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1. Introduction 

Environmental concerns about the depletion of conventional en-

ergy sources have increased worldwide over the past decades. One 

of the main causes of the increase of atmospheric pollution and 

greenhouse effect is the abundant use of fossil fuels, especially in 

automotive applications [1].  

To reduce the environmental impact, automotive manufacturers 

in Europe focused on achieving the EU fleet-wide average emis-

sion standard of less than 95 g of CO2/km by 2021 with fuel con-

sumption of around 4.1 l/100 km of petrol or 3.6 l/100 km of diesel. 

A further reduction of 15%, decreasing the emission standards 

down to 81 g of CO2/km will have to be achieved by 2025 and 

they will be set to 59 g of CO2/km in 2030 [2].  

Many research projects have been launched in the field of hybrid 

electric (HEV) and electric vehicles (EV) to achieve this goal. 

These two types of vehicles can significantly reduce the exhaust 

emissions compared to conventional vehicles [3]. Besides, there 

are many ways of producing electricity. In France, nuclear power 

plants produce 75% of the electricity [4], which decreases the car-

bon footprint of an electric vehicle to less than 20 g of CO2/km 

from the tank to the wheel. Consequently, the deployment of EV 

has increased sharply over the past ten years. In 2018, the global 

stock of electric passenger cars has increased by 63% compared to 

the previous year and passed 5 million units.  

In the development of HEV and EV, energy storage is a signifi-

cant issue. A lot of effort in research was conducted to optimize 

the energy storage with improved cyclability and higher energy 

density [5–7]. Battery manufacturers are mainly interested in lith-

ium-ion technologies which have high specific energy (Wh/kg), 

high specific power (W/kg) and promising low costs [8]. Based on 

the electrode and electrolyte materials, several types of lithium-ion 

batteries are available on the market. The most commonly used are 

C/LFP (LixC6/LiFePO4) and C/NMC (LixC6/Li[NixMnyCoz]O2) 

batteries [8,9].  

In a simplified approach of a powertrain simulation, the battery 

pack is often considered as a constant voltage source. However, a 

lithium battery is a dynamic electrochemical system: the supplied 

voltage, the rated capacity, the internal impedance, and the power 

vary according to several conditions, including the State of Charge 

(SoC), the State of Health (SoH), the temperature and the current 

demand. A Battery Management System (BMS) model should be 

able to detect the individual information of every cell / sub-module 

in the pack when it is assembled into the battery pack model. As a 

result, the realistic modelling, which gathers detailed information 

from every battery cell, sub-module and the pack, becomes com-

plex.  

In this context, a cell-to-pack lithium-ion battery model was de-

veloped and is presented in the following sections. For each cell of 
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the battery pack, the model calculates the voltage and current evo-

lution during cycling and relaxation phase through the equivalent 

circuit model. The ageing model simulates the individual degrada-

tion behavior from both cycle and calendar ageing based on the 

Arrhenius equation. In literature, ageing modellings are based on 

ageing experiments with steady conditions: the temperature, the 

solicitation current or the SoC is maintained at a given level. More-

over, the modelling is performed on very large time scales. For in-

stance, the calendar ageing modellings of Redondo et al. [10] and 

of Badey et al. [11] are based on a time scale of several hundred 

days. The cycling ageing modellings of Jalkanen et al. [12] and 

Gao et al. [13] are based on a time scale of several hundreds and 

thousands of cycles. These modellings are accurate on a long du-

ration, but they do not allow degradation simulations on a short 

time scale. Contrary to existing models, the model developed in 

our work is able to model the performances degradation in a short 

time scale in the order of seconds. As this battery pack model relies 

on individual cell modelling, it was ideal to also implement a fault 

mode, as part of the BMS model. In industry, the Weibull distribu-

tion is often used the predict the failure of a Li-ion battery over 

time [14,15]. However, in our work, the failure modelling will be 

focused on the consequences regarding the electrical parameters 

and not the causes, in order to develop a BMS with relevant control 

command laws in case of failure. Contrary to existing models, our 

model is not meant to predict when the failure will occur but rather 

to control the battery in case of a failure and predict the impact of 

a scheduled failure.  

The aim of this study is to create a battery model containing an 

equivalent circuit model, cycle and calendar ageing models and a 

fault mode with the features previously described. This model will 

then be integrated into a simulation platform of a complete power-

train of a vehicle. This battery model will allow to implement a full 

electrical power supply system within the powertrain simulation 

platform, coupling the BMS and the battery model together. In the 

purpose of developing a thorough controlling strategy, the battery 

model will not only simulate the cell behavior but the battery pack 

behavior as well. The model will also simulate the failure of indi-

vidual cells in order to develop a risk strategy management for the 

BMS. The work described here will not detail the integration of the 

battery model within the simulation platform but will rather focus 

on the method used to develop the battery model itself.  

2. Model description and methodology  

This section presents the main sub-models of the individual cell 

model, the equivalent circuit model, and the ageing model. As ex-

pressed in the previous section, the model is developed under in-

dustrial simulation needs. Therefore, efficient but straightforward 

modelling methods were used to limit the computational costs 

while maintaining a good accuracy. 

 

 

 

2.1 Equivalent Circuit Model  

 

Fig. 1. Discharge and relaxation phase of a lithium-ion battery. 

