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ABSTRACT. In the world where urbanization and population density are 

increasing, transportation methods are also diversifying and the use of unmanned 

vehicles is becoming widespread. In order for unmanned vehicles to perform their 

tasks autonomously, they need to be able to perceive their own position, the 

environment and predict the possible movements/routes of environmental factors, 

similar to living things. In autonomous vehicles, it is extremely important for the 

safety of the vehicle and the surrounding factors to be able to predict the future 

position of the objects around it with high performance so that the vehicle can plan 

correctly. Due to the stated reasons, the behavioral prediction module is a very 

important component for autonomous vehicles, especially in moving environments. 

In this study, fast and successful robotic behavioral prediction module has been 

developed to enable the autonomous vehicle to plan more safely and successfully.   

 

 

1. INTRODUCTION 

 
The function and importance of autonomous vehicles are increasing day by day. It 
is foreseen that autonomous vehicles will play an important role in the future in order 
to reduce the density in transportation and to eliminate human-induced accidents. 
Apart from transportation, autonomous vehicles are becoming more and more 
common in areas such as agriculture, health and education. 

Autonomous vehicles, inspired by living things; It consists of modules such as 
perception to detect the environment, localization to determine its own position, 
planning to where and how to go, control for its movement and behavioral prediction 
for possible movement routes of surrounding objects. Middleware such as Robotic 
Operating System (ROS) [1], ZeroMQ (ZMQ) [2], Robotic Operating System 2 
(ROS2) [3] are needed for these modules to communicate with each other correctly 
and completely. These middlewares enable modules to transmit the desired message 
to the relevant module. Thanks to the ROS middleware tools that is used in the study, 
it also provides benefits such as visualizing, recording and observing data. 
     The behavioral prediction module is the one of the most important factor for the 
accurate result of the planning module in autonomous vehicles. The behavioral 
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prediction module generates output that predicts future positions by keeping the past 
positions of objects around the ego vehicle. This output creates an input to the 
planning module by combining with the objects found by the detection module. An 
autonomous vehicle without a behavioral prediction module will consider all objects 
as static and plan accordingly, but in highway conditions or urban traffic scenarios, 
an accident will be inevitable if the possible routes of vehicles or pedestrians are not 
taken into account. To give an example from scenarios that are frequently 
experienced in daily life, in order for an autonomous vehicle to consider a pedestrian 
preparing to cross the street, the autonomous vehicle must know the pedestrian's 
possible route. Similarly, while the autonomous vehicle is changing lanes, it must 
calculate the possible route according to the speed of the vehicle from behind, 
otherwise there will most likely be an accident. 
      The developed behavioral prediction module is based on ROS and works in real 
time. Features such as ROS middleware, dynamic history hold and release structure, 
direction error correction, covariance distribution visualization, and message type 
matching suitable for planning have been added to the multi modal CVAE-based 
model [4].Thus, an end-to-end autonomy module structure was created that will send 
the possible routes of the surrounding vehicles to the planning module. 
      In the next part of the study, first of all, behavioral prediction approaches and 
studies in the literature will be summarized, then information about the methodology 
used in the study will be given and the developed module will be explained in detail. 
Afterwards, the results obtained with the test data will be shared. Finally, the result 
of the study will be expressed and suggestions for future studies will be shared. 

