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ABSTRACT This manuscript includes the design and evaluation of the new four 16×16 S-boxes for subbyte
operation in image encryption applications and estimates their strength using the following parameters: Dy-
namic Distance, BIC non-linearity, Bijective, Non-linearity, Strict Avalanche Criterion (SAC), and Balanced
criterion. The S-box matrix is designed by a new reconfigurable 3D-Chaotic PRNG. This PRNG is designed
using four different 3D chaotic systems i.e. Lorenz, Chen, Lu, and Pehlivan’s chaotic systems. This reconfig-
urable architecture of PRNG exploits the ODEs of these four attractors that fit all four chaotic systems in a
single circuit. The first part of this manuscript is focused to develop hardware-efficient VLSI architecture. To
demonstrate the hardware performance, the PRNG circuit is implemented in Virtex-5 (XC5VLX50T) FPGA. A
performance comparison of proposed and existing PRNGs (in terms of timing performance, area constraint,
power dissipation and statistical testing) has been presented in this work. The PRNG generates the 24-bit
random number at 96.438-MHz. The area of FPGA is occupied by only 16.66 %, 1.08%, 0.33 %, and 1.15%
of the available DSP blocks, slice LUTs, slice registers and slices respectively. The designed S-boxes using
reconfigurable PRNG fulfill the following criteria: Dynamic Distance, BIC non-linearity, Bijective, Non-linearity,
Strict Avalanche Criterion (SAC), and Balanced criterion.
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INTRODUCTION

Random number generators are one of the essential components in
cryptography, testing of VLSI circuits, bank transactions, financial
market, avionics communications, etc. Random keys are required
in various steps of cryptography like subbyte operation using
S-box, encryption, decryption, etc. (Lambić and Nikolic 2019;
ElSafty et al. 2021; Garcia-Bosque et al. 2018; Garipcan and Erdem
2020). Nowadays, smart systems that are used in the automation
of houses and buildings, industry, energy, medical, transportation,
communication system, etc. require the security of data transfer
and Internet of Things (IoT) applications (G. Di Patrizio Stanchieri
and Faccio 2019). Multimedia data such as video, image, audio
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and text can be communicated over the network very hugely but
these shared data have a serious security concern. The general
way to achieve this request is to design complex software or/and
hardware-based systems, which can generate random sequences
that provide the private and public keys to get the effective data
encryption and decryption process.

In general, there are two types of PRNG: (1) Linear and (2)
Nonlinear PRNG. Nonlinear PRNG is designed using nonlinear
dynamical systems that exhibit chaos behaviour (L’Ecuyer 2012).
In these types of systems, extreme sensitivity with the initial con-
ditions causes chaotic behaviors over long-term randomness or
unpredictability (H. S. Alhadawi and Lambi 2019). So, the chaotic
system determines the nonlinear system with high randomness
characteristics and low design cost. This makes it suitable for
the designing of nonlinear PRNG. For designing a chaos-based
cipher, a plain message is masked or encrypted using random keys
(which is generated from chaotic maps) (Ü. Çavuşoğlu and Kaçar
2019; Wang et al. 2016). Chaotic systems generate a pseudoran-
dom sequence, which can be applied in designing cryptographic
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keys to get their valuable characteristics like random behavior,
sensitivity to the initial conditions, and ergodicity (Li et al. 2001).
So, the cryptographic properties of chaotic-map-based random
sequences are very crucial from a security point of view for encryp-
tion algorithms. The idea of utilizing a 3D chaotic attractor for the
designing of the PRNG is based on its ability that can generate a
sequence of random numbers (X. Y. Wang and Kadir 2010; Artuğer
and Özkaynak 2022b).

For the last 40 years, various simple chaotic systems have
been found and continue the studied within the 3D quadratic
autonomous framework. There are four criteria for the existence
of chaotic behavior in the study of dynamic nonlinear systems
(Pehlivan and Uyaroǧlu 2012). The first well-known criterion is
Lyapunov exponents (Wolf et al. 1985). It decides the chaotic behav-
ior of dynamic systems. If at least one positive Lyapunov exponent
presents in the dynamic system, the dynamic of this system is
chaotic. The second criterion is Melnikov’s. It is used to investi-
gate the occurrence of chaotic behavior in Hamiltonian systems
and it analyzes by estimating the distance between unstable and
stable manifolds (Xu et al. 2009). The third one is Sil’nikov’s cri-
terion (T. Zhou and Čelikovský 2005). The last criterion is the
topological horseshoes theory; it is based on some subsets of inter-
est in the state space of continuous maps (Li and Yang 2010). These
four criteria have been fulfilled by Lorenz (Lorenz 1963), Chen &
Gupta (Gupta and Chauhan 2022, 2020), Lu (Lu and Chen 2002),
and Pehlivan (Pehlivan and Uyaroğlu 2010) chaotic attractors.

The first 3D chaotic system was founded by Lorenz in 1963, it
is a third-order autonomous system that displays very complex
dynamic behaviors (Lorenz 1963). Another similar chaotic attrac-
tor was found by Chen in 1999. It is dual to the Lorenz system
and topologically non-equivalent 3D chaotic system that shows
interesting characteristics (Gupta and Chauhan 2022). Lu and Chen
found another chaotic attractor known as Lu 3D chaotic system
(Lu and Chen 2002). It represents the transition between Chen and
Lorenz 3D attractors. It is important to note that the 3D chaotic
attractors i.e. Lorenz (Lorenz 1963; Artuğer and Özkaynak 2022a),
Chen (Gupta and Chauhan 2022), and Lu chaotic system (Lu and
Chen 2002), have three particular fixed points: one saddle-foci
and two unstable saddle-foci. Recently, Pehlivan et al. introduced
a new 3D chaotic attractor (Pehlivan and Uyaroğlu 2010). It is
similar to the Lorenz and Chen systems, but it includes six terms
with two quadratics in a form and they have two very different
fixed points (i.e. two stable node-foci).

The Lorenz, Chen, Lu, and Pehlivan chaotic attractors have
been utilized in cryptography as PRNGs (Akgul et al. 2019; Alçın
et al. 2016) due to their advantageous properties as discussed. To
model the mathematical formation of a chaotic system, an ordi-
nary differential equation (ODE) is used. It represents the rate-of-
change of variables of a chaotic system. The ODEs can be solved
using three different techniques i.e. Runge-Kutta, mid-point, or
Euler’s method (Zidan et al. 2011). Each chaotic system has a cer-
tain parameter value, which leads to the desired behavior of a
chaotic system. One method to see the chaotic behavior of dy-
namic systems is to draw a three-dimensional (3D) plot, which is
also known as an attractor. It demonstrates how the solutions of
system variables evolve. Various analog and digital encryption
circuits/systems have been designed using different chaotic attrac-
tors (Alawida et al. 2020; Zamli et al. 2023; Zhao et al. 2019; Rezk
et al. 2020; Garcia-Bosque et al. 2019).