Li-ion battery cell voltage, on which relies most of battery man-

agement strategies, is influenced by several parameters such as the 

SoC, the current load, and the temperature. Because of its electro-

chemical nature, a lithium-ion cell exhibits noticeable transient 

modes under dynamic loads. When the current load stops, the volt-

age keeps evolving until reaching the Open-Circuit Voltage 

(OCV). This transient mode is called the relaxation phase, its time 

range is relatively long compared to the transient phase when the 

cell is solicited (usually a few hours). The Figure 1 shows a general 

voltage evolution of a lithium-ion battery during a discharge and a 

relaxation phase. In order to simulate the electrical behavior and 

the voltage evolution of lithium-ion batteries, several types of 

equivalent circuit models were published in the literature, such as 

the Rint model, the Thevenin model and the Dual Polarization (DP) 

model [16–18]. Among all these models, the DP model, shown in 

Figure 2, was chosen for the equivalent circuit modelling. This 

model gives not only excellent electrical performance but also a 

good chemical interpretation for the lithium-ion battery behavior. 

The internal series resistance represents the electronic conductivity. 

The first RpaCpa circuit simulates the charge transfer effect and the 

RpcCpc circuit simulates the mass transfer effect. By applying the 

DP model, the voltage behavior under cycling and the voltage evo-

lution during the relaxation phase were determined. 

 

Fig. 2. DP equivalent circuit model [17]. 
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Fig. 3. Simulink model of the equivalent circuit 

The electrical behavior of the circuit is calculated using the fol-

lowing equations Eq. (1) :  

 

{
 
 

 
 𝑑𝑈𝑝𝑎/𝑑𝑡 =

𝑈𝑝𝑎

𝑅𝑝𝑎𝐶𝑝𝑎
−

𝐼𝐿

𝐶𝑝𝑎

𝑑𝑈𝑝𝑐/𝑑𝑡 =
𝑈𝑝𝑐

𝑅𝑝𝑐𝐶𝑝𝑐
−

𝐼𝐿

𝐶𝑝𝑐

𝑈𝐿 = 𝑈𝑂𝐶 + 𝑈𝑝𝑎 +𝑈𝑝𝑐 + 𝐼𝐿𝑅0

   (1) 

 

Upa and Upc are the voltages, Ipa and Ipc are the outflow cur-

rents and UOC is the open-circuit voltage which is implemented 

by a Look-up table function in Simulink.  

By analyzing the existing data published by Madani et al. [18], 

it was noticed that the value of the two capacitances and the value 

of the three resistances are not always constant under different con-

ditions. The values of Cpa and Cpc are strongly influenced by the 

applied current and the SoC level. On the other hand, the applied 

current has almost no effect on the three resistance values. Com-

pared to the value of Rpa, the values of R0 and Rpc are less depend-

ent on the SoC level [17]. Therefore, a dynamic parameter calcu-

lation system was applied to make the equivalent circuit model 

more accurate. The identification of specific parameter values and 

their variations are detailed in the results.  

The Figure 3 shows the implementation of the equivalent cir-

cuit model with 2 different blocks for the 2 RC parallel circuits.  

2.2 Relaxation model 

Stimulated ions return to an equilibrium state during the relaxa-

tion phase, which is relatively slow. The existing relaxation models 

usually use a succession of parallel RC circuits [17]. The number 

of circuits depends on the voltage variation during the relaxation 

phase. To simulate the relaxation behaviors, this phase was divided 

into several parts. Each part is represented by a RC circuit.  

In this case, the equivalent circuit model already contains two 

RC circuits and a resistance in series. Therefore, to reduce compu-

tational cost, the relaxation phase was modeled by using the DP 

model already implemented and changing the value of the two ca-

pacitances.  

From the electronic engineering’s point of view, the equivalent 

circuit model is a Linear Time-Invariant (LTI) system, where the 

voltage UL behavior is described as an exponential decay and indi-

cated by the time constant τ. When the battery cell is cycled, the 

current charges the capacitances Cpa and Cpc. Once the current is 

removed, the capacitances Cpa and Cpc are discharged which bring 

the cell voltage to the corresponding OCV value at the end of the 

relaxation phase. The relaxation time trel is considered to be 5τ such 

as: 

𝒕𝒓𝒆𝒍 = 𝟓𝝉 = 𝟓𝑹𝒑𝒂𝑪𝒑𝒂 = 𝟓𝑹𝒑𝒄𝑪𝒑𝒄      (2) 

At this point, the voltage discharged by each RC circuit is pro-

portional to the corresponding resistance. As shown in literature 

[19], Rpa (stable phase) takes 35% of the total resistance, Rpc takes 

15% of the total resistance, and R0 takes 50% of the total resistance. 

So, during the relaxation, the RpaCpa circuit, the RpcCpc circuit and 

the series resistance R0 take respectively 35%, 15% and 50% of the 

voltage variation.  

