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Abstract

In this article, the dynamic of models such as logistic growth model, prey-predator
model and 2-species Lotka-Volterra competition model is approximately solved by the
Chebyshev collocation method. These nonlinear mathematical models are transformed
into the matrix form by Chebyshev expansion method and converted nonlinear
algebraic equation system. Chebyshev coefficients are obtained by solving nonlinear
equation system. Results are compared with Homotopy perturbation and Adomian
decomposition method and then comparision numerical result and exact solution are
presented by graphics for logistic growth model. Plots are showed the numbers of prey
and predator versus time for various N values on predaor prey model. In the 2 spices
Lotka Volterra competition model numerical results are presented by graphics. Matlab
R2010a and Mapplel4 are used for all calculations and graphs. In the conclusion part,
the CPU times of the programs are given and the models are compared

Keywords: Logistic growth model, prey and predator model, Lotka-Volterra model, 2-
species Lotka-Volterra model, system of nonlinear differential equations

Tek ve etkilesimli tiirlerin siirekli populasyon modelleri igin bir
sayisal yontem

Ozet

Bu makalede, lojistik biylme modeli, av avct modeli ve 2-tir Lotka-Volterra yasama
miicadelesi modeli gibi modeller Chebyshev siralama metodu ile ¢oziilmiistiir. Bu lineer
olmayan matematiksel modeller Chebyshev ac¢ilimi metodu ile matris formuna
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doniistiiriilmiis ve lineer olmayan cebirsel denklem sistemine indirgenmistir. Lineer
olmayan denklem sistemi c¢Ozllerek Chebyshev katsayilari elde edilmistir. Lojistik
blyume modeli i¢in sonuclar homotopy perturbation metodu ve Adomian decomposition
metodu ile karsilagtirilmis ve elde edilen niimerik sonuclar ile tam ¢6zimin
karsilastiriimast grafiklerle sunulmustur. Av-avci modelinde grafikler yardimi ile av ve
avci sayilarinin zamana karsi olan durumlari farkli N degerleri icin gosterilmistir. 2 tiir
Lotka Volterra yasama miicadelesi modelinde niimerik sonuglar grafik ile ifade
edilmistir. Yapiulan tiim hesaplamalar ve grafik ¢izimlerinde Matlab R2010a ve Maplel4
kullanilmistir. Ayrica sonug kisminda programlarin CPU zamanlart verilerek modeller
arast karsilastirmalar yapimigtir.

Anahtar Kelimeler: Lojistik buylime modeli, av-avc: modeli, Lotka-Volterra modeli, 2-
tir Lotka-Volterra modeli, linear olmayan diferansiyel denklem sistemi

1. Introduction

Modelling of ecological systems has received a great deal of attention from theoretical
ecologists in the last few decades. Much focus has been on mathematical models of
these systems, since they have substantially contributed to the understanding of the
dynamics of systems by forging strong links between models and available data. Three
of the most populer mathematical models are a logistic growth in population, a prey-
predator model: Lotka-Volterra system and a simple 2-species Lotka-Volterra
competition model [1-12].

First, dynamic of the logistic growth of population as a single species is described the
following equation [1]:

dN N
& == rN(l—Ej (l)

where r and K are positive constant. Here N = N(x) is the population of the species
at time t. In addition, r(1—N/K) is the per capita growth rate and K is carrying
capacity of the environment. For simplifying the notations more,

N (t)

t)=—2 and t =rx
y(t) "

and its become

dy _
P y-y) (2)

If N(0) =N,, then y(0) = N, /K. Hence, the analytic solution of Eq.(2) is

1
YO = KN, —De )
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Second model is the predator-prey model: Lotka-Voleterra system as an interacting
species [3-10]

‘fj—'\': N(a—bP)
:
4 = PN -d)

where a, b, cand d are constants and N(t), P(t) are the populations of rabbits and
the foxes at the time t with initially rabbits and foxes populations are N(0) =«
P(0) = S respectively. In this model some rabbits and foxes live together. Foxes eat

the rabbits and rabbits eat clover. Suppose that there are enough clovers and the rabbits
have enough food to eat. There is an increase and decrease in the number of foxes and
rabbits.