The subbyte operation in image encryption algorithms is the
first step and primarily it decides the security strength of encrypted
images. This operation is performed by the S-Box matrix (Zahid
et al. 2021; Ahmad and Alsolami 2020; Alhadawi et al. 2020). It
includes the 8-bit integers in random order in the form of a matrix.
Therefore, the S-box plays the important role in image encryption
algorithms. There is various image encryption algorithms available
in the literature which shows the importance of S-boxes. The image
encryption method using a chaotic attractors-based S-box matrix
was proposed by Tang et. al. in (Tang et al. 2005). The S-box-based
encryption using tent maps chaotic system was proposed by Y.
Wong et. al. in (Wang et al. 2009). M. Khan et. al. proposed the new
S-boxes using a Boolean function of a chaotic system (Khan et al.
2016, 2022). Unal Çavusoglu et. al. developed the chaotic S-box-
based new image encryption algorithm which offers high-security
strength and fast operation (Çavusoglu et al. 2017). The image
encryption algorithm that uses different S-boxes in each cycle was
proposed by Xiong Wang et. al. in (Wang et al. 2019; Artuğer 2023).
The selection of S-boxes in this method is random which performs
the image encryption.

This manuscript has introduced the four new S-boxes using
reconfigurable PRNG. This reconfigurable PRNG is designed us-
ing four different 3D chaotic systems i.e. Lorenz, Chen, Lu, and
Pehlivan attractors. All four chaotic systems reconfigure in a single
architecture due to exploiting the similarities between the differ-
ential equations. The VLSI architecture of the proposed reconfig-
urable PRNG replaces the complex multiplication by hardwired
shifting operation. The first part of this manuscript aims to develop
hardware-efficient VLSI architecture that enhances the timing per-
formances (in terms of latency, bit rate, and maximum operating
frequency), length of the sequence, and randomness. The random
sequences from all four chaotic systems are tested for randomness
using the NIST test suite.

To evaluate the hardware performance, the proposed architec-
ture has been implemented on prototype Virtex-5 (XC5VLX50T)
FPGA. The next part of this manuscript includes the design of
four new 16×16 S-boxes using the proposed reconfigurable PRNG.
To check the suitability of proposed S-boxes in encryption appli-
cations, the following parameters: Dynamic Distance, Bijective,
Balanced, Non-linearity, BIC non-linearity criterion and SAC have
been evaluated in this manuscript. The remaining sections of this
manuscript are arranged as follows: The dynamic behavior of
Lorenz, Chen, Lu, and Pehlivan’s chaotic systems are presented
in Section-2. Section-3 includes the reconfigurable architecture
of PRNG. The statistical description of generated bit Sequences
using NIST is discussed in Section-4. A comprehensive description
and comparison of PRNGs is presented in Section-5. Section-6
includes the design and evaluation of proposed S-boxes. The final
conclusion of this manuscript is mentioned in Section-7.

DESCRIPTION OF LORENZ, CHEN, LU AND PEHLIVAN
CHAOTIC SYSTEM

In this section, we construct parameter variables of Lorenz, Chen,
Lu, and Pehlivan’s three-dimensional (3D) chaotic attractors to
design the hardware efficient and secure digital system of recon-
figurable PRNG. The mathematical formation of chaotic attractors
is done by ODEs. The numerical solution of ODEs can be done
by three different methods: Runge-Kutta, Euler’s method or mid-
point. Hardware point of view, the most suitable approach is
Euler’s method. In this work, this method is adopted to solve the
ODEs of a chaotic system. Eqs. (1) to (3) represent the Euler’s
equations corresponding variables: xi, yi and zi.
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xi+1 = xi + h.ẋi (1)

yi+1 = yi + h.ẏi (2)

zi+1 = zi + h.żi (3)

Table 1 to Table 4 includes the parameter values, range of vari-
ables and ODEs corresponding to Lorenz (Lorenz 1963), Chen
(Gupta and Chauhan 2022), Lu (Lu and Chen 2002), and Pehlivan
(Pehlivan and Uyaroğlu 2010) chaotic attractors. The selection
of parameter values (as shown in Tables 1 to 4) offers hardware
efficient reconfigurable architecture of PRNG. Table 1 shows the
ODEs, range of variables, and parameter value for the Lorenz
chaotic system.

Three variables of this chaotic system are represented by xi,
yi and zi, while a, b and c are the parameters. Similarly, Table
2 presents the ODEs, range of variables, parameter’s value for
Chen’s chaotic system, where xi, yi and zi, a, b and c show the
same meaning. The third attractor is the Lu chaotic system. It has
a wide range of parameter values in which the attractor displaces
a different shape and represents the transition between Chen and
Lorenz 3D attractors. The ODEs and range of variables are men-
tioned in Table 3, where a, b, c are the parameter variables. The
last one is Pehlivan’s chaotic system. It is similar to the Chen, and
Lorenz systems, but it includes six terms with two quadratics in
a form and they have two very different fixed points (i.e. two
stable node-foci). Its ODEs are mentioned in Table 4, where a is
the parameter variable, and xi, yi and zi are system variables.

This section includes the simulation of the dynamic behavior of
Lorenz, Chen, Lu, and Pehlivan’s chaotic system using the Matlab
Tool. To replace a large number of binary multiplication, parameter
variables of chaotic systems are set to be specific values (as shown
in Tables 1 to 4). The benefit of this approach is able to design
multiplierless (except xi.yi and xi.zi) reconfigurable digital chaotic
PRNG. The plane and space plot of the proposed Lorenz, Chen,
Lu, and Pehlivan’s chaotic system are shown in Fig. 1. The Lorenz
system has a 3D attractor as shown in Fig. 1(a), with parameters
values: a = 32, b = 4, c = 32, initial condition (x0, y0, z0) = (1, 1, 1)
and step size: h = 2(−8). Next, the 3D attractor of the Chen
chaotic system is present in Fig. 1(b), with the parameters values:
a = 32, b = 4, c = 24, initial condition (x0, y0, z0) = (5,−15, 40)
and step size:h = 2(−8) Fig. 1(c) shows the chaotic attractor of Lu
system with a = 32, b = 4, c = 16, initial condition (x0, y0, z0) =

(1, 1, 1) and step size: h = 2(−8). Similarly, Fig. 1(d) represents the
chaotic attractor of Pehlivan system with a = 0.5, h = 2( − 8) and
initial condition (x0, y0, z0) = (0.001, 0.001, 0). The phase plane
behavior of Lorenz, Chen, Lu, and Pehlivan’s chaotic system are
shown in Fig. 2 to Fig. 5, correspondingly.