2. MATERIALS AND METHOD 

2.1. Related Methods. There is less research in the field of behavioral prediction 
compared to areas such as perception, localization, and planning of autonomous 
vehicles. The biggest reason for this is that it is more difficult to determine the 
location of environmental factors in the future than the problems in other areas. 
When the trajectory prediction approaches are examined [5] [6], although there are 
approaches such as representation, output types, modeling, situational awareness, 
the modeling approach will be used as the main approach in categorizing the studies 
in this article. In addition, information will be provided in terms of representation, 
output and situational awareness types for the studies. When the studies are 
examined in terms of modeling methods; Behavioral prediction methods as shown 
in Figure 1; it consists of physics-based, machine learning-based, deep learning-
based and reinforcement learning-based methods. 
      Physics-based methods take information from the dynamics and kinematics of 
the vehicle. It consists of Single Trajectory, Kalman Filtering, Monte Carlo 
Methods. 
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      Models using single trajectory mostly use the kinematic information of the 
vehicle. Although there are also models that use the dynamic information of the 
vehicle, these models are more complex. Dynamic models consider all forces that 
govern motion. Dynamic models are highly complex due to the factors involved. For 
example, for a vehicle, the dynamic model considers the forces acting on the tires, 
the driver’s actions and their effects on the vehicle’s engine and transmission. For 
trajectory prediction, it doesn't make much sense to use a dynamic model to model 
such complex behavior unless you intend to run a control-oriented application [7]. 
Kinematic models are more commonly used than dynamic models due to their 
simpler structure. One of the most commonly used is Constant Velocity (CV). A 
simple example of a kinematic model is the CV model used in [8]. The CV model 
assumes that the recent relative motion of an object determines its future trajectory. 
Similarly Ammoun et al. [9] and Schubert et al. [10] They estimated the possible 
trajectories of the vehicle using the Constant Acceleration (CA) method. The CA 
method estimates the future acceleration of the vehicle from the past acceleration 
data, these acceleration estimates are converted into position information and the 
possible position of the vehicle is found.  Lytrivis et al. [11] using Constant Turn 
Rate and Velocity (CTRL) and Constant TurnRate & Acceleration (CTRA) with a 
similar approach, Batz et al. [12] Constant SteeringAngle & Velocity (CSAV) and 
Constant SteeringAngle & Acceleration (CSAA) models were used by adding wheel 
data to the model. 

 

Figure 1. Trajectory prediction methods. 
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      Unlike physics-based methods, machine learning methods are based on the 
principle of obtaining predicted trajectory by data mining. In comparison to physics-
based models which are limited to low-level properties of motion and cannot 
estimate well the long term dependencies in motion, the learning-based models on 
the other hand tend to capture and incorporate long term dependencies and changes 
caused by external factors. The most widely used main machine learning methods 
are Gaussian Process (GP), Support Vector Machine (SVM), Hidden Markov Model 
(HMM), Dynamic Bayesian Network (DBN), K-Nearest Neighbors (KNN), 
Decision Tree methods. Since SVM can output the characteristics of classification 
probability, Kumar et al. [13] propose a layered architecture method combining 
SVM and Bayesian filtering to identify lane-changing maneuvers to obtain more 
accurate identification results 

      In real life, it could only be observed the tangible states that are visible on surface, 
but we cannot intuitively express the hidden states. Thus, it is needed to develop a 
Markov process involving hidden states and find the intrinsic state of an event by 
the set of observable states related to the probability of the hidden state. This is the 
so-called hidden Markov model. Based on HMM, Qioa et al. [14] presents an 
algorithm named HMTP* that adaptively chooses parameters to imitate real scenery 
with dynamically changing speeds. In [15], her HMM connection with fuzzy logic 
is applied to predict driver maneuvers. The author of [16] presents his DBN 
representing driver behavior and vehicle trajectory. DBNs have Markov properties. 
We can extend the state with more information to satisfy the Markov assumption. In 
[16] this is done by adding all relevant information of the process to the DBN in the 
form of a vector. 
     Although the outputs of the studies in this method are mostly multimodal, it has 
been observed that the model's performance increases as the situational awareness 
states such as map-aware, scene aware, interaction aware increase. 
      Deep-learning based methods consist of sequential network, graph neural 
network (GNN) and Generative Model methods. Sequential network methods 
consist of Recurrent Neural Network (RNN), Convolutional Neural Network 
(CNN), RNN and CNN and Attention Mechanism, while Generative Model methods 
consist of Generative Adversarial Network and Conditional Variational Auto 
Encoder methods. 
      One of the most popular study with RNN & CNN is DESIRE [17], whose goal 
is to predict the future positions of multiple interacting agents in a dynamic (driving) 
scene. This takes into account the multimodal nature of future projections. For 
example even in the same situation, the future can be different. It can predict 
potential future outcomes and make strategic predictions based on them, making 
inferences based not only on past movement history, but also on scene context and 
agent interactions. 
      An example of work with sequential network is [18] a modified version of LSTM 
i.e. ST-LSTM (Spatio-temporal LSTM) is used in [18] where the interaction of 
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multiple vehicles and its effect on trajectory of Value of Information (VOI) is 
estimated. 
      Deep learning-based studies can provide more comprehensive output and input 
compared to physics and machine learning-based studies. These studies mostly take 
interaction-aware inputs and provide multimodal or intention type output. 
      The reinforcement learning approach, which has been extensively studied in 
recent years, also appears in predicting trajectory. Reinforcement learning method 
is based on the decision-reward principle, focusing on finding the decision that will 
maximize the reward. 
      According to studies using these approaches; In Sun et al. [19] study, interaction 
related elements are taken into account to achieve probabilistic estimation for AVs 
by using IR. Future trajectory distribution is defined by driving manoeuvers. Kufler 
et al. [20] Extending GAIL to his RNN optimization to show the behavior of a human 
driver, discriminators evaluate steps and actions. Choi et al. [21] combine the 
partially observable Markov decision process (POMDP) within the GAIL 
framework and propose a method to train the model using the discriminator reward 
function. The prediction problem is nonlinear, so nonlinear mapping should be used 
for generalizable function approximation. Wulfmeier et al. [22] propose a deep 
inverse reinforcement learning (DIRL) framework for approximating complex  
nonlinear reward functions. Some D-IRL approaches get history tracks as input. 
Considering driving characteristics and route shape, the authors [23] initially 
practiced RL to develop MDP, then learned the optimum driving procedure from 
IRL, and used deep neural network (DNN) to generate a reward function. In Jung et 
al., [24] this work proposes a convolutional LSTM  to extract  feature maps from his 
LIDAR and trajectory data considering inertia, environment, and society. This 
feature map is integrated with output reward map to forecast the traversability map. 
      Reinforcement learning methods, similar to deep learning methods, can take 
extensive inputs such as road and scene related factors and provide comprehensive 
outputs in the form of unimodal and intention. 