Third, we consider the simple 2-species Lotka-Volterra competition model. In this
model each species N, and N, have logistic growth in the absence of the other
[1, 11, 12]. The dynamic of model as

oo, )
dx K

12 1,
K
dN Nl l\ll ©)
L= LN, 1__2_b21_l
dx K, K,

where r, and r, are the linear birth rates and the K, and K, are carrying capacities.
b, and b,, measure the competitive effect of N, on N, and N, on N,
recpectively(they are generally not equal). If we non-dimensionalize this model by
writting

N, (x) r

N K K
109 yh) = CX=Kt, p=12 a=h, 2 h=b, L
Kl KZ rl Kl KZ

u(t) =

the system given by Eq.(6)becomes [11-12]

du_ ull-u-—av)

dv (6)
N vt—v—b

L = AVL-v=bu)

In recently years, Chebyshev expansion method using for solving linear Fredholm,
Volterra integro-differential difference equation [13-15], nonlinear differential equation
such as Abel equation [16-17], systems of integral equations [18-19] and some
numerical models [20-22]. We construct to the shifted Chebyshev series solutions that
is,

=2 8T, ) U
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where T (t) denotes the shifted Chebyshev polynomials of the first kind,
a, (0<n<N) are unknown Chebyshev coefficients, and N is chosen any positive
integer such that N > m.

2. Chebyshev polynomials

The Chebyshev polynomials T, (t) of the first kind is a polynomials in x of degree n,

defined by relation [23-25]
T,(t) =cosné, when t =cosd

If the range of the variable x is the interval [-11], the range the corresponding
variables @ can be taken [0,7]. We map the independent variable t in [0,1] to the
variable s in [-11] by transformation

s=2t-1 ort:%(s+1)

and this lead to the shifted Chebyshev polynomial of the first kind T, (t) of degree n in
x on [0,1] given by [23]
T ()=T,()=T,(2t-1).

These polynomials have the following properties [23-25]:
i) T na(t) hasexactly n+1 real zeroes on the interval [0,1]. The i-th zero t, is

)+ )x

_1 (2(n F_
t, = 2(1+ cos( 200 +1) ), i=01...,n (8)

ii) It is well known that the relation between the powers of t" and the shifted
Chebyshev polynomials T, (t) is

k=0

n (2N ).
t" :2‘2"+12'(k )Tnk (t), 0<x<1 9)

where Z denotes a sum whose first term is halved.

3. Fundamental relation

Let us consider Eg. (1) and find the matrix forms of the equation. First we can convert
the solution y(t) defined by a truncated shifted Chebyshev series (3) and its derivative

y®(t) to matrix forms

Ve ® =T A, yO 0 =T 1A k=012 (10)

where
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T =0T O T, - Ty )]
A=[a, a,..a,]

By using the expression (6) and taking n=0,1,...,N we find the corresponding matrix
relation as follows

(X)) =D(T"(t))" and X(t)=T (t)D' (11)

where
Xt)=[1t...t"]

_ 00
2 0 0 0 0

AR
) ) e
BE A

2 2 2 2 L2

N-2 N-3 0
Then, by taking into account (7) we obtain
T (1) = X@®)(D™) (12)

and
(T @)® =X©)D™Y), k=012

To obtain the matrix X®(t) in terms of the matrix X(t), we can use the following
relation:
X®(t) = X(t)BT

X@ () =X ()BT = X(t)(B")® (13)
where
0 0 0 0]
0 .. 0
B=/0 2 0 .. 0 (14)

0 0 0 N O

Consequently, by substituting the matrix forms (11) and (12) into (10) we have the
matrix relation
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yl =X1)B*(D") A, k=012 (15)

Moreover, since

Y™ =y™ly (16)
where
y" (%) y(x) 0 0
vy =YW g2 O YW 0
Wﬁw 0 o ~:y&)
and
Y=TA (17)
where
T(x) 0 0 A 0 0
T(x) = 0 T(x) O A~ 0 A 0
0 0 TQ) 0 0 A

then we construct the following relation

yin (ti) =Yy (ti)yN (ti) = (T'E\)X(ti)(DT)ilA (18)

We can easily check the accuracy of the method. Since the truncated shifted Chebyshev
series (3) is an approximate solution of the logistic models, when the solution vy, (x)
and its derivatives are substituted in models, the resulting equation must be satisfied
approximately; that is , for x=x, €[a,b], g=012,...

d
E(xq)=‘ - —ryN[ —y?j

=0

4. Numerical solution of the models

In this section, to show the efficiency of proposed method exampleas are given. Here
after comparision between proposed method and other methods are presented.