2.3 Battery pack model 

When assembled with other components of the powertrain, the 

battery pack model handles a current request and provides a result-

ant voltage value, leading to the supplied power. To simulate the 

battery pack’s response, the information of each cell must be sum-

marized, and the input current distributed to each cell by applying 

the Kirchhoff laws. In the Kirchhoff laws, an electrical circuit is 

considered as a combination of meshes and nodes. For each node, 

the sum of the incoming currents is equal to the sum of the out-

going currents (Eq. (3)). For each mesh, the sum of the voltage 

along the border is equal to zero (Eq. (4)).  
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∑ 𝐼𝑖𝑗 = 0
𝑗
1       (3) 

 

∑ (𝑂𝐶𝑉1𝑗 + 𝐼1𝑗𝑅1𝑗)
𝑗
1 = ∑ (𝑂𝐶𝑉2𝑗 + 𝐼2𝑗𝑅2𝑗)

𝑗
1 = ⋯ = =====

= ∑ (𝑂𝐶𝑉𝑖𝑗 + 𝐼𝑖𝑗𝑅𝑖𝑗)
𝑗
1       (4) 

 

In this work, the typical commercialized battery structure, which 

includes a significant number of cells arranged in series and paral-

lel, was reproduced. Solving the Kirchhoff laws in such structure 

causes the computational process to be very complicated. There-

fore, two matrices were used to implement the Kirchhoff laws in 

Matlab. One represents all the nodes, and the other one represents 

all the meshes. Those two matrices represent the way the cells are 

connected within the battery pack. The two matrices are shown in 

Figure 4.  

 

Fig. 4. System defined by the matrices of the nodes and meshes. 

In the nodes matrix, each line represents a node, and each col-

umn represents a cell. The value of each element in the matrix 

depends on the connection of the cell to the given node. If the 

cell is not connected to the node, the element value is equal to 

zero. If the cell is connected to the node through the inlet of cur-

rent, the element value is equal to 1. Otherwise, it is equal to -1.  

Regarding the meshes matrix, each line represents a mesh, 

and each column represents a cell. In this matrix, the element 

value is equal to 1 when a cell is on the mesh. In the opposite, 

the element value is equal to zero. Besides these two matrices, 

each cell’s resistance Rs_real is gathered into another matrix Bres.  

Solving the Kirchhoff laws, thanks to the Equations 3 and 4, 

allows to determine the current and voltage across each cell, al-

lowing in the end to ensure the distribution of the current and 

the determination of the total voltage of the battery pack.  

By redistributing the pack current into cells currents, the 

model then calculates the thermal effect, the cell’s SoC and the 

ageing effect. The logic flow of the entire battery model is pre-

sented in Figure 5.  

 

 

 

 

Fig. 5. Logic flow of the battery model. 

2.4 Cell failure model 

According to studies, there can be a large variety of causes of 

Li-ion battery failure [20]. Deep discharges may cause lithium 

plating on the surface of the negative electrode during recharging. 

If the battery is charged with a strong current, Li dendrites may 

grow, go through the separator, and cause a short-circuit. When 

charging up to high potentials, heating can occur, enhancing para-

sitic degradation reactions of the electrolyte. Those degradation re-

actions may lead to an even larger heating, causing a thermal run-

away. If the battery is stored in non-ideal conditions, the calendar 

ageing of the battery will be affected, enhancing the capacity loss 

and increasing the internal resistance. During a mechanical shock, 

there is a risk of separators breaking, causing an internal short-cir-

cuit of the lithium-ion battery. When the charging station is dam-

aged (bad connection), a cell can be disconnected from the circuit, 

disturbing the performance of the complete battery pack.  

In industry, the Weibull distribution is often applied to predict 

the failure of various components as a function of time [14,15,20]. 

In our case, it was intended to simulate the consequences of a bat-

tery failure more so than the causes, in order to allow the develop-

ment of an efficient BMS and the design of an appropriate com-

mand and control algorithm to manage the failure.  

Therefore, the consequences of a failure, appearing at a specific 

time designated by users, were implemented. Two consequences 

of failure were studied: the disconnection and the short circuit of a 

cell. The failure simulation is performed by modifying the internal 

resistance value abruptly during the simulation.  

When a specific cell is chosen to be disconnected at a given time, 

its internal resistance increases to 20 kΩ. Using this simulation 

strategy and with a constant current draw of 28 A, the results 

shown in Figure 6 were obtained. The simulation is done on a 4-

cell system with two different configurations. The system on the 

left (Figure 6a) is in a series/parallel connection configuration. The 

system on the right (Figure 6b) is in a parallel/series configuration. 

The cell n°1 is set to be disconnected from the circuit after 1000 s. 
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Fig. 6. Four cell system in series/parallel (a) and in parallel/series con-
figuration (b) and their corresponding cell failure simulation results 

(c, d) with the current going through cell n°1 (pink), cell n°2 
(green), cell n°3 (orange) and cell n°4 (blue). 

Figure 6c and Figure 6d show a 1C discharge curve and the re-

laxation phase after discharge for the series/parallel and the paral-

lel/series configuration respectively. The results show that for a se-

ries/parallel configuration, when cell n°1 is disconnected from the 

circuit, its current becomes 0, as expected. The total current flows 

through cell n°2. The sub-circuit made of cell n°3 and cell n°4 is 

not affected. For the parallel/series configuration, when cell n°1 is 

disconnected from the circuit, the complete branch made of cell 

n°1 and cell n°3 is cut-off and the current drops to zero immedi-

ately. Consequently, the branch of cell n°2 and cell n°4 supports 

the total current. These behaviors are consistent with the real case 

scenarios. It is noticed that when the parallel RC circuits are not 

integrated into the model, the voltage drop is instantaneous as well 

as the voltage recovery after stress.  

2.5 Ageing model 

In the previous section, the cell models for electrical behavior 

were presented. In this section, the chemical behavior of a lithium-

ion battery cell regarding ageing is discussed. The reasons for bat-

tery ageing, such as lithium deposition and the formation of Solid 

Electrolyte Interphase (SEI), are widely studied in the literature 

[21].   