2.2. Datasets. Datasets are required for training or testing the above mentioned 
methods or models. These datasets consist of various sensor data, map data and their 
annotations. The main ones are KITTI [25], nuScenes [26], Argoverse [27] and 
NGSIM [28] datasets. The model that is worked on in this article, trained on 
nuScenes dataset. NuScenes dataset is a large-scale autonomous driving dataset 
which has several distinct dataset such as nuPlan [29] for planning, nuScenes for 
perception, nuImages [30] for image level operations.  In the following sections, 
comparisons of various studies on these data sets will be given. 

2.3. Evaluation Metrics. Reliable and generic metrics are needed to measure the 
success of the studies. Some metrics that can be used to compare related works are 
given below. 
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     Root Mean Squared Error (RMSE): “RMSE computes the square root of the mean 
squared forecast error” ([6], p.14). As shown in the equation (1) while ŷi stands for 
estimated value (m), yi indicates observed value and n is the number of samples. 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦𝑖)

2

𝑛

𝑛

𝑖=1

 

         (1) 

Average displacement error (ADE): “The average distance between the predicted 

trajectory and the ground truth” ([6], p.14). In the formulas (2) given below, xi and 

yi stand for predicted trajectory for one second interval in meters at x and y axes 

respectively, xi
GT and yi

GT indicate observed trajectory for one second interval in 

meters at x and y axes respectively, and T is time in seconds. 

 

      
𝐴𝐷𝐸 =

1

𝑇
∑ √(𝑥𝑖 − 𝑥𝑖

𝐺𝑇)2 + (𝑦𝑖 − 𝑦𝑖
𝐺𝑇)2𝑇

𝑡=1                                          (2) 
 

Final displacement error (FDE): “The distance between the final prediction results 

and the corresponding ground truth location” ([6], p.14). In the equation (3) given 

below, xT and yT stand for predicted trajectory for one second interval in meters at x 

and y axes respectively, xT
GT and yT

GT indicate observed trajectory for one second 

interval in meters at x and y axes respectively, and T is time in seconds. 

   FDE = √(𝑥𝑇 − 𝑥𝑇
𝐺𝑇)2 + (𝑦𝑇 − 𝑦𝑇

𝐺𝑇)2                   (3) 

Miss Rate (MR): “Based on the L2 distance of the final positions, the ratio of cases 

where the estimated trajectory isn’t within 2.0 meters of the ground truth” ([6], p.14). 