Example 1
In this example we solve the
dy

dt—ya—w
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Logistic growth model by using Chebyshev expansion method with the initial condition
y(0) = 2[7]. We seek approximate solutions in the form

N
yu (=2 2,T, (1)
n=0
Then, we get the matrix relation for Eq.(2)
(XB(DT )T =X(D") +(TA)X(D' )1jA =F (19)

and the initial condition of matrix representation

yN(O):X(O)(DT)_lA:[Ulo Uy - ulN]AZZ

(20)
where
X, Xy X, 0] T(x,) O 0 ]
X, X x," 0 T(x)
X=I1 x, X, x," | F=l0| T= 0 T(x,)
11 Xy X o Xy 0] 0 0 0 - T(x)]

Hence, the fundamental matrix equation (19) corresponding to Eq. (2) can be written in
the form

WA =0or [W;F], W=[w,;],i,j=01..,N (21)
where
W =XB(D")*-X(D")+(TAX((D")™

To obtain the solution of Eq. (2) under the initial conditions, by replacing the row
matrices (20) by the last 1 rows of the matrix (21), we have the new augmented matrix,

Woo Wo1 o Won ; 0
Wig Wi o o Wiy , 0
[W;F]=
Wy Wnoar Wy 2 0
Wyao Wy Wy 5 0
L Ui Upy Uy 5 2]

So, we obtained to a system of (N +1) nonlinear algebraic equations with unknown

shifted Chebyshev coefficients. Thus, we obtain the Chebyshev polynomial solution.
For N=5, N=6 and N =7, we give the numerical results in Table 1 and plotted the
numerical results in Fig.1-2. We compare the numerical results Homotopy perturbation
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method [9], Adomian decomposition method [6] and Present method in Table 2. Here,
all computations are performed in the Maple 13 and all graphics are drawn by Matlab.

Table 1: Numerical result for Example 1

X Exact Present Method
Solution N=5 Ne=5 N=6 N=6 N=7 Ne=7
0.0  2.000000  2.000000  0.000E-0  2.000000 0.100E-8 2.000000 0.000E-0
0.2 1.693094 1.692985 0.108E-3  1.693110 0.161E-4 1.693102 0.88E-5
0.4 1504121 1504343  0.222E-3  1.504094 0.271E-4 1.504107 0.141E-4
0.6 1378180 1.377784 0.396E-3 1378183  0.309E-5  1.378197  0.170E-4
0.8 1.289764 1290240 0.476E-3  1.289759 0.501E-5 1.289742 0.212E-4
1.0 1.225399  1.221358  0.404E-2  1.226409 0.100E-2 1.225150 0.249E-3

Table 2: Comparision of numerical result for Example 1

X Present method Homtopy Adomian
per. method[9] | decomp. method[6]
0.0 2.000000000 2.0000000000 2.0000000000
0.2 1.6931102983 1.6932805333 1.6924480000
0.4 1.5040941842 1.5236181333 1.4703360000
0.6 1.3781839318 1.6597808000 1.0528640000
0.8 1.2897591977 3.1168085333 -0.293248000
1.0 1.2264095932 8.9083333333 -4.100000000
2.1 T T
-=+- Exact solution
— N=5
73 RURSERRSURUNE UOONROPRE SUOPRIUOOE NOOPRRUOURE NOOPRSIOOPS SOUOPRIROOPRE SOOPRROOPI SOOOPRIY [t N=6 H
-#- N=7
1.9 \
1.8 \\
1.7 e\
1.6 N
15 \
~.
1.4 \\
1.3 \"‘\
\s
12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1: Comparison numerical results and exact solution
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Fig. 2: Error function of logistic growth equation for various N
Example 2

In this example we investigate numerical solution of the predator-prey model which is
defined before as

dN
—=N(a-bP
m ( )
dpP
—=P(cN -d
™ ( )

We assume that the solutions can be written as truncated Chebyshev sums
8 1T * 8 2T *

X(t) =D a7, (), yt)=>a’T/ (t) (22)
r=0 r=0

then, matrix relation of solutions

X(®) =TMOA,, y(O) =T(OA, (23)

where
T() =[T, )T, (). Ty (t)]

A, =[a}al.ai]" A, =[a? a’..al]".