The xy, xz, and yz phase portraits of the Lorenz system are
shown in Fig. 2 with the same parameter values and initial con-
dition. The two-dimensional (2D) attractor plots in the plane of
Chen’s chaotic system are displayed (with the following details: pa-
rameter values a = 32, b = 4, c = 24, h = 2−8 and initial condition:
(x0, y0, z0) = (5,−15, 40) in Fig. 3. Similarly, Fig. 4 represents the
phase portraits of Lu system with a = 32, b = 4, c = 16, h = 2−8

and initial condition (x0, y0, z0) = (1, 1, 1). Finally, the xy,xz and
yz phase portraits of the Pehlivan system with the same parameter
value and initial condition (as discussed in Table 4) are shown in
Fig. 5.

■ Table 1 Variables range and Parameter’s value for Lorenz
chaotic system.

Lorenz chaotic system

ODEs Lorenz (1963) Parameters Range

ẋi = a(yi − xi) a = 32, b = 4, c = 32,

h = 2−8, x0 = 1,

y0 = 1, z0 = 1

−28.1805 ≤ x ≤ 29.2467

ẏi = −xizi + cxi − yi −31.1805 ≤ y ≤ 33.1210

żi = xiyi − bzi 0.9215 ≤ z ≤ 58.6626

■ Table 2 Variables range and Parameter’s value for
Chen’s chaotic system.

Chen Chaotic System

ODEs Gupta and Chauhan (2022) Parameters Range

ẋi=a.(yi − xi) a = 32, b = 4, c = 14,

h=2−8, x0 = 5,

y0 = −15, z0 = 40

-24.280≤ x ≤ 23.9385

ẏi=-xi.zi+(c-a).xi+c.yi -27.4307≤ y ≤27.0290

żi= xi.yi- b.zi 1.7161≤ z ≤ 47.230

■ Table 3 Variables range and Parameter’s value for
L ˙̇u chaotic system.

Lu Chaotic System

ODEs Lu and Chen (2002) Parameters Range

ẋi=a.(yi − xi) a = 32, b = 4, c = 16,

h=2−8, x0 = 1,

y0 = 1, z0 = 1

-20.8399≤ x ≤ 21.2057

ẏi=-xi.zi+c.yi -22.8983≤ y ≤23.3546

żi= xi.yi- b.zi 0.8931≤ z ≤ 34.5366

■ Table 4 Variables range and Parameter’s value for
Pehlivan’s chaotic system.

Pehlivan Chaotic System

ODEs Pehlivan and Uyaroğlu (2010) Parameters Range

ẋi=yi − xi a = 0.5, h = 2−8,

x0 = 0.001, y0 = 0.001,

z0 = 0

-2.8411≤ x ≤ 2.7743

ẏi=-xi.zi+a.yi -4.7402≤ y ≤4.8913

żi= xi.yi- a -2.9902≤ z ≤ 6.6909

PROPOSED DIGITAL ARCHITECTURE OF RECONFIG-
URABLE CHAOTIC PRNG

This section includes the VLSI circuit of reconfigurable chaotic
PRNG using Lorenz, Chen, Lu, and Pehlivan 3D attractors. The
general architecture has been constructed by the exploitation of
similarity between all chaotic attractors which leads to fit into a
single structure. The parameters of Lorenz system has been set to
(25, 22, 25, 2−8) corresponding (a, b, c, h). Moreover, Table 1 depicts
the range of variables: −28.1805 ≤ x ≤ 29.2467,−31.1805 ≤ y ≤
33.1210 and 0.9215 ≤ z ≤ 58.6626. Similarly, Table 2 to Table 4
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include the step size, parameters, and variable range of the system
of Chen, Lu, and Pehlivan correspondingly. The benefits of this
approach, all binary multiplication operations of ODEs and Euler’s
expressions (except xi.yi and xi.zi) has been carried out by the
operation of hardwire shifting rather than binary multiplication.
In this modelling, 2’s complement and the fixed-point scheme
have been used in which 7 MSB represent the amount of integer
including sign bit. On the other side, the rest 25 bits represent the
fractional value of all parameters and variables. To retain the same
fractional bits of 25, the truncation rounding scheme is performed
in this operation.

This reconfigurable feature of PRNG is designed by hardwired
shifting operations, additions, subtractions, and multiplexing
schemes. Fig. 6 represents the VLSI architecture of proposed
reconfigurable PRNG using Lorenz, Chen, Lu, and Pehlivan 3D
attractors. This architecture offers the opportunity to configure the
four different systems and it is controlled by a 2-bit signal which
is denoted by Confg[1:0]. Pehlivan’s chaotic system is configured
by Confg[1:0]=2’b00, similarly, Lu chaotic system is configured by
Confg[1:0]=2’b01. Similarly, when Confg[1:0] value is 2’b10, the
multiplexer switches to the Lorenz system, while the value is 2’b11,
architecture computes the Chen system for generating pseudoran-
dom numbers. Three separate 32-bit register block of this figure
is designed to evaluate the value of Euler’s equations (as given
in Eq. (1) to Eq. (3)). The initialization of registers corresponding
to three variable is done by Reset signal which controls the 2×1-
multiplexer, initially all registers hold the value of X0, Y0 and Z0
correspondingly. The adder used in this block to add the present
value of variables (Xi, Yi, Zi) with differential value (h.X, h.Y, h.Z)
as shown in blocks.

The computational process to evaluate differential value h.X
is depicted in Block-1. It is required subtraction to subtract the
value of Xi from Yi. In this block, the logical OR value of Confg[1]
and Confg[0] signal, act as a select line of 2×1-multiplexer. When
the value of logic OR operation is ‘0’, the multiplexer gives the
differential value (h.X ) of Pehlivan’s chaotic system, which is the 8-
bits hardwired left-shifted of subtracted value. While the value of
logic OR operation is ‘0’, the multiplexer gives the 3-bit left shifting
of subtracted value as a differential value (h.X ) corresponding to
Lorenz, Chen, and Lu chaotic system.

