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ABSTRACT 

Objective: This study evaluated the antiproliferative and pro-apoptotic effects of coenzyme Q0 

(CoQ0) in human chronic myeloid leukemia K562 cell line. 

Material and Method: The cytotoxic effect of CoQ0 on human chronic myeloid leukemia cell line, 

K562 was determined by MTT test. The activity of caspase-3, expression of proteins involved in 
apoptosis, MAPK and AKT signaling pathways were determined with enzymatic assay and western 

blot analysis, respectively. 

Result and Discussion: Results showed that CoQ0 inhibited cell viability of K562 cells at 5 μM and 

higher concentrations and Bax protein expression was significantly decreased at 12.5 μM 

concentration of CoQ0. However, CoQ0 did not significantly affect caspase 3 activity and Bcl-2 

protein expression. p-c-Raf (Ser259) protein expression was significantly decreased at 12.5 μM of 

CoQ0. Treatment with 10 μM of CoQ0 induced significantly phosphorylation of p38 MAPK and 

12.5 μM CoQ0 caused a nonsignificant decrease in p-ERK1/2 protein expression in K562 cell line. 

Interestingly, in K562 cells, phosphorylation of Akt (Ser473) was diminished at 12.5 μM of CoQ0, 

with no change observed in p-Akt (Thr308) protein expression among groups. In conclusion, CoQ0 

inhibited cell proliferation and suppressed phosphorylation of c-Raf (Ser259), Akt (Ser473), but not 
ERK1/2 in K562 cells. There is still a need for new insights into the anticancer mechanisms of CoQ0 

and develop treatment strategies for chronic myeloid leukemia. 
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ÖZ 

Amaç: Bu çalışma, insan kronik miyeloid lösemi K562 hücre hattında koenzim Q0'ın (CoQ0) 

antiproliferatif ve proapoptotik etkilerini değerlendirmiştir. 

Gereç ve Yöntem: CoQ0'ın insan kronik miyeloid lösemi K562 hücre hattındaki sitotoksik etkisi, 

MTT testi ile belirlendi. Kaspaz-3 aktivitesi, apoptozis, MAPK ve AKT sinyal yolağı ile ilişkili 
proteinlerin ekspresyonu sırasıyla enzimatik analiz ve western blot analizi ile belirlendi.  

Sonuç ve Tartışma: Sonuçlar, CoQ0’ın K562 hücre canlılığını 5 μM ve daha yüksek 

konsantrasyonlarda inhibe ettiğini ve Bax protein ekspresyonunu, 12.5 μM konsantrasyonunda 

önemli ölçüde azalttığını göstermiştir, ancak CoQ0 kaspaz 3 aktivitesini ve Bcl-2 protein 

ekspresyonunu önemli ölçüde etkilemedi. p-c-Raf (Ser259) protein ekspresyonu, 12.5 μM CoQ0'da 

önemli ölçüde azaldı. K562 hücre hattında, 10 μM CoQ0, p38 MAPK'nın fosforilasyonunu önemli 

ölçüde indükledi ve 12,5 μM CoQ0, p-ERK1/2 protein ekspresyonunda anlamlı olmayan bir 

azalmaya neden oldu. İlginç bir şekilde, 12.5 μM CoQ0 K562 hücrelerinde Akt (Ser473) 

fosforilasyonu azalttı, ancak p-Akt (Thr308) protein ekspresyonunda gruplar arasında herhangi bir 

farklılık gözlenmedi. Sonuç olarak, CoQ0, K562 hücrelerinin proliferasyonunu inhibe etti ve c-Raf 

(Ser259), Akt (Ser473) fosforilasyonunu baskıladı, ancak ERK1/2 fosforilasyonuna etki etmedi. 
CoQ0'ın antikanser etkisinin altında yatan moleküler mekanizmalara yeni bakış açıları sağlamak 

ve kronik miyeloid lösemi tedavi stratejilerini geliştirmek için daha fazla araştırmaya hala ihtiyaç 

bulunmaktadır. 