The ageing phenomenon is expressed in two degradation forms, 

the loss of capacity and the increase of resistance. To simulate 

these two consequences, an ageing model based on classical em-

pirical models, was developed. These models focus on simulating 

the ageing effects with constant conditions (SoC, temperature, cur-

rent) in the long run [10,12,13,22]. These models are usually accu-

rate over a long period of time at steady conditions. Unlike most 

of existing ageing models that cannot simulate degradation neither 

over a short period of time (a few seconds), nor in evolutive con-

ditions, the objective of this ageing model is to simulate the instan-

taneous degradation of a lithium-ion battery, since the current and 

the temperature are not constant when the battery pack supplies 

energy to the powertrain.  

The ageing model is divided into two components, the cycle 

ageing and calendar ageing, represented by two different equation 

packages. The ageing model switches from one ageing mode to 

another depending on if the vehicle is being driven or parked.  

2.5.1 Calendar ageing 

According to E. Redondo et al. [10], calendar ageing is a tem-

perature-sensitive chemistry process that can be described by the 

Arrhenius law. The usual equations Eq. (5) and Eq. (6) were put 

into their integral form to determine the instantaneous ageing [10].  

To switch from a time scale in days to a time scale in seconds, in 

order to calculate the degradation effects in periods of time in the 

order of seconds, the equations Eq. (5) and Eq. (6) were modified 

into Eq. (7) and Eq. (8) respectively as follows: 

 

𝑄𝑙𝑜𝑠𝑠
𝑐𝑎𝑙  = 𝐴𝑐 ∙ 𝑒

(−
𝐸𝑎𝑐
𝐾∙𝑇

) ∙ 𝑡𝑍     (5) 

   

𝑅𝑟𝑖𝑠𝑒
𝑐𝑎𝑙 = 𝐴𝑟 ∙ 𝑒

(−
𝐸𝑎𝑟
𝐾∙𝑇

) ∙ 𝑡𝑍     (6) 

 

𝑄𝑙𝑜𝑠𝑠
𝑐𝑎𝑙 = √∫

1

86400
∙ 𝐴𝑐

2
∙ 𝑒(−

2∙𝐸𝑎𝑐
𝐾∙𝑇

)𝐷

0
𝑑𝑡     (7) 

 

𝑅𝑟𝑖𝑠𝑒
𝑐𝑎𝑙 =  √∫

1

86400
∙ 𝐴𝑟

2
∙ 𝑒(−

2∙𝐸𝑎𝑟
𝐾∙𝑇

)𝐷

0
𝑑𝑡      (8) 

 

𝑄𝑙𝑜𝑠𝑠
𝑐𝑎𝑙  is the capacity loss and 𝑅𝑟𝑖𝑠𝑒

𝑐𝑎𝑙  is the resistance increase 

due to calendar ageing. Ac and Ar are the pre-exponential factors 

of the capacity loss and of the resistance increase due to calendar 

ageing respectively. Eac and Ear are the activation energies of the 

capacity loss and of the resistance increase due to calendar ageing 

respectively. K is the Boltzmann constant and T is the temperature. 

D is the test duration in seconds, t the time and z the power factor 

varying between 0.5 and 1. In the model, z is set to 0.5.  

With the tests performed by Keil et al. [23], calendar ageing data 

of three different types of Li-ion battery cells (18650 LFP, NMC 

and NCA cells) were obtained for a duration of 300 days. For each 

type of battery, the tests were performed on identical cells coming 

from the same production batch under different conditions, at 3 

different temperatures (25°C, 40°C and 50°C) and 16 different 

SoC levels, leading to 48 different calendar ageing conditions 

tested for each technology.  

For every SoC level, the capacity loss and the resistance increase 

were obtained for the 3 different temperatures. A three linear equa-

tions system was then obtained and solved using the least squares 

method to determine values for A and Ea.  

The results are presented in Figure 7. The evolution of the acti-

vation energies for the capacity loss and the resistance increase, 

Eac and Ear, are shown in Figure 7a and Figure 7c respectively. 
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Fig. 7. Activation energies for capacity loss Eac (a) and for resistance 

increase Ear (c); and pre-exponential factors for capacity loss Ac (b) 

and for resistance increase Ar (d) as a function of the cell chemistry 

(LFP (purple), NMC (yellow) and NCA (black)) and the SoC. The 

SoC is expressed in p.u. (100%=1 p.u.) 

The values for the pre-exponential factors for the capacity loss 

and the resistance increase, Ac and Ar, are presented in Figure 7b 

and Figure 7d respectively. The evolutions are shown as a function 

of the cell chemistry and the SoC. The data are expressed in per 

unit (p.u.) (100% = 1 p.u.).   

The pre-exponential factors Ac and Ar and the activation en-

ergies Eac and Ear vary as a function of the SoC and cannot be 

simply expressed by mathematical equations. Therefore, the val-

ues were implemented by using Look-up tables in Simulink to 

calibrate the model for the three different technologies.  

The validation of the chosen parameters is performed thanks to 

data from the article of Keil et al. [23]. The Figure 8 shows the 

data extracted from the article (the marks) and the results simu-

lated with the calibrated model (the lines). A small standard de-

viation σ is obtained between the experimental and the simulated 

data. The Simulink model of the calendar ageing is represented in 

Figure 9. The inputs are the SoC and the temperature of each cell. 