The evaluation of h.Y according to the ODE of variable Y (cor-
responding Lorenz, Chen, Lu, and Pehlival chaotic systems) given
in Block-2. In this block, 2-bit Confg[1:0] signal, act as a control
signal of a 4×1-multiplexer. When the value of Confg signal is
2
′b00, multiplexer passes the 9-bit hardwired left shifted value of

Yi according to Pehlivan’s chaotic system. The multiplexer passes
the 4-bit hardwired left shifted value of Yi according to Lu, when
the value of Confg signal is 2

′b01. When the value of Confg signal is
2
′b10, multiplexer passes the subtracted value (8-bit hardwired left

shifted value of Xi from the 3-bit hardwired left shifted value of Yi).
When the value of Confg signal is 2

′b11, multiplexer passes the com-
putational value of 2−8.(8.xi + 24.yi)) according to Chen’s chaotic
system. One 32-bit binary multiplier is required in this block to
multiply the value of Zi with Xi. To subtract the multiplexer’s
output with an 8-bit left-shifted multiplier’s output, one 32-bit
subtractor is used as shown in the figure and their output gives
the differential value (h.Y ). Here, the shifting operation performs
the multiplication operation which is not utilized any hardware
resources.

Similarly, Block-3 presents the computational block to evaluate
the differential value (h.Z ). Here, the logical OR value of Confg[1]
and Confg[0] act as a control signal of the multiplexer. It passes the

(a)

(b)

(c)

(d)

Figure 1 Chaotic attractor in the plane of: (a) Lorenz; (b) Chen;
(c) Lu; and (d) Pehlivan systems.

value 2(−9), when the control signal is equal to logic ‘0′. While, for
control signal equal to logic “1”, multiplexer pass the 6-bits left
shifted value of Zi. This block includes one 32-bit binary multiplier
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(a)

(b)

(c)

Figure 2 Chaotic attractor in plane of Lorenz system with , h =
2−8, a = 32, b = 4, c = 32 and initial condition (x0, y0, z0) = (1, 1,
1): (a) x-y plane; (b) x-z plane; (c) y-z plane.

that multiplies the 32-bit value of Yi with Xi. The subtraction circuit
is also used in this block that subtracts the multiplexer’s output
with the 8-bit left-shifted of multiplier’s output, which gives the
differential value h.Z . The output of this block generates the 24-bit
random numbers in each iteration. These 24-bit data is captured
from 8 Least Significant Bits (LSBs) from each chaotic variable.

Example of the Proposed reconfigurable PRNG: Let a = 32, b =

4, c = 24, h = 2(−8), X0=5 (00001010000000000000000000000000),
Y0=-15 (11100010000000000000000000000000), Z0=40
(01010000000000000000000000000000) and Confg=3. When
the Confg value is 2’b11, architecture computes the Chen system
for generating pseudorandom numbers. Block-1 generates the
differential value: h.(X0) =11111111011000000000000000000000,
Block-2 generates the differential value: h.(Y0)
=11111111110101111111110011100000, and Block-3 generates the
differential value: h.(Z0)=11111111111110101111111011010100.

(a)

(b)

(c)

Figure 3 Chaotic attractor in plane of Chen’s system with , h =
2−8, a = 32, b = 4, c = 24 and initial condition (x0, y0, z0) = (5,
-15, 40): (a) x-y plane; (b) x-z plane; (c) y-z plane.

The value of X1=00001001011000000000000000000000,
Y1=11100001110101111111110011100000, and
Z1=01001111111110101111111011010100 have been gener-
ated from three Euler’s blocks separately. Finally, cap-
tured the 8 Least Significant Bits (LSBs) of each chaotic
variable: X1=00000000, Y1=11100000 and Z1=11010100,
this architecture generates a 24-bits pseudo-random num-
ber in 1st iteration: OUT1=000000001110000011010100.
Similarly, OUT2=000000001100000010101000, OUT3=
111100111100111011011110 and so on, generate in the next
iterations.
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(a)

(b)

(c)

Figure 4 The chaotic attractor in the plane of Lu system with,
h = 2−8, a = 32, b = 4, c = 16 and initial condition (x0, y0, z0) =
(1, 1, 1): (a) x-y plane; (b) x-z plane; (c) y-z plane.

IMPLEMENTATION OF 32-BIT PRNG AND STATISTICAL
TESTS

The implementation of 32-bit PRNG circuits is done on Virtex-
5 FPGA (XC5VLX110T). Its synthesis has been done on the ISE
design suite by Xilinx. Initially, its Register Transfer Level (RTL)
design is done using Verilog HDL. Table 6 depicts the hardware
performance including the parameters: area constraint (in terms
of slice look-up-tables (LUTs), occupied slices and slice registers),
Digital signal processing (DSP) blocks, timing performance (in
terms of critical path delay and maximum operating frequency),
and power dissipation per unit frequency. The post-layout simu-
lation waveform of proposed PRNGs are shown in Fig. 7(a), 7(b),
7(c), and 7(d) corresponding to four different configurations i.e.
Pehlivan, Lu, Lorenz, and, Chen’s PRNG.

(a)

(b)

(c)

Figure 5 Chaotic attractor of Pehlivan system with a = 0.5, initial
condition (x0, y0, z0) = (0.001, 0.001, 0) and h = 2−8: (a) x-y
plane; (b) x-z plane; (c) y-z plane.

The post routing simulation waveform of 32-bit Pehlivan’s
chaotic system-based PRNG is shown in Fig. 7(a). The con-
trol signal (Confg) is used to configure the systems, when
its value is equal to 00, it configures Pehlivan’s chaotic sys-
tem. This simulation takes the initial value: (X0, Y0, Z0) =
(0.96248769, 1.20541650, 42.13836362). The signal “CLK” and “Re-
set” are the master clock signal and reset signal respectively. Ini-
tialization of the registers with X0,Y0, and Z0 is done by “Reset”
signal. The three variable Xi[32:0], Yi[32:0] and Zi[32:0] represent
the iterative values. Its 8-bit LSBs segments combine to generate
a 24-bit pseudo-random number, which is given by the variable
OUT[23:0].

Similarly, Fig. 7(b), 7(c), and 7(d) show the post routing simu-
lation waveform of 32-bits reconfigurable PRNG for Lu, Lorenz,
and Chen 3D attractors with Confg[1:0] equal to 2’b01, 2’b10 and
2’b11 correspondingly. This simulation takes the initial value:
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Figure 6 Proposed architecture of reconfigurable chaotic PRNG using Lorenz, Chen, Lu, and Pehlivan chaotic systems.