Consequently, we get the approximate solution and its first-derivative of the matrix
relations

20
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(O=XOO)*A, . XO=XOB (D)A,

(24)
y(t) = X(t)(D") " A, y'(t)=X(t)B"(D") A,
The matrix relations (24) are written in Eqgs.(4) , we get
X(@t)B'(D") A, +-aX(t)(D") A, +b(T(t)A,)X({t)(D") A, =0 (25)

X@®)BT(D") A, +cX(t)(D") A, —d(T()A)X()(D")*A, =0
The matrix form of (25)

[W)B_T(EJT—)%POY—G)(EJT—)%PJT)Y—G)(W—VJA:F

where

V) = Yt) 0 BT _ B"™ 0 (D?)_l:(DT)-1 07
0 Y() 0 BT 0 (D")™

= _[ToA, 0 ] [-a 0], [b 0] __fo] A [A
O von 7S el Sl mela) A<l

Using the shifted Chebyshev zeroes (8), we put of them in above matrix relation. We
obtained

(Y(_ti)B—T(DT)‘1+ P, Y(t,)(D") '+ P, T(t,) Y(_ti)(DT)*]A -F

and
[YIBT(IDT)1+ P, Y @) P, TY(DT)l]A =F
where . i
Y(t) 0] __ Y(t,) 0 T(,) 0
Y(@t)=| : LY (@)= : T=| : ) :
0 Y (t) 0 - Y(t,) 0 - T(ty)

On the other hand, the matrix form for conditions can be written as

X(0) = X(O)(D") A, =[ug Uy - Ug]=I[a] (26a)
Y(O) = X(O)(DT )_lAz = [ulO Uy - ulN] = [ﬂ] (26b)
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Hence, the fundamental matrix equation corresponding to Eg. (4) can be written in the
form

WA =F or [W;F], W=[w,;],1,j=01...,N (27)
where

W=YBT(D")'+P, Y(D")+P, T Y (D")*

To obtain the solution of Eq. (4) under conditions, by replacing the row matrices (26a-
b) by the last 2 rows of the matrix (27), we have the new augmented matrix,

Woo Wo1 e W0(2N+2)
Wi, Wi, e W1(2N+2)
\/\~/:
Wonyp  Weny 0 Wen)ens)
Ugo Ups u0(2N+2)
B Uy Uy Usan+2) |
and then
WA =F (28)
where
0
ool
F=|. G=
: B
G

So we obtained to a system of 2(N +1)x2(N +1) nonlinear algebraic equations with

unknown shifted Chebyshev coefficients. We solved the Eq.(28) by using mathematical
program Maple 13 and graphics are drawn with Matlab.

For numerical study the following valuesa =14, =18, a=0.1, b=1, ¢=1 and

d =1 are used [4]. We seek the approximate solutions by truncated shifted Chebyshev
series

X(t) = ZaiT? t), yt) = Za?Ti (t)

where we assume N = 3. Then, the zeroes of the T4* (t) are

1 1 V4 11 3r 1 1 1 1
t,==-=cos(=), t, ==—>cos(—), t, ==+=cos =—+>c0S
0 =575 (8) 15575 (8) 2 =55 ( )t >t ()

Hence
Y(t,)=[1L 0.038060 0.001448 0.000055]

Y(t,)=[1 0.308658 0.095269 0.029405]
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Y(t,)=[1 0.691341 0.477953 0.330429]
Y(t,)=[1 0.961939 0.925328 0.890109]

0100 1 -1 1 -1
BT_o 0 20 (DT)_l_o 2 -8 18
1o 0 0 3 10 0 8 -—48
0000 0 0 0 32

T(t,)A, = a —0.923879a! +0.707106a’ — 0.382683a]
T(t,)A, = a} —382683al —0.707106a}, +0.923879a’
T(t,)A, = a} +382683a} —0.707106a} —0.923879a]
T(t,)A, = a’ +923879a! +0.7071066a’ +0.382683a’
T(t,)A, = a2 —0.923879a2 +0.707106a’ — 0.382683a
T(t,)A, = a2 —382683a2 — 0.707106a7 +0.923879a
T(t,)A, = a2 +382683a> — 0.707106a  —0.923879a’
T(t,)A, = a2 +923879a +0.7071066a2 + 0.382683a>

with conditions

1 -11-10 0 0 0 ; 14

o 0o 00 1 -11 -1, 18
These matrix are substituting in Eq.(28), we obtained to a system of 2(n+1)x2(n+1)
nonlinear algebraic equations. This nonlinear sytem is solved, we gained the shifted
Chebyshev coefficients,