In the equation (4) given below, ‘misses’  is the predicted trajectory not within 2.0 

meters of the ground truth and ‘hits’ is the predicted trajectory within 2.0 meters of 

the ground truth. 

         MR = 
𝑚𝑖𝑠𝑠𝑒𝑠

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠
                                                         (4)  

     When the Tables 1 and 2 are examined, although physics-based and machine-

learning-based methods require low computational load, their performance 

decreases as the estimated time (2s>) increases. Compared to these two methods, 

deep learning and reinforcement-based learning methods can predict longer time 

successfully, although they overlay more computation load. 
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      When deep learning and reinforcement-based methods are compared, it is seen 

that the deep learning-based method is more successful. An open source, ROS 

structured, end to end, configurable, robust, multi-class behavioral prediction 

module could not be found. The most related work found [31] is one that predicts 

pedestrian-only trajectories with ROS. 

Table 1. Comparison of the trajectory prediction RMSE results of models using various 

methods trained on NGSIM dataset under highway condition. 
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Table 2. Comparison of the trajectory prediction FDE, ADE and MR results of models 

using various methods trained in Argoverse data set under urban condition. 

 

 

3. SOFTWARE DESCRIPTION 

       Trajectron++ has been used as the model in this article for the following reasons;    

⚫ There are many studies that show that graph-structured recurrent models are 

more successful, 

⚫ As it is stated in the literature review section it has a multi-classification 

structure, 

⚫ It is trained on a new and comprehensive data set for vehicle route estimation 

(nuScenes), 

⚫ It outputs both unimodal and intentional and is a scene aware model, 

 

3.1. Software Architecture. Trajectron++ is in a map and interaction aware structure 

as shown in Figure 2, Studies on this model; 
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      ROS middleware has been added, the data from the perception module has been 

adapted to the input data format in the model. In addition, a dynamic history hold/drop 

structure has been created, so the history of tracked objects is accumulated, and the 

untracked object is prevented from entering the model. 

 

3.2. Software Functionalities. Due to the added ROS middle-ware, this software 

processes the incoming data from the perception subsystem, finds possible trajectories 

and sends them to the planning subsystem. In this way, the vehicle also considers the 

trajectories of its moving objects while planning. 
 

 

 
Figure 2. Trajectron++ model architecture. 

 

 

3.3. Sample Code Snippets Analysis. The developed Behavioral prediction module 

is shown in Figure 3 as a pseudo code. First of all, by listening to the output of the 

perception module, information such as the position, class and orientation of the 

surrounding objects is obtained, and then dictionaries are created for the object at a 

certain speed and attention radius. As long as the ROS connection is open, the object 

information from the perception output is accumulated in the relevant dictionaries. 

When the objects reach enough history, they are converted into a data structure suitable 
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for the model and entered as an input to the model. 6-second predicted trajectories are 

output from the model. This estimated trajectory information is converted into the 

message types for planning module and visualization. These messages are published 

to relevant modules by ROS middleware. 

If the functions are examined in more detail, with the append history function 

shown in Figure 4, the heading, position and classification information of the tracked 

objects are passed by the distance and speed filters, and the history is appended in the 

related python dictionaries. With the function shown in Figure 5, the untracked object 

is deleted from the dictionary and only vehicle and pedestrian type entries are entered 

into the model. 

       Heading data entered as input to the model is obtained from both the direction 

information coming from the segmentation output and the direction information found 

from the vehicle position as shown in Figure 4. Although the segmentation output 

gives the right direction of the vehicle, it often reverses the direction by 180 degrees. 

While heading from the position information, the heading value is incorrect, especially 

when the vehicle is maneuvering. If the heading value from the position information 

and the value from the segmentation are more than 90 degrees, the direction 

information from the segmentation is rotated 180 degrees, thus a more robust heading 

information structure is created. In addition, a velocity and attention radius filter has 

been created for the tracked objects, and objects that are far from the ego vehicle or at 

very low speeds from the detection system do not enter the model, so that the algorithm 

works more efficiently. The predicted trajectory information from the model was 

converted into a message type suitable for the planning module and visualized. A 

configuration file was created as in Figure 6 in order to easily understand and configure 

Rostopic and message types. 
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Figure 3. Pseudo code of behavioral prediction module. 
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Figure 4. Function to append object information. 