(X0, Y0, Z0) = (1, 1, 1), (1, 1, 1), and (5,−15, 40) respectively. In
this figure, the “CLK” and “Reset” signals represent the same mean-
ing. Similarly, the three variable Xi[32:0], Yi[32:0], and Zi[32:0]
represent the iterative values. Its 8-bit LSBs segments combine to
generate 24-bits pseudo-random numbers, which are given by the
variable OUT[23:0].

The proposed reconfigurable PRNG demonstrates over the ex-
isting architectures of PRNGs. It provides the opportunity to
switch between four different 3D-Chaotic systems. This archi-
tecture is a completely digital circuit, which is easily suitable for
real-time digital applications where PRNG is required. The com-
parison table of the hardware performance and security strength
is given in Table 6. This table summarizes the NIST results, timing
performance, power consumption, and area resources.

The maximum operating frequency of proposed PRNG is in-
creased by 23.40% as compared with PRNG (Rezk et al. 2019), while
it increases by 3.69% as compared with PRNG based on logistics
(Pande and Zambreno 2013). A resources of FPGA (in terms of
occupied slices, slice registers, slice LUTs, and DSP blocks) is uti-
lized by designed PRNG circuit is slight increases (as compared
with existing literature) due to the involvement of four different
chaotic systems in a single architecture. However, it is suitable for
generating a high degree of randomness and large period pseu-
dorandom numbers. The proposed architecture consumes 8.6125

mW/MHz total power on Virtex-5 for a 32-bit design. The statis-
tical analysis of generated keys has been done by the NIST test
suit. This result also depicts that the security strength of keys from
four different configurations is highly secure and it can be used in
S-box generation, image encryption, etc.

The statistical testing of a random number generator is federal
information, which processes the standard issued by the NIST
(Rukhin et al. 2000). This test includes the fifteen different statisti-
cal tests that perform to check the security strength of generated
random sequences in all aspects of security. For this test, we take
100 samples of bit sequences (each sample has a 106 random bits
sequence). The NIST benchmark test of these four sequences has
been performed. This test suite set the level of significance equal
to 0.01. This means that the resulting p-value of each sample
should be greater than or equal to the level of significance for indi-
cating the randomness strength of generated bit sequences. The
sequences have been generated using parameters and initial seed
values as mentioned in Table 1 to Table 4. The four different gen-
erated sequences from the proposed reconfigurable PRNG have
been passed all the tests. Table 5 present the proportional value
and maximum p-value corresponding to each test of NIST. This
table depicts that test sequences pass all fifteen test of NIST, which
indicate the high security strength of generated random sequences
from the proposed PRNG circuit.
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(a)

(b)

(c)

(d)

Figure 7 Post routing simulation waveform of proposed 32-bit reconfigurable chaotic PRNG: (a) Pehlivan; (b) LU; (c) Lorenz and (d)
Chen system.
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■ Table 5 FPGA synthesis result of proposed and existing architecture of Chaotic-based PRNG

Proposed (Zidan et al., 2011) (de la Fraga et al., 2017) (Rezk et al., 2019) (Pande & Zambreno, 2013)

Chaotic System (Lorenz + Chen + Lu + Pehlivan) Lorenz & Bernoulli (Lu + Lorenz) Logistic

Operand Size 32-bits 32-bits 32-bits 32-bits 32-bits

Number of 3D chaotic attractors 4 1 1 2 1

FPGA
Virtex 5

(XC5VLX50T)

Virtex 4

(XC4VSX35)

Spartan 3E

(XC3S500E)

Virtex 5

(XC5VLX50T)

Virtex 6

(XC6VLX75T)

Occupied Slices/Total 83/7200 145/15360 342/7200 100/7200 181/11640

Slice registers/Total 96/28800 96 /30,720 108/28,800 96 /28800 160/93120

Slice LUTs/Total 313/28800 287 /30,720 575/28,800 276/28800 643/46560

DSP blocks/Total 8/48 8/192 9/48 16/288

Frequency (MHz) 96.438 53.53 36.90 93.00

NIST Pass – – –

■ Table 6 NIST Test Results

Test
Lorenz (10) Chen (11) Lu (01) Pehlivan (00)

P-value within success sequence Proportion successful out of 100 P-value within success sequence Proportion successful out of 100 P-value within success sequence Proportion successful out of 100 P-value within success sequence Proportion successful out of 100

Frequency Test within a Block 0.961876 98 0.905225 99 0.998261 96 0.802587 99

Frequency (Monobit) 0.719747 99 0.657933 100 0.888660 96 0.841481 98

Runs Test 0.955825 99 0.474986 100 0.639464 98 0.996907 99

Longest-Run-of-Ones in a Block 0.844731 99 0.719747 97 0.951366 99 0.942871 96

Linear Complexity 0.657933 98 0.699313 98 0.798139 97 0.933026 98

Binary Matrix Rank 0.862457 99 0.949536 99 0.949536 98 0.862457 97

Approximate Entropy 0.534146 98 0.574903 99 0.153763 98 0.999952 100

Discrete Fourier Transform 0.657933 99 0.926884 96 0.771671 97 0.646355 99

Overlapping Template Matching 0.822183 100 0.883171 100 0.856837 100 0.924076 97

Non-overlapping Template Matching 0.971699 98 0.851383 97 0.779188 99 0.798139 97

Cumulative Sums 0.554420 100 0.867692 100 0.762693 96 0.990843 98

Universal Statistical Test 0.498264 98 0.697354 100 0.802673 96 0.864253 100

Serial Test
0.042808 100 0.304126 100 0.759756 99 0.989703 98

0.474986 99 0.946308 99 0.262249 99 0.653842 99

Random Excursions 0.867523 98 0.643582 99 0.943559 96 0.983256 100

Random Excursions Variant 0.578556 96 0.732568 99 0.969182 99 0.827614 96

DESIGN AND EVALUATION OF S-BOXES

This section designs the four different new S-box matrixes using
the proposed reconfigurable PRNG. The steps for designing S-
boxes from PRNG are illustrated: The first step is to segment the
24-bit random numbers into three parts and each 8-bit binary value
is converted into decimal form. This decimal value compares with
the existing value of the matrix in Step two and it includes the
element of the matrix if the value is not repeated. This process is
repeated until the entire matrix element is filled. And finally gen-
erates the S-boxes, which contain the 256 different 8-bit elements
in random order. Tables 6, 7, 8 and 9 present the S-box matrix
corresponding to Confg equal to 2’b00, 2’b 01, 2’b 10, and 2’b 11.