2.618855 18.334923

—5.102665 — 4934231
17| 4571254 | T2 7| —3.544386

~1.707224 1.724768

We put the these coefficients in Eq.(28), we obtain the approximate solutions for N =3

X(t) =14 — 77.505413t +118.516822t* —54.631188t°
y(t) =18+ 49.532465t —111.143992t* +55.192600t*

For N =4, approximate solution is obtained

X(t) =14 — 250.6tt +1424.618550t* — 2840.335841t° +1812.627521t*
y(t) =18 — 234t —1490.402822t* + 2959.652578t°> —1858.600392t *

For N =5, approximate solution is obtained
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X(t) =14 + 365.989241t —1798.989241t* + 3413.533114t> — 2629.755264t* + 647.350767t°
y(t) =18 —365.98924t +1859.983387t* — 3636.520042t* + 2925.596518t* — 778.890081t°

These results are plotted in Figs. 3-5.
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Fig.3. Numbers of the rabbits and foxes versus time for N =3
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Fig.4. Numbers of the rabbits and foxes versus time for N =4
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Fig.5. Numbers of the rabbits and foxes versus time for N =5

Example 3
In this example we consider numerical solution of the 2-species Lotka-Volterra
competition model

du

o ull-u-

o u(l-u-av)
dv

N vl-v-b
" oV(L-v—bu)

Let assume that the solutions of equation can be written as truncated Chebyshev sums
8 1T * 8 2T *

u) =Y alT, (), v(t) =Y a’T, @) (29)
r=0 r=0

then, matrix relation of solutions

u(®) = TOA,, v(t) =T()A, (30)

where
T() =[T, )T, (). Ty (t)]

A, =[a}al.ai]" A, =[a? a’..al]".

Consequently, we get the approximate solution and its first-derivative of the matrix
relations
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u®=XOEDA, L wO=XOBT(0) A,

(31)
v(t) = X(®)(D") A, V'(t) = X(1)B'(D") A,

The matrix relation of Eq.(6) is written as

X®B'(D") " +a(TMA,)XH)(D") ™ +(TMA)XE®(D) ™ - X(H)(D")™ }{Al} _ [0}
X(®B"(D") ™ +bp(TMA,)X®)(D") ™" + p(TMA)XB(DT) " - pXODT) " A, ] |0

We take a=1, b=0.8 and p =1 and the initial conditions u(0) =1 and v(0) =1 [6].
Similiarly, we apply the procedure in Section 3.2. We obtained to a system of
2(N +1)x2(N +1) nonlinear algebraic equations with unknown shifted Chebyshev

coefficients. For N =5, we get the approximate solutions

u(t) = 0.999999 — 0.999999t +1.467206t> —1.728703t° +1.302433t* — 0.423262t°
v(t) =1-x+1.371353t* —1.580208t° +1.175924t* — 0.379854t°

We plotted these results in Fig. 6.
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0.7 T

0.65 o e

0.6 Mo

0.55
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig 6: Numerical result of Present method for N =5

6. Conclusion

In this article, we gain the approximate solutions of the continuous population models
for single and interacting species by Chebyshev expansion method. In the logistic
growth model is successively solved by this method. In Table 1, we see that when N is
increasing, approximate solution is closed the exact solution and so absolute errors is
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decreasing. In the Lotka-Volterra model, as the plots Fig. 3-5 said the number of foxes
increase, as the number of rabbits, the source of food for foxes, decrease. Foxes will
reach their maximum as the rabbits reach their minimum. Finally, Fig. 6 is said that
species are to be a positive function of others. Also the CPU time for A model is less
then B model and CPU time for B model is less then C model.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Murray, J.D., Mathematical Biology, Springer, Berlin, (1993).

Simmons, G.F., Differential Equations with Applications and Historical
Notes, McGraw-Hill, (1972).