The outputs are the resistance increase in Ω and the capacity loss 

in Ah. A switch function is used to deactivate the calendar ageing 

when the current is different from zero. Indeed, in that case, the 

cycle ageing is considered, and the calendar ageing effect is taken 

into account within the cycle ageing. So, the calendar ageing must 

not be considered when a current is applied to the cell.  

Fig. 8. Capacity loss (a, c, e) and resistance increase (b, d, f) obtained 

from the experimental data of Keil et al. [23] compared to the simu-

lated data from the calendar ageing model. Tests performed for NCA 

cells after 300 days (a, b), NMC cells after 300 days (c, d) and LFP 

cells after 270 days (e, f) of calendar ageing respectively. Tests per-

formed at 25°C (purple triangles), 40°C (red diamonds) and 60°C 

(blue circles) and simulated data obtained at 25°C (yellow line), 40°C 

(black line) and 60°C (blue line). The standard deviations (σ) between 

the experimental and the simulated data are given in each case. The 

data are expressed in p.u. (100%=1 p.u.). 

 

Fig. 9. Simulink model of the calendar ageing 
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2.5.2 Cycle ageing 

In the literature, cycle ageing is often described as a function of 

the number of cycles [12,24]. In this case, the simulation time also 

needs to be expressed in function of time.  

It was assumed that a cycle of cyclic ageing contains a complete 

discharge and a complete charge and that the difference between 

the charge and the discharge was neglectable. So, it was considered 

that the same amount of positive and negative current (stress) has 

the same influence on the chemical degradation of the battery.  

Therefore, the ageing behavior of one cycle can be distributed 

over each instant. It is considered that for each cycle, the real-time 

is equal to 2 times the real capacity Creal divided by the current I 

(once during charge, once during discharge), as shown in the Eq. 

(9):  

𝑑𝑠 =  2 ∙
𝐶𝑟𝑒𝑎𝑙

𝐼
∙ 3600𝑑𝑡      (9) 

Then, to change from a number of cycles to a time in seconds, 

the following variable change must be carried out:  

𝑡 =  ∫
𝐼

7200∙𝐶𝑟𝑒𝑎𝑙

𝑠𝑓𝑖𝑛𝑖
0

𝑑𝑠      (10) 

For the cycle ageing, the rate of capacity loss and resistance in-

crease is influenced not only by the temperature but also by the 

current level. Therefore, the rate of charge and discharge C-rate 

has been added into the calculation. The loss of capacity and the 

increase of resistance are calculated through the Eq. (11) and Eq. 

(12) as followed: 

𝑄𝑙𝑜𝑠𝑠
𝑐𝑦𝑐

= 2𝐴𝑐 ∙ 𝑒
(
−𝐸𝑎𝑐+𝐵𝑐∙𝐶𝑟𝑎𝑡𝑒

𝑅∙𝑇
) ∙ 𝑡𝑧     (11) 

𝑅𝑟𝑖𝑠𝑒
𝑐𝑦𝑐

= 𝐴𝑟 ∙ 𝑒
(
−𝐸𝑎𝑟+𝐵𝑟∙𝐶𝑟𝑎𝑡𝑒

𝑅∙𝑇
) ∙ 𝑡𝑧     (12) 

𝑄𝑙𝑜𝑠𝑠
𝑐𝑦𝑐

 is the capacity loss and 𝑅𝑟𝑖𝑠𝑒
𝑐𝑦𝑐

 is the resistance increase 

due to cycle ageing. Ac and Ar are the pre-exponential factors of 

the capacity loss and of the resistance increase for the cycle ageing 

respectively. Eac and Ear are the activation energies of the capacity 

loss and of the resistance increase due to cycle ageing respectively. 

Crate is the cycling rate. Bc and Br are the current accelerating fac-

tors, that adjust the impact of the C-rate, of the capacity loss and 

the resistance increase respectively. R is the perfect gas constant; t 

is the number of cycles and z is a power factor varying between 

0.5 and 1. From the data given in the references [12] and [13], it 

was observed that cycle ageing behaviors evolved linearly with the 

number of cycles, so z was set to 1. After applying the variable 

change described in Eq. (10), the capacity loss and the resistance 

increase are then expressed under their integral form as followed 

in Eq. (13) and Eq. (14): 

𝑄𝑙𝑜𝑠𝑠
𝑐𝑦𝑐

= ∫ 𝐴𝑐 ∙ 𝑒
∙(−

𝐸𝑎𝑐+𝐵𝑐∙𝐶𝑟𝑎𝑡𝑒
𝑅∙𝑇

) ∙
𝐼

3600𝐶𝑟𝑒𝑎𝑙
∙

𝑆𝑓𝑖𝑛𝑖
0

𝑑𝑠      (13) 

𝑅𝑟𝑖𝑠𝑒
𝑐𝑦𝑐

= ∫ 𝐴𝑟 ∙ 𝑒
∙(−

𝐸𝑎𝑟+𝐵𝑟∙𝐶𝑟𝑎𝑡𝑒
𝑅∙𝑇

) ∙
𝐼

3600𝐶𝑟𝑒𝑎𝑙
∙

𝑆𝑓𝑖𝑛𝑖
0

𝑑𝑠      (14) 

Sfini is the cycle duration.  