Anahtar Kelimeler: Koenzim Q0, kronik miyeloid lösemi, K562 

INTRODUCTION 

Chronic myeloid leukemia (CML) is a type of myeloproliferative disorder where an abnormality 

in chromosome structure, known as t(9;22), leads to the formation of the Philadelphia (Ph) chromosome 

and Bcr-Abl chimeric oncoprotein [1]. Bcr-Abl oncoprotein enhances cell growth and proliferation of 

leukemia cells and inhibits apoptosis [2]. The vast majority of individuals diagnosed with CML exhibits 
a positive response to imatinib, a Bcr/Abl kinase competitive inhibitor. However, there exists a 

possibility for CML patients to develop clinical resistance to imatinib or experience only temporary 

remissions despite ongoing treatment [3-5]. Therefore, an alternative therapeutic strategy for CML is 
required to prevent the progression of the disease to more advanced stages and reduce the risk of death.  

Coenzyme Q (CoQ0) is a biomolecule which accumulates predominantly in mitochondria [6,7]. 

The strong toxicity of CoQ0 has been demonstrated in several cancer cell lines [6,8], and CoQ0 
stimulates secretion of insulin by pancreatic islets [9], and has anti-angiogenic and anti-inflammatory 

properties [10,11]. Researchers have demonstrated that CoQ0 displays potent cytotoxic effects against 

triple negative breast cancer cell line (MDA-MB-231) by induction of apoptosis and cell cycle arrest, 

inhibition of metastasis and epithelial-mesenchymal transition [6,12]. CoQ0 significantly induced cell 
cycle arrest, apoptosis, and inhibited metastasis in melanoma cell lines [13]. In MCF-7 cell line, CoQ0 

enhanced ultraviolet B-induced apoptosis [14]. Another CoQ analogs (CoQ2 and CoQ4) induced 

apoptosis in mutated human acute lymphoblastic leukemia BALL-1 cells [15]. CoQ0 significantly 
induced cell death in cancerous rat liver MH1C1 cells [16].  

Induction of cancer cell apoptosis, the most common form of programmed cell death, is one of 

the main chemotherapeutic approaches [17]. Activation of caspase-3 is considered to be a main 
characteristic of apoptosis [18]. Bcl-2 family members (anti-apoptotic proteins Bcl-2 and Bcl-xL and 

pro-apoptotic proteins Bax, Bak, and Bid) regulate mitochondrial pathway of apoptosis [19,20].  

The mitogen-activated protein kinase (MAPK) pathway modulates cell growth and 

differentiation, apoptosis, migration, survival, and death through the phosphorylation of target proteins 
[21-23]. MAPKs are comprised of three main subfamilies: the p44/42 (extracellular signal-regulated 

kinase, ERK1/2), c-Jun N-terminal kinases (JNKs) and p38 MAPKs [24,25]. Raf serine/threonine 

protein kinase promotes the activation of ERK1/2 which phosphorylates several substrates and 
modulates different transcription factors and also gene expression [26,27]. Therefore, targeting Raf and 

ERK1/2 pathway has been considered as potential therapeutic targets in the development of 

pharmacological agents for anti-cancer treatment [28,29]. Elevated ERK activity in human tumors was 
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suggested to be a marker of tumor progression [28-30] and decreased ERK1/2 phosphorylation may 

suppress cancer cell invasion [31].  
Enhanced phosphoinositide 3-kinase (PI3K)/Akt activity is associated with poor clinical 

outcomes in hematological malignancies [32,33], indicating that inhibition of PI3K/Akt activation could 

be a promising in the management of leukemia [34,35]. Akt inhibits apoptosis by phosphorylation by 

initiation of multiple additional conversions involved in cell survival or apoptosis [36,37].  
The anticancer effect of CoQ0 on chronic leukemia cancer cells was not reported previously. 

Therefore, we aimed to investigate the cytotoxic and apoptotic effect of CoQ0 on chronic myeloid 

leukemia K562 cell line through MAPK and AKT signaling pathways modulation. 