   END-TO-END, REAL TIME AND ROBUST BEHAVIORAL PREDICTION MODULE             13 
 

 

 

Figure 5. History hold/release function. 
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Figure 6. Rostopic configuration file. 

 

4. RESULTS 

In order to test the work done, a Rosbag which was shown at Table 3, was collected 
with size 19.2 GB and 17.8 GB by 10 and 12 minutes driving in Mustafa Kemal district 
Ankara/Turkey. Rosbag data consist of ego vehicle’s localization output, perception 
output obtained by sensor fusion which includes positions, orientations, speeds, sizes 
of adjacent objects, transform information, camera images and visualization markers 
which includes bounding box markers. In detail ego vehicle’s localization output 
includes ego vehicle’s position, orientation and speed, perception output includes 
positions, orientations, speeds, sizes of adjacent objects, transform information 
includes relative positions and orientations of global map, local map and sensors, 
visualization markers includes bounding box markers of vehicles, pedestrians and 
unknown objects. 
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      Trajectory prediction module was tested by playing this Rosbag on the laptop 
which has T1000 graphic card, i7 9th Gen. Processor, 16 GB Ram. The developed 
software was run Docker and Conda virtual environment with CUDA 11.3 and 
PyTorch. 
      The part of the collected Rosbag under highway conditions (Sabancı Boulevard) 
and the inner city (Mustafa Kemal Mah.) parts are handled separately. The part in 
urban conditions is between 1.min and 8.min in Rosbag, and the part in highway 
conditions is between 8.min and 13.min. Trajectory predictions were obtained and 
visualized with green sphere markers by running the trajectory prediction ROS module 
on the Rosbag. 
      As can be seen in Figure 7 when driving in an urban area, the vehicle has entered 
dense environments many times. Although the speed and attention radius filter were 
added, incorrect speed information from the perception layer to the standing vehicles 
caused the algorithm to work slowly in a dense environment. Sudden changes of 
direction of vehicles and pedestrians in dense areas are a factor that reduces the 
performance of the behavior prediction module. 
      Rosbag's highway condition driving between 8 min and 13 min has achieved better 
results compared to the urban section. Similar to the urban roads section, although the 
incorrect perception output or the inability of the perception module to track the 
surrounding vehicle is a factor that reduces my performance, erroneous data has not 
been received from the perception module very often. One of the reasons for incorrect 
data coming from the perception module is incorrect data coming from GPS and IMU. 
However, since the data was collected at an off-peak time of the day, there was few 
erroneous data. Approximately 3 km of driving has been done under highway 
condition. Nine vehicles have been tracked by perception without error. From time to 
time, trajectory predictions of two or three vehicles have been made at the same time 
without loss of performance. The average and each 5 seconds RMSE of these nine 
vehicles are given in Table 4. The longer the estimation period, the greater the amount 
of error. Visualization of multi vehicle and four single vehicle are given in Figure 8, 
9, 10, 11, 12 respectively. 
      During the tests, when there is one vehicle/pedestrian in the environment, the 
module works at 5fps, and as the environmental factors increase, the operating 
frequency of the module decreases inversely with the number of factors. In order not 
to reduce the performance, model parallelization methods such as converting Tensorrt 
can be used. However, the Tensorrt library does not yet support the conversion of some 
modules of the Trajectron++ model, such as GRU and GMM. By installing an 
attention radius and a speed filter, distant, stationary or very slow objects were 
prevented from entering the model, so it was seen that the model worked more 
efficiently. 
      Considering that the distance between the two lines is about 3m and considering 
that lane changes take about 2-4 seconds, according to the results of the vehicles on 
the highway given in Table 4, it has been found that vehicles up to two seconds have 
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an acceptable level of RMSE. RMSE can be reduced by getting more accurate data 
from the perception layer. Speed and heading information, which is one of the data 
from the perception layer, comes to the perception layer from the localization layer 
and it comes to localization layer from GPS and IMU sensors. Therefore, accurate data 
should be received from GPS and IMU sensors for the successful performing of the 
behavior prediction module, otherwise incorrect results will emerge from the speed 
and heading data entered as input to the model. 
      At the drives under urban condition, as seen at the dense environment Figure 7 and 
above inputs are entered into the model at the same time, which slows down the 
operating speed of the model. However, the fact that the route that both pedestrians 
and vehicles will take is more uncertain than highway roads is one of the negative 
factors affecting this structure in urban use. Similar to highway roads, speed and 
heading information from GPS and IMU are also important in urban areas. Even in 
the city, since the speeds of vehicles are lower, errors in speeds affect the system more. 
Although the slow speed makes it difficult to find the heading data correctly, more 
accurate heading data can be obtained thanks to the added binary heading data 
structure. In order for the behavior prediction module to be used in the city, the 
environment must be controlled and run on more advanced computers. Controlled 
environment refers to the environments in which the algorithm is fed with HDMap, 
traffic rules, traffic signs, node interactions and objects move within the framework of 
these rules. 