The parameters identification was carried out based on the data 

published by Yuksel et al. [25]. They identified the activation en-

ergy Eac and the acceleration factor Ac for a simpler cycle ageing 

model which doesn’t consider the regime impact. They found that 

Ac = Ar = 11443 and Eac = Ear = 42570 J.mol-1. Those values were 

reused as predefined parameters in this model. Regarding the val-

ues of Bc and Br, they were calibrated from the data published by 

Gao et al. [13] using the least squares method. They investigated 

the cycle ageing behaviour of a LCO cell at different cycling rates 

(0.5C, 0.8C, 1C, 1.2C 1.5C) at a given temperature of 25°C. From 

the Eq. (11) and Eq. (12), it is observed that when the regime and 

the temperatures are fixed, the capacity loss and the resistance in-

crease are linear as a function of time (or number of cycles). The 

data from Gao et al. [13] allow us to determine the values of Kc 

and Kr, which are the slopes of the evolution of capacity and re-

sistance respectively. They are defined as follows:  

Kc = 2Ac ∙ e
(
−Eac+Bc∙Crate

R∙T
)     (15) 

Kr = Ar ∙ e
(
−Ear+Br∙Crate

R∙T
)     (16) 

The evolution of Kc and Kr as a function of C-rate is given in 

Figure 10. The evolution of Kc is not linear on the whole range of 

C-rate. However, Kc can be approximated with 2 linear functions 

with a R² larger than 0.95, on 2 different domains: C-rate lower or 

equal to 1 and C-rate larger than 1. Those 2 linear functions are 

described in Eq. (17) and Eq. (18) respectively. Their correspond-

ing correlation factor R² are shown in Figure 10a. Kr is approxi-

mated by one linear function over the whole range of C-rate. This 

linear function is described in Eq. (19). Its corresponding correla-

tion factor R² is shown in Figure 10b.  

KcCrate>1 = 2.61Crate − 12.69    (17) 

KcCrate≤1 = 0.61Crate − 10.63    (18) 

Kr = 0.57Crate − 7.09    (19) 

 

Fig. 10. Evolution of Kc (a) and Kr (b) as a function of C-rate and 
trend lines. 
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Fig. 11. Comparison between the simulated data (lines) obtained from 
the model and the experimental data (dots) from reference [13]. Ca-
pacity loss (a, c, e, g, i) and resistance increase (b, d, f, h, j) of LCO 

cells due to cycle ageing at a C-rate of 0.5C (a, b), 0.8C (c, d), 1C (e, 
f), 1.2C (g, h), 1.5C (i, j) at 25°C. The capacity losses and resistance 

increases are expressed in p.u. (100%=1 p.u.). 

The values of Bc can then be determined for both C-rate 

ranges. For a C-rate lower or equal to 1, Bc is equal to 1515 and 

for a C-rate larger than 1, Bc is equal to 6480. The Br value is 

determined on the whole C-rate range, it is equal to 1418. The 

value of Eac and Ear were determined accordingly. Eac is equal 

to 49513 when the C-rate is lower or equal to 1, Eac is equal to 

54625 when the C-rate is larger than 1 and Ear is equal to 40742. 

The model was calibrated thanks to those values.  

After the calibration of the model, simulated data were ob-

tained and compared to the experimental data obtained from the 

tests presented in the work of Gao et al. [13]. The comparison 

between the simulated and the experimental data is presented in 

Figure 11. In their work, Gao et al. studied the capacity loss and 

resistance increase of LCO cells at different cycling rates (0.5C, 

0.8C, 1C, 1.2C 1.5C) and at a given temperature of 25°C. Good 

correlation is obtained between the simulated (lines) and the ex-

perimental data (dots) regardless of the cycling rate.  

The Simulink model of the cycle ageing is shown in Figure 12. 

The inputs are the current, the capacity, the initial series resistance, 

and the temperature. The outputs are the capacity loss and the re-

sistance increase by cycle ageing. The absolute value of the current 

is used as it is considered that the charge and the discharge have 

the same effect on the performance degradation.  

 

Fig. 12. Simulink model of the cycle ageing 

3. Results and discussion 

3.1 Equivalent circuit results 

From the equation system Eq. (1), the following equation 

Eq. (20) can be deduced.  

𝑈𝐿 = 𝑈𝑂𝐶𝑉 + ∫(
𝑈𝑝𝑎

𝑅𝑝𝑎𝐶𝑝𝑎
−

𝐼𝐿

𝐶𝑝𝑎
) + ∫(

𝑈𝑝𝑐

𝑅𝑝𝑐𝐶𝑝𝑐
−

𝐼𝐿

𝐶𝑝𝑐
) + 𝐼𝐿𝑅0  (20) 

The integration of this formula in Matlab-Simulink can be 

carried out using an integrator block but the simulations are 

time-consuming. Therefore, the quadrature rules were applied to 

the equivalent circuit model and the output potential was solved 

through the numerical integration form, as shown in the Eq. (21). 

Δt is the time step in seconds between the moment k and the 

moment k+1.  

𝑈𝐿 = 𝑈𝑂𝐶 + 𝑈𝑝𝑎𝑘 +
∆𝑡∙𝑈𝑝𝑎𝑘

𝑅𝑝𝑎𝐶𝑝𝑎
−

∆𝑡∙𝐼𝐿

𝐶𝑝𝑎
+ 𝑈𝑝𝑐𝑘 +

∆𝑡∙𝑈𝑝𝑐𝑘

𝑅𝑝𝑐𝐶𝑝𝑐
−

∆𝑡∙𝐼𝐿

𝐶𝑝𝑐
+

𝐼𝐿𝑅0                       (21) 

In order to maintain the accuracy of the equivalent circuit 

model, the time step Δt is equal to the time step of the model's 

input signal.  