Since the critical part of cryptography is S-boxes thus, important
characteristics of a cryptographically strong S-box have been exam-
ined in this section. The evaluated characteristics exhibit features
like Average non-linearity of all Boolean functions, non-linearity
of Boolean functions, Balanced, Bijective, Non-linearity of S-Box,
BIC non-linearity criterion, Strict Avalanche Criterion (SAC), and
Dynamic Distance. Moreover, Outcomes have been compared with
other techniques reported in the literature. The reference of the
all-mathematical definitions of the above-mentioned parameters

is (Cassal-Quiroga and Campos-Cantón 2020; Ishfaq 2018; Gupta
and Chauhan 2021).

It is well known that the criterion of bijective property of S-
boxes is equivalent to 2n−1 = 128 where n = 8. Since it satisfies
the bijective criterion for all proposed S-boxes thus it is considered
as desired value for the bijective criterion. Simultaneously, the
balanced, one-to-one and surjective properties are also satisfied for
the proposed S-boxes.

The non-Linearity criterion is another parameter that holds
the nonlinearity property between the vector of input and out-
put of S-boxes. It holds a better explanation for the dissimilarity
degree between Boolean and linear functions (Cassal-Quiroga &
Campos-Cantón, 2020). The calculation of eight Boolean functions
of non-linearity property has been performed for the S-boxes. The
calculated value of eight non linearity function of non-linearity
property for the S-box-1 are 104, 106, 104, 102, 100, 102, 108 and
104, and for the S-box-2 are 104, 104, 104, 106, 106, 102, 104 and 104.
In same way the eight non linearity Boolean values for S-box-3
and S-Box-4 are (102, 104, 106, 104, 110, 106, 106, 102) and (102, 104,
106, 104, 110, 106, 106 and 102) respectively. It is well-identified
that larger non-linear values ensure the highest ability to resist
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■ Table 7 S-Box-1 using proposed chaotic PRNG with Confg
equal to 00.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 89 112 123 134 4 146 179 152 169 224 44 192 13 215 58 65

2 232 121 88 21 15 111 66 165 59 157 156 210 180 87 30 119

3 240 53 164 137 76 209 34 99 254 187 122 43 84 217 55 251

4 6 18 52 109 41 98 8 64 144 190 193 216 36 239 238 194

5 28 96 29 74 195 158 100 181 5 204 168 167 227 214 73 250

6 235 22 186 94 2 166 211 32 199 110 49 113 160 171 97 207

7 253 145 45 39 57 86 155 81 133 71 105 243 129 159 153 12

8 106 31 200 206 161 241 175 79 19 126 197 173 202 188 42 90

9 138 218 125 10 162 154 234 26 27 212 141 170 70 3 0 247

10 182 117 147 196 140 78 108 16 148 255 69 77 118 17 213 9

11 93 131 68 231 11 25 75 101 233 47 103 249 128 127 142 178

12 177 102 51 229 205 23 230 120 24 237 191 50 85 1 136 33

13 80 150 221 67 132 37 62 248 245 223 225 95 198 48 244 219

14 201 130 116 220 246 222 72 115 151 61 54 40 236 35 242 14

15 252 228 92 46 83 60 163 82 139 63 203 189 107 104 114 174

16 38 20 185 143 208 135 7 176 183 124 172 184 149 91 226 56

■ Table 8 S-Box-2 using proposed chaotic PRNG with Confg
equal to 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 229 238 32 156 240 44 12 248 58 29 8 74 184 34 92 199

2 211 201 103 52 76 235 151 202 252 56 33 99 140 216 204 196

3 41 39 217 23 90 145 210 97 75 87 62 7 161 244 220 153

4 223 116 236 254 162 251 59 233 6 31 182 86 30 158 85 122

5 113 123 207 147 70 187 175 27 28 141 212 25 142 143 146 243

6 178 71 128 114 173 81 253 55 169 197 73 127 10 93 215 181

7 171 2 5 18 189 249 230 206 84 195 200 37 82 4 109 150

8 225 36 14 72 17 69 110 131 239 208 194 247 125 163 13 26

9 186 226 219 106 38 214 57 213 117 152 191 133 64 50 0 9

10 137 126 168 107 45 172 179 190 205 118 192 79 95 120 155 83

11 177 22 136 167 231 174 180 157 119 121 42 88 105 100 124 224

12 68 63 222 134 98 166 20 53 96 246 149 242 66 43 154 237

13 159 48 89 255 160 1 67 40 232 21 241 15 144 3 250 170

14 148 193 94 60 218 78 61 102 185 221 111 129 130 11 108 203

15 228 135 164 47 234 176 46 112 188 139 198 183 65 51 80 209

16 104 245 77 54 24 132 35 138 115 49 101 227 165 91 19 16

powerful attacks.
The randomness of the S-box is measured by Strict Avalanche

Criterion (SAC). If there is an input change then random behavior
comes into the picture which is regarded as the avalanche effect
in S-box. There is an alteration in each output bit with one-half
of the probability if any change is made in the single bit of input.
This phenomenon reflects the Strict Avalanche Criterion (SAC). It
is well known that there is a 50% dependency of Boolean function
on each input bit for a better explanation of this criterion. The
generated SAC values of S-box-1, -2, -3 and -4 are tabulated in Table
[16, 17,18] respectively. The corresponding minimum, maximum,
and average SAC values of 0.3606, 0.5938, and 0.500016 for S-box-1
have been obtained. In the same way, the corresponding minimum,
maximum, and average SAC values of 0.3906, 0.6406, and 0.504894
for S-box-2 have been evaluated and for S-box-3 the minimum,
maximum and average values are 0.3906, 0.5781, and 0.503669.
At last, the minimum, maximum, and average values for S-box-

■ Table 9 S-Box-3 using proposed chaotic PRNG with Confg
equal to 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 247 238 14 230 220 22 77 65 32 172 158 44 135 112 58 102

