "Natural bond orbital methods", Computational Molecular Science, vol. 2, pp. 1–42, 2011.

[60] A.E. Reed, L.A. Curtiss, F. "Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint", Chemical Review, vol. 88, pp. 899, 1988.

[61] T. Schlick, "Molecular Modeling and Simulation: An Inter disciplinary Guide", second edition, Springer, New York, 2010.

[62] K. Fukui, "The Role of Frontier Orbitals in chemical reactions", Science, vol. 218, pp. 747–754, 1982.

[63] M. Arivazhagan, D. Anitha Rexalin, "FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline", Spectrochimica Acta A, vol. 96, pp. 668–676, 2012.

[64] R. Hoffman, "Solids and Surfaces: A Chemist's View of Bonding in Extended Structures", Wiley- VCH Publisher, Newyork, 1988.

[65] T. Hughbanks, R. Hoffmann, "Chains of trans-edgesharing molybdenum octahedra: metal-metal bonding in extended systems", Journal of the American Chemical Society, vol. 105, pp. 3528–3537, 1983.

[66] J.G. Małecki, "Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium complexes with pyridine and its derivatives as ligands", Polyhedron, vol. 29, pp. 1973–1979, 2010.

[67] M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, "A density functional study of clean and hydrogencovered  $\alpha$ -MoO3(010): $\alpha$ -MoO3(010):Electronic structure and surface relaxation", Journal of Chemical Physics, vol. 109, pp. 6854–6860, 1998.

[68] J. Murray, K. Sen, "Molecular Electrostatic Potentials: Concepts and Applications", 1 st edition, Elsevier, Amsterdam, 1996.

[69] E. Scrocco, J. Tomasi, "Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials", Advances in Quantum Chemistry, vol. 11, pp. 115-193, 1978.

[70] J.B. Ott, J. Boerio-Goates, "Chemical Thermodynamics: Advanced Applications, Calculations from Statistical Thermodynamics", Academic Press, 2000.