Biazar, J. ve Montazeri, R., A computational method for solution of the prey and
predator problem, Applied Mathematics and Computation, 163,2,841-847,
(2005).

Biazar, J., llie, M. ve Khoshkenar,A., A new approach to the solution of the prey
and predator problem and comparison of the results with the Adomian method,
Applied Mathematics and Computation, 171,1,486-491, (2005).

Rafei, M., Daniali, H., Ganji, D.D. ve Pashaedi, H., Solution of the prey and
predator problem by homotopy perturbation method, Applied Mathematics and
Computation, 188, 1419-1425, (2007).

Pamuk, S., The decomposition method for continuous population models for
single and interacting species, Applied Mathematics and Computation, 163,
79-88, (2005).

Pamuk, S. ve Pamuk, N., He’s homotopy perturbation method for continuous
population models for single and interacting species, Computational
Mathematics and Applications, 59, 612-621, (2010).

Pamuk, S., A review of some recent results for the approximate analytical
solutions of non-linear differential equations, Mathematical Problems in
Engineering, 34, (2009).

Pamuk, S. ve Pamuk, N., He’s homotopy perturbation method for continuous
population models for single and interacting species, Computational
Mathematics and Applications, 59, 612-621, (2010).

Hu, X., Liu, G. ve Yan, J., Existence of multiple positive periodic solutions of
delayed predator—prey models with functional responses, Computational
Mathematics and Applications, 52, 1453-1462, (2006).

Edelstein-Keshet, L., Mathematical Models in Biology, Random House, New
York, (1988).

Takeuchi, Y., Du, N.H., Hieu, N.T. ve Sato, K., Evolution of predator—prey
systems described by a Lotka—Volterra equation under random environment,
Journal of Mathematical Analysis and Applications, 323, 938-957, (2006).
Akyliz, A. ve Sezer, M., Chebyshev polynomial solutions of systems of high-
order linear differential equations with variable coeficients, Applied
Mathematics and Computation, 144,237-247, (2003).

Gulsu, M., Oztiirk, Y. ve Sezer, M., A new collocation method for solution of
mixed linear integro-differential-difference equations, Applied Mathematics
and Computation, 216, 2183-2198, (2010).

Sezer, M. ve Dogan, S., Chebyshev series solutions of Fredholm integral
equations, International Journal of Mathematical Education in Science and
Technology, 27, 5, 649-657, (1996).

27



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

BAUN Fen Bil. Enst. Dergisi, 19(1), 12-28, (2017)

Glilsu, M., Oztiirk, Y. ve Sezer, M., On the solution of the Abel equation of the
second kind by the shifted Chebyshev polynomials, Applied Mathematics and
Computation, 217, 4827-4833, (2011).

Dascioglu, A. ve Yaslan, H., The solution of high-order nonlinear ordinary
differential equations by Chebyshev polynomials, Applied Mathematics and
Computation, 217, 2, 5658-5666,(2011).

Dascioglu, A., Chebyshev solutions of systems of linear integral equations,
Applied Mathematics and Computation, 151, 221-232, (2004).

Dascioglu, A., ve Sezer, M., Chebyshev polynomial solutions of systems of
higher-order linear Fredholm-Volterra integro-differential equations, Journal of
The Franklin Institute, 342, 688-701, (2005).

Oztiirk, Y., Giilsu, A., ve Giilsu, M., On solution of a modified epidemiological
model for drug release systems, Scholars Journal of Physics, Mathematics
and Statistics, 3,1, 1-5, (2016).

Oztiirk, Y., Gulsu, A., ve Glilsu, M., A numerical approach for solving modified
epidemiological model for drug release systems, Nevsehir Bilim ve Teknoloji
Dergisi, 2 ,2, 56-64, (2013).

Oztirk, Y., Gllsu, A.ve Gilsu, M., A numerical method for solving the
mathematical model of controlled drug release, Bitlis Eren Universitesi Fen
Bilimleri Dergisi, 2, 2, 169-175, (2013).

Mason, J.C. ve Handscomb, D.C., Chebyshev polynomials, Chapman and
Hall/CRC, New York,(2003).

Body, J.P., Chebyshev and fourier spectral methods, University of Michigan,
New York, (2000).

Rivlin, T. J., Introduction to the approximation of functions, London, (1969).

28