2 81 177 12 119 19 99 210 92 179 221 233 107 69 30 9 17

3 20 199 222 229 54 235 73 126 13 248 209 129 98 138 190 36

4 48 181 228 226 16 156 18 237 197 78 187 110 123 27 203 43

5 127 184 80 55 219 87 70 183 120 174 46 71 171 60 23 131

6 96 200 25 45 62 168 109 133 84 94 31 164 143 33 21 213

7 47 7 49 215 163 37 117 147 83 29 79 41 169 212 40 191

8 53 8 93 34 68 195 104 3 236 188 4 194 241 245 125 162

9 5 89 185 225 88 227 218 128 42 250 202 207 189 66 132 63

10 118 51 75 141 160 111 243 137 204 86 155 205 206 232 176 82

11 139 255 186 167 6 246 165 136 39 103 114 211 214 244 192 208

12 28 239 253 0 61 242 100 251 57 101 157 161 152 148 52 216

13 145 249 170 154 113 142 178 124 90 105 151 15 224 56 182 72

14 64 134 140 97 91 35 159 231 198 146 150 2 234 193 153 252

15 175 130 115 122 201 74 50 173 254 223 121 95 1 38 217 166

16 24 149 76 26 116 240 67 85 10 180 196 144 11 59 108 106

■ Table 10 S-Box-4 using proposed chaotic PRNG with Confg
equal to 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 243 206 222 218 10 117 13 240 110 229 251 200 216 166 132 120

2 85 101 18 194 68 209 143 50 138 188 32 221 73 53 106 82

3 123 30 213 89 214 184 15 69 104 25 159 56 8 40 178 145

4 142 205 37 226 108 136 203 233 34 163 135 174 212 20 118 137

5 27 168 156 207 246 1 141 211 95 189 71 91 193 154 116 177

6 190 124 97 128 172 61 3 19 234 139 35 245 247 153 114 63

7 228 78 122 75 70 76 38 94 33 115 62 45 152 16 80 66

8 165 160 7 161 90 83 175 67 130 148 86 219 220 167 225 144

9 28 198 249 239 158 237 98 88 49 87 113 65 147 2 252 131

10 9 253 197 238 12 201 11 140 192 185 111 248 173 39 187 41

11 241 105 224 22 250 126 103 217 74 164 44 29 36 0 150 60

12 54 223 119 210 244 121 176 64 215 169 208 59 133 17 43 46

13 93 57 236 171 195 199 191 196 14 72 180 24 52 146 254 235

14 42 232 21 227 47 99 96 181 26 186 77 129 179 92 157 109

15 125 48 230 242 55 84 204 5 102 134 81 162 183 255 127 202

16 31 149 100 79 4 58 182 23 112 6 51 151 155 231 170 107

4 are 0.4063, 0.6094, and 0.5005 respectively. Its average value
corresponding to S-boxes is very closer to 0.5. Thus, the property
of SAC for proposed S-Boxes is satisfied.

To evaluates the security strength of S-Box, Bits Independence
Criterion (BIC) is also important. For the S-boxes, the static pattern
among output vectors and no dependency on each other is ensured
by the BIC parameters. The corresponding BIC non-linearity for
the S-box-1, -2, -3, and -4 has been tabulated in Table [19, 20, 21,
22]. Further, the BIC non-linearity value of 102.5714, 103.1429,
102.8571, and 103.2143 also has been calculated for the S-box-1, -2,
-3, and -4 respectively. The SAC properties are also measured by
the dynamic distance (DD) (Ishfaq 2018) and it is satisfied only
when there is a small integral value for dynamic distance. The DD
for S-Box-1, -2, -3, and -4 have been tabulated in Table [11, 12, 14,
15]. The calculated average values of DD for S-box-1, -2, -3 and
-4 are 5.3125, 5.125, 4.34375 and 4.625 respectively which holds a
better inclination for the fulfill the BIC criterion.
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Table 10 illustrates the comparison of proposed S-boxes in terms
of the property of Bijection, Nonlinearity, SAC, and BIC Non-
Linearity with the existing literature. This table helps to conclude
the important criterion such as Bijective, Balanced, Non-linearity,
and Avalanche Criteria. It has been satisfied by these boxes. Fur-
ther, the average value of non-linearity of S-box-1, -2, -3, and -4 are
103.75, 104.25, 104.00, and 105.00 correspondingly, which indicates
the value of proposed S-boxes is much better than that reported
in the literature (Cassal-Quiroga & Campos-Cantón, 2020). It has
been observed that the expected bijection value of 128 has been ful-
filled by the S-Boxes. Moreover, S-Box-1, -2, -3, and -4 have mean
SAC value of 0.500016, 0.504894, 0.503669 and 0.5005 respectively
that is much closer to 0.5. The BIC-nonlinearity average values are
102.5714, 103.1429, 102.8571, and 103.2143 for S-box-1, -2, -3, and -4
which reveal the betterment of S-boxes.

■ Table 11 Dynamic Distance (DD) of S-box-1

2 12 2 2 6 8 4 2

6 8 2 6 12 2 6 10

6 6 4 6 0 10 6 2

6 4 10 0 6 4 12 0

8 10 8 6 14 2 10 2

4 10 2 2 2 12 4 4

2 2 2 10 4 2 2 0

4 8 0 10 4 8 4 6

■ Table 12 Dynamic Distance Table of S-box-2

4 4 4 0 0 2 2 6

2 2 2 6 2 6 10 6

0 6 0 8 2 4 18 8

2 6 4 8 12 0 6 6

4 2 2 14 10 10 8 2

4 4 10 4 14 2 0 0

12 2 8 6 6 8 4 2

6 2 6 6 6 10 2 4

■ Table 13 Dynamic Distance Table of S-box-2

4 4 4 0 0 2 2 6

2 2 2 6 2 6 10 6

0 6 0 8 2 4 18 8

2 6 4 8 12 0 6 6

4 2 2 14 10 10 8 2

4 4 10 4 14 2 0 0

12 2 8 6 6 8 4 2

6 2 6 6 6 10 2 4

■ Table 14 Dynamic Distance Table of S-box-3

2 4 2 2 2 10 0 12

2 6 4 8 2 8 6 8

4 2 6 4 2 6 2 6

12 2 0 2 6 0 2 0

14 4 10 4 0 2 6 10

4 4 4 0 6 4 2 10

0 0 0 2 12 4 2 2

2 0 8 6 4 2 10 6

■ Table 15 Dynamic Distance Table of S-box-4

0 2 8 2 10 2 4 4

6 12 2 2 4 8 6 16

6 0 4 0 2 8 14 4

2 6 2 10 0 6 4 2

8 10 0 4 6 8 2 8

2 8 10 2 4 2 0 0

10 8 4 2 0 8 4 4

10 2 2 2 2 2 4 0
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■ Table 16 SAC criterion result of the generated S-box-1