Table 3. Collected Rosbag for testing. 

Dataset Type: Rosbag 

Size : 39 GB Duration: 13 min 

Data Data Description 

• Image Data • Image data from camera 

• Localization data • Position and orientation data from localization 

module 

• Camera Object Detections • Object detections from camera 

• Sensor fusion output • Object detections from perception module 

• Tf and Tf static • Static and dynamic transformations of sensors, 

local and global map 

• Lidar Data • Pointcloud data from Lidar 

• Visualization Markers • Visualization Markers for 3D World model 
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Figure 7. Visualization of dense environment trajectory prediction. 

 

 
Figure 8. Visualization of multi vehicle trajectory prediction. 
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Figure 9. Visualization of vehicle-1 trajectory prediction. 

 

Figure 10. Visualization of vehicle-2 trajectory prediction. 



   END-TO-END, REAL TIME AND ROBUST BEHAVIORAL PREDICTION MODULE             19 
 

 

 

Figure 11. Visualization of vehicle-3 trajectory prediction. 

 

Figure 12. Visualization of vehicle-4 trajectory prediction. 
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Table 4. RMSE results of tested Rosbag. 

Objects RMSE(m)(1) 

1s 2s 3s 4s 5s 

Vehicle1 0.87 2.13 4.14 5.68 7.25 

Vehicle2 0.92 2.09 4.28 5.82 6.43 

Vehicle3 0.70 1.90 3.91 5.11 6.12 

Vehicle4 1.20 2.42 4.72 6.23 8.04 

Vehicle5 0.78 1.75 3.78 5.02 6.10 

Vehicle6 1.45 2.10 3.99 4.97 7.05 

Vehicle7 0.75 2.78 3.41 6.01 7.73 

Vehicle8 1.28 2.35 4.66 5.28 6.87 

Vehicle9 1.12 1.99 4.03 6.36 8.80 

Overall 1.07 2.17 4.10 5.61 7.15 

 

5. CONCLUSION 

With the behavioral prediction module obtained as a result of this study, the probability 

of an autonomous vehicle making a mistake in the environment of moving objects has 

been significantly reduced. An end-to-end, real-time and robust behavioral prediction 

structure has been established from the detection module to the planning module, with 

contributions such as writing real-time inference to the current model, passing it to the 

ROS infrastructure, correcting or filtering faulty data. 

      From a broader perspective apart from transportation vehicles, this software can 

be used in any autonomous ground vehicle such as health care robots, agricultural 

robots, shuttle services etc. and it increases accuracy of planning module. In the future, 

it is planned to add ConvLSTM to the model for increasing accuracy and accelerate 

this model using TensorRT. 
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      In the field of behavioral prediction, as it can be understood from the related work 

section, many models have been studied and continue to be studied. Although the 

studied models generally give successful results for the test sets of their own data-sets, 

their speed and performance decrease in dense environments such as urban areas. 

Successful results can be obtained by creating more complex data-sets and developing 

better model architectures. 

      In this study, trajectory prediction methods were examined, compared with each 

other, and as a result of these comparisons, graph structured structures were seen to be 

more successful. Afterwards, the data was collected and the content of the data was 

explained. The developed software is explained, tested and the results are expressed. 

      Once for all, an open-source behavioral prediction module for autonomous vehicle 

is developed. Although Trajectron++ is used as the model, there is no open source 

study for end-to-end integration of a model into an autonomous vehicle. The study is 

innovative in this aspect. The module works more efficiently and robustly due to the 

added history hold/drop structure and data filtering and correction features. 
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