MATERIAL AND METHOD 

Cell Proliferation Assay 

K562 cells were seeded in 96 wells plate at a density of 2x104 cells/well and treated with CoQ0 
between 1-20 μM during 24 h at 37°C. Then, MTT solution (5 mg/ml) was added to each well, and the 

plates were incubated for 2 h at 37°C in the dark. After incubation, the formed formazan crystal in each 

well was dissolved by MTT lysis buffer (20% SDS/50% dimethylformamide) and absorbance value of 
each well was measured by a spectrophotometer (Molecular Devices Co., CA, USA) at 570 nm. The 

final DMSO concentration did not exceed 0.25% in the incubation medium. 

Caspase-3 Activity Assay 

The activity of caspase-3 was determined by colorimetric assay kit (Abcam Inc., UK). K562 cells 
with and without CoQ0 treatment (10 and 12.5 μM) were lysed in ice-cold lysis buffer and centrifuged 

at 10000×g for 1 min. The supernatant was collected to obtain total protein of each sample. Firstly, 

reaction buffer was added to cell lysates which include equal amounts of protein. Next, caspase-3 
colorimetric DEVD-pNA substrate was added to the mixture. Following incubation at 37°C for 2 h, the 

resulting colorimetric product was measured with a microplate reader (Multiskan GO, Thermoscientific, 

Waltham, MA, USA) at 405 nm. 

Western Blot Analysis 

K562 cells were harvested and lysed with a lysis buffer. Cell lysates were centrifuged at 8000 

rpm at 4°C for 30 min. Protein amount was determined via the Bradford method, and equal amounts of 

denatured proteins were subsequently subjected to electrophoresis and transfer to a PVDF membrane 
for 60 min at 100 volts. Blocking of non-spesific binding was performed by incubation with non-fat dry 

milk (5% w/v) in phosphate buffer saline for 1h. Then, membranes were incubated overnight at 4°C 

with specific primary antibodies (1:1000), including Bax, Bcl-2, p-c-raf (Ser259), p-p38 MAPK, p-
ERK1/2, p-Akt (Ser473), p-Akt (Thr308). The membranes were washed with 1x PBS for 10 min, and 

then source matched secondary antibodies in PBS-T were added for 1 h at room temperature. Next, the 

blots were visualized using a chemiluminescence substrate (ECL) and Odyssey Fc system (LI‐COR 

Biosciences, Lincoln).  

Statistical Analysis 

The data were displayed as mean ± SD. One-way analysis of variance (ANOVA) followed by 

Tukey’s Post Hoc test was performed for statistical analysis via GraphPad Prism 7 (San Diego, CA). 
p<0.05 was considered as the minimum level of significance. 

RESULT AND DISCUSSION 

CoQ0 exhibits strong toxicity against various cancer cell lines [6,8,13,38]. Owing to its potent 
anti-cancer properties, we investigated the cytotoxic and apoptotic effects and possible mechanisms of 

action of CoQ0 in human chronic myeloid leukemia K562 cells. 

In the present study, the concentration of CoQ0 between 5-20 μM significantly reduced the cell 
proliferation in K562 leukemia cells (p<0.0001; Figure 1). The IC50 value of CoQ0 for 24 h was 
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calculated as 9.89 µM in K562 cells. CoQ0 has also been reported to decrease the proliferation of various 

cancer cells [6,8,38]. It has been described that the caspase-3 activation causes fragmentation of PARP 
which is a key protein involved in cell apoptosis [39-42]. Caspase-3 activity remained unchanged with 

10 and 12.5 µM CoQ0 treatment in K562 cells (Figure 2). 

 

Figure 1. Effect of CoQ0 on the proliferation of K562 chronic leukemia cells ****p<0.0001 vs. control 

 

Figure 2. Effect of CoQ0 treatment on caspase-3 activity in K562 chronic leukemia cells 

Maintaining a proper balance between the levels of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) 
proteins is a crucial factor in preserving cellular homeostasis [43,44]. Bax protein expression 

demonstrated a decrease in 12.5 μM CoQ0 concentration (Figure 3A; p<0.01 vs control). Bcl-2 protein 

expression was decreased in CoQ0-treated groups as compared to the control group; however, this 
downregulation was not statistically significant at 10 and 12.5 μM CoQ0 concentrations (Figure 3A; 

p=0.0569, p=0,0666 respectively). Hseu et al. demonstrated a dose-dependent decrease of Bcl-2 and an 

accompanying increase in Bax expression by CoQ0 in various cancer cells [13,38]. Even if, high Bax 

expression is considered as a trigger of apoptosis, some apoptosis inducing agents have been shown to 
reduce Bax expression similar to our findings [45].  