Concerning the applied parameters values, the data was ana-

lyzed based on the work of Madani et al. [18]. In their work, the 

same equivalent circuit was used. The experiments were per-

formed on 5 different C-rates and 19 states of charge on a 13 Ah 

lithium titanate cell. They pointed out that the two capacitances 
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(Cpa and Cpc) and the three resistances (R0, Rpa and Rpc) vary in 

function of the SoC and the current intensity of the cell.  

By analyzing their data, two polynomial laws were estab-

lished to approximate the variation of both capacitances, ex-

pressed through Eq. (22) and Eq. (23) as followed: 

𝐶𝑝𝑎 = 𝐴𝑝𝑎 ∙ (𝑆𝑜𝐶)
2 + 𝐵𝑝𝑎 ∙ 𝑆𝑜𝐶 + 𝐷𝑝𝑎         (22) 

𝐶𝑝𝑐 = 𝐴𝑝𝑐 ∙ (𝑆𝑜𝐶)
2 + 𝐵𝑝𝑐 ∙ 𝑆𝑜𝐶 + 𝐷𝑝𝑐         (23) 

The parameters Apa, Bpa, Dpa, Apc, Bpc and Dpc can be expressed 

through polynomial functions of C-rate. The parameters of the pol-

ynomial functions were determined by using the least square 

method. The polynomial functions of C-rate were then established 

as followed:  

𝐴𝑝𝑎 = 58.57𝐶𝑟𝑎𝑡𝑒
2 − 745.13𝐶𝑟𝑎𝑡𝑒 − 2000.3     (24) 

𝐵𝑝𝑎 = −82.8𝐶𝑟𝑎𝑡𝑒
2 + 1191.3𝐶𝑟𝑎𝑡𝑒 + 2714.7     (25) 

𝐷𝑝𝑎 = −10.54𝐶𝑟𝑎𝑡𝑒
2 − 31.3𝐶𝑟𝑎𝑡𝑒 + 308.85     (26) 

𝐴𝑝𝑐 = 1075.1𝐶𝑟𝑎𝑡𝑒
2 − 5765.3𝐶𝑟𝑎𝑡𝑒 − 1116.2     (27) 

𝐵𝑝𝑐 = −1242.1𝐶𝑟𝑎𝑡𝑒
2 + 7555.4𝐶𝑟𝑎𝑡𝑒 + 1013     (28) 

𝐷𝑝𝑐 = 122.71𝐶𝑟𝑎𝑡𝑒
2 − 839.19𝐶𝑟𝑎𝑡𝑒 + 1632     (29) 

As shown in Figure 13, good correlation is obtained between the 

evolution of those parameters and the polynomial functions of C-

rate established to describe it. By using all these formulas, the ca-

pacitances can be estimated for different states of charge and C-

rates. The approximated capacitance values are shown in Figure 

14. The simulated capacitances are good approximations of the ex-

perimental data, especially for more important C-rates (2C and 4C). 

Furthermore, these parameters are extracted from a 13 Ah cell. To 

generalize this polynomial law to other cells, the value of C-rate 

needs to be re-evaluated for different cell capacities. It is assumed 

that the impact of nominal cell capacity Cnom is proportional to the 

value of the two capacitances. Therefore, the capacitance values 

are standardized by a proportional factor K calculated through Eq. 

(30).   

𝐾 =  
𝐶𝑛𝑜𝑚

13
      (30) 

The Figure 15 shows the variation of resistances R0, Rpa and 

Rpc as a function of SoC and C-rate. The charge transfer re-

sistance Rpa is strongly dependent on the SoC, while the mass 

transfer resistance Rpc and the series resistance R0 are less influ-

enced by the SoC, which is consistent with the literature [26–

28]. Indeed, the charge transfer impedance is much more 

strongly affected by the SoC than the series resistance and the 

mass transfer resistance. The current affects the mass transfer 

impedance but its impact is not significant, so it was not imple-

mented in the model. R0 and Rpc are then considered to be constant 

when the SoC of the cell varies. As for Rpa, the mean resistance 

value 𝑅𝑝𝑎̅̅ ̅̅ ̅  taken for the different C-rates was considered. The 

evolution of 𝑅𝑝𝑎̅̅ ̅̅ ̅ is shown in Figure 15d. The variation of 𝑅𝑝𝑎̅̅ ̅̅ ̅ 

tends to be stable when the SoC is larger than 0.5. Accordingly, the 

value of Rpa when the SoC is larger than 0.5 (𝑅𝑝𝑎̅̅ ̅̅ ̅|𝑆𝑜𝐶>0,5
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) is aver-

aged to 1.024 mΩ (Eq. (31)). A polynomial law of order 3 is then 

identified to express the variation of the ratio between 𝑅𝑝𝑎̅̅ ̅̅ ̅  and 

𝑅𝑝𝑎̅̅ ̅̅ ̅|𝑆𝑜𝐶>0,5
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . This polynomial function is shown in Eq. (32).  