0.4844 0.5938 0.4844 0.4844 0.5469 0.5625 0.5313 0.4844

0.5469 0.4375 0.5156 0.4531 0.4063 0.5156 0.5469 0.4219

0.5469 0.5469 0.5313 0.5469 0.5 0.5781 0.5469 0.4844

0.5469 0.4688 0.4219 0.5 0.5469 0.5313 0.4063 0.5

0.5625 0.4219 0.5625 0.5469 0.3906 0.5156 0.5781 0.5156

0.4688 0.5781 0.4844 0.4844 0.5156 0.4063 0.4688 0.5313

0.5156 0.4844 0.5156 0.4219 0.4688 0.5156 0.4844 0.5

0.4688 0.5625 0.5 0.4219 0.4688 0.4375 0.5313 0.4531

■ Table 17 SAC criterion result of the generated S-box-3

0.5156 0.5313 0.4844 0.5156 0.5156 0.5781 0.5 0.4063

0.5156 0.5469 0.5313 0.5625 0.4844 0.5625 0.4531 0.4375

0.4688 0.5156 0.5469 0.4688 0.4844 0.4531 0.5156 0.5469

0.4063 0.5156 0.5 0.5156 0.4531 0.5 0.4844 0.5

0.3906 0.4688 0.5781 0.5313 0.5 0.5156 0.5469 0.5781

0.4688 0.5313 0.5313 0.5 0.4531 0.5313 0.5156 0.4219

0.5 0.5 0.5 0.5156 0.5938 0.5313 0.4844 0.5156

0.5156 0.5 0.5625 0.4531 0.4688 0.4844 0.5781 0.4531

■ Table 18 SAC criterion result of the generated S-box-4

0.5 0.5156 0.5625 0.4844 0.4219 0.5156 0.4688 0.4688

0.4531 0.4063 0.5156 0.4844 0.4688 0.5625 0.5469 0.625

0.5469 0.5 0.5313 0.5 0.4844 0.4375 0.6094 0.5313

0.5156 0.5469 0.4844 0.5781 0.5 0.5469 0.4688 0.5156

0.5625 0.4219 0.5 0.5313 0.4531 0.5625 0.4844 0.4375

0.4844 0.4375 0.5781 0.5156 0.5313 0.4844 0.5 0.5

0.4219 0.4375 0.5313 0.4844 0.5 0.4375 0.4688 0.5313

0.4219 0.5156 0.5156 0.5156 0.4844 0.5156 0.4688 0.5

■ Table 19 BIC Non-linearity criterion of S-box-1

0 98 100 104 102 106 108 106

98 0 100 102 104 98 100 104

100 100 0 102 104 96 100 98

104 102 102 0 106 102 106 100

102 104 104 106 0 104 104 108

106 98 96 102 104 0 102 106

108 100 100 106 104 102 0 102

106 104 98 100 108 106 102 0

■ Table 20 BIC Non-linearity criterion of S-box-2

0 104 104 104 102 100 102 106

104 0 104 104 98 106 102 104

104 104 0 102 106 104 104 106

104 104 102 0 100 102 108 104

102 98 106 100 0 102 98 104

100 106 104 102 102 0 100 102

102 102 104 108 98 100 0 106

106 104 106 104 104 102 106 0

■ Table 21 BIC Non-linearity criterion of S-box-3

0 106 100 102 106 104 102 102

106 0 100 102 106 106 100 104

100 100 0 106 100 104 96 106

102 102 106 0 98 102 104 104

106 106 100 98 0 106 104 102

104 106 104 102 106 0 98 106

102 100 96 104 104 98 0 104

102 104 106 104 102 106 104 0

■ Table 22 BIC Non-linearity criterion of S-box-4

0 106 100 106 104 100 102 104

106 0 106 104 104 104 100 102

100 106 0 104 106 104 108 98

106 104 104 0 100 104 96 104

104 104 106 100 0 106 102 102

100 104 104 104 106 0 108 102

102 100 108 96 102 108 0 104

104 102 98 104 102 102 104 0
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■ Table 23 Comparison of our S-boxes and other S-boxes used in typical block ciphers.

Bijection
Nonlinearity SAC

BIC Non-Linearity

Min. Max. Average Min. Max. Average

(Cassal-Quiroga &

Campos-Cantón, 2020)

S-box-1 128 96 104 101.75 0.3906 0.5781 0.5012 103.42

S-box-2 128 96 108 102.25 0.4219 0.6094 0.5059 103.50

(Gupta & Chauhan, 2021)
S-box-1 128 98 108 103.7500 0.4063 0.5938 0.507583 103.7857

S-box-2 128 94 108 100.5000 0.3906 0.6094 0.498792 102.9286

Proposed

S-box-1 128 100 108 103.75 0.3906 0.5938 0.500016 102.5714

S-box-2 128 102 106 104.25 0.3906 0.6406 0.504894 103.1429

S-box-3 128 100 106 104.00 0.3906 0.5781 0.503669 102.8571

S-box-4 128 102 110 105.00 0.4063 0.6094 0.5005 103.2143

CONCLUSION

This paper summarizes the design and evaluation of the new four
S-boxes for subbyte operation in image encryption applications
and estimates their strength using the following parameters: Dy-
namic Distance, BIC non-linearity, Bijective, Non-linearity, Strict
Avalanche Criterion (SAC), and Balanced criterion. The S-box
matrix is designed by a new reconfigurable 3D-Chaotic PRNG.
This PRNG is designed using four different 3D chaotic systems
i.e. Lorenz, Chen, Lu, and Pehlivan’s chaotic systems. This recon-
figurable architecture of PRNG exploits the ODEs of these four
attractors that fit all four chaotic systems in a single circuit. The
novelty of this PRNG is multiplierless VLSI architecture. That
offers relatively better performance. To demonstrate the hard-
ware performance, the PRNG circuit is implemented in Virtex-5
(XC5VLX50T) FPGA and finds the timing performance which gen-
erates the 24-bit random number at 96.438-MHz. The area of FPGA
is occupied by only 16.66%, 1.08%, 0.33%, and 1.15% of the avail-
able DSP blocks, slice LUTs, slice registers and slices respectively.
Finally, the proposed four different S-box matrixes fulfill the fol-
lowing criteria: Dynamic Distance, BIC non-linearity, Bijective,
Non-linearity, Strict Avalanche Criterion (SAC), and Balanced cri-
terion. Therefore, it can conclude that the proposed S-boxes are
used for secure image encryption algorithms.
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