In particular, among the major groups of MAPKs, p44/42 (ERK1/2), and p38 MAPK signaling 

pathways are important targets in the cancer management and the activity of the MAPK is regulated by 
phosphorylation [21-23,46,47]. MAPK pathways have the potential to either facilitate or hinder the 

growth of cancerous cells depending on the cellular context [48]. Specifically, ERK may serve as an 

anti-apoptotic molecule that transduces survival signals, while p38 activation is associated with the 
induction of apoptosis [49-51]. Interestingly, p38 has been shown to mediate antiapoptotic/pro-growth 

signals in different systems [52-54]. Furthermore, ERK is a crucial component of the 

Ras/Raf/MEK/ERK signaling pathway that is regulated by Raf [55]. It has been reported that 

phosphorylation of the member of the Raf family, c-Raf at Ser259 prevents the activation of c-Raf and 
dephosphorylation of c-Raf at Ser259 is a pivotal part of the process of c-Raf activation [56]. In K562 

cell line, the protein expression of p-c-Raf (Ser259) was decreased by 12.5 μM CoQ0 treatment (Figure 

3B). Studies have demonstrated that Akt modulates the Erk pathway through c-Raf phosphorylation at 
Ser259, which is an inhibitory site [57]. The current investigation has revealed that CoQ0-induced 

deactivation of Akt leads to c-Raf activity enhancement by means of dephosphorylation in the K562 cell 

line. The results showed that CoQ0 at concentration of 10 μM also induced expression of p-p38 MAPK 

(Figure 3B). Moreover, treatment of K562 cells with 12.5 μM CoQ0 resulted in decreased 
phosphorylation of ERK1/2 which was not statistically significant (Figure 3B). Wang et al. 
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demonstrated that the induction of apoptosis in human chronic leukemia K562 cells by 2-hydroxy-3-

methylanthraquinone is mediated through activation of p-p38 MAPK and downregulation of p-ERK1/2 
[59]. In addition, different phosphorylation states of p38 MAPK can be seen in apoptotic cell death, 

whereas decreased p-p38 MAPK protein expression was shown in the induction of apoptosis in REH 

leukemia cells [60]. 

The Akt signaling pathway continues to be an essential pathway of interest for treatment of 
leukemia [32]. The phosphorylation of Akt is routinely used as a marker of Akt activation [50]. In the 

present findings, CoQ0 treatment (12.5 μM) decreased p-Akt (Ser473) protein expression, but the 

phosphorylation of Akt (Thr308) was not affected by treatment (Figure 3C). 

 

Figure 3. The effects of CoQ0 on the protein expression of apoptosis, MAPK signaling and AKT 

signaling-related proteins in K562 cells *p<0.05 and **p<0.01 vs. control 

In accordance with these results, we can suggest that CoQ0 may inhibit Akt pathway by reducing 

Akt phosphorylation at Ser473 at the indicated doses. However, it must be noted that CoQ0 exhibited 
biphasic effects on p-p38 MAPK in K562 cells. 

The results showed that CoQO demonstrated a significant cytotoxicity in chronic myeloid 

leukemia K562 cells. The antileukemia activity of CoQ0 in K562 cells could be related to the inhibition 
of phosphorylation of c-Raf at Ser259 and Akt at Ser473. In conclusion, these results contribute to 

understanding the anticancer activity of CoQ0 in chronic myeloid leukemia K562 cell line. Further 

studies are required to assess a promising potential of CoQ0 as an anticancer agent in chronic myeloid 
leukemia treatment. 
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