𝑅𝑝𝑎̅̅ ̅̅ ̅|𝑆𝑜𝐶>0.5
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 1.024 𝑚𝛺               (31) 

𝑅𝑝𝑎̅̅ ̅̅ ̅ = 𝑅𝑝𝑎̅̅ ̅̅ ̅|𝑆𝑜𝐶>0.5
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ × (−15.00𝑆𝑜𝐶3 + 29.83𝑆𝑜𝐶2 −

18.98𝑆𝑜𝐶 + 4.85)                 (32) 

 

Fig. 13. Polynomial functions of C-rate to express the Apa (a), Bpa 
(c), Dpa (e), Apc (b), Bpc (d), Dpc (f) parameters of the capaci-

tances Cpa and Cpc. 

In Figure 16, the evolution of the R0, Rpa and Rpc are shown for 

the different C-rates. For a SoC larger than 0.5, R0, Rpa (i.e. 

𝑅𝑝𝑎̅̅ ̅̅ ̅|𝑆𝑜𝐶>0,5) and Rpc represents around 50%, 35% and 15% of the 

sum of the 3 resistances respectively. The following distribution 

laws (Eq. (33), Eq. (34), Eq. (35), Eq. (36)) of the internal re-

sistance are then determined:  

 

𝑅0 = 𝑅𝑖𝑛𝑡 × 50%                  (33) 

 

𝑅𝑝𝑎̅̅ ̅̅ ̅|𝑆𝑜𝐶>0.5
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑅𝑖𝑛𝑡 × 35%              (34) 
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𝑅𝑝𝑎̅̅ ̅̅ ̅ = 𝑅𝑖𝑛𝑡 × 35%× (−15.00𝑆𝑜𝐶3 + 29.83𝑆𝑜𝐶2 −

18.98𝑆𝑜𝐶 + 4.85)                 (35) 

 

𝑅𝑝𝑐 = 𝑅𝑖𝑛𝑡 × 15%                 (36) 

 

 
Fig. 14. a) Simulated (dashed curves) and experimental (solid curves) 
capacitance values of Cpa (a) and Cpc (b) under different SoC and C-
rate levels (0.25C (green), 0.5C (orange), 1C (blue), 2C (red) and 4C 

(black)). The R² values shows the correlation between the experi-
mental and the simulated data. The SoC is expressed in p.u. (100%=1 

p.u.). 
 

 

Fig. 15. Variation of resistance R0 (a), Rpc (b), Rpa (c) and 𝑹𝒑𝒂̅̅ ̅̅ ̅ (d) 
values depending on the SoC for a C-rate of 0.25C (green squares), 
0.5C (orange stars), 1C (blue dots), 2C (red triangles), 4C (black di-

amonds). The SoC is expressed in p.u. (100%=1 p.u.). 

 

 

Fig. 16. Evolution of resistance R0 (blue), Rpa (yellow) and Rpc (red) 
as a function of SoC at a C-rate of 0.25C (a), 0.5C (b), 1C (c), 2C 

(d) and 4C (e). The SoC is expressed in p.u. (100%=1 p.u.). 

When all parameters are defined and implemented in the 

model, realistic cell behavior curves are obtained. The simula-

tion of a 10 A discharge of a 25 Ah capacity cell at 15°C is 

shown in Figure 17. As expected, the model simulates correctly 

the voltage decrease and a well-defined relaxation period is ob-

tained afterwards.  

 

Fig. 17. Simulation of a 25 Ah cell discharge at 10 A at T=15°C. 

3.2 Failure-mode results 

In order to test the sturdiness of this model, a more realistic cur-

rent profile, a Worldwide harmonized Light vehicles Test Cycle 
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(WLTC) was applied. The 30 minutes speed vs time WLTC cycle 

was converted into a current vs time profile, using the fundamental 

principle of dynamics and a simplified electric motor model. The 

cycle is then repeatedly applied on a loop, until one of the battery 

cells reaches a SoC of 10%. The cells were then recharged at 2C 

rate until a cell reaches a SoC of 95%, at which point the WLTC 

cycles resumed. A 2p2s battery was tested in series/parallel and 

parallel/series configurations. The simulation starts with all the 

cells at 10% SoC, setting off the charge procedure. The cell n°1 is 

set to be disconnected from the circuit after 10000s. Figure 18 

shows the result obtained with a series/parallel configuration (Fig-

ure 18a). When the cell n°1 is disconnected, its current becomes 

equal to zero and cell n°2 compensates with a current which is 

twice as much as the original value (Figure 18b). This results in a 

deterioration of cell n°2 that charges up to a higher SoC (Figure 

18c). Fewer WLTC cycles are performed, and a larger amount of 

heat is produced by cell n°2 (Figure 18d). As expected, the sub-

circuit made of cells n°3 and n°4 remains unchanged.  

 

 

Fig. 18. Simulation results for a 2p2s battery with disconnection of a 
cell in a series/parallel configuration (a). Evolution of the current 
(b), SoC (c) and temperature (d) as a function of time for the cell 

n°1 (red), cell n°2 (black), cell n°3 (green) and cell n°4 (blue). 

 

 

 

 

 

Fig. 19. Simulation results for a 2p2s battery with disconnection of a 
cell in a parallel/series configuration (a). Evolution of the current 
(b), SoC (c) and temperature (d) as a function of time for the cell 

n°1 (red), cell n°2 (black), cell n°3 (green) and cell n°4 (blue). 

The model also works when using parallel/series configuration, 

the result of the simulation is shown in Figure 19. The disconnec-

tion of the cell n°1 results in the by-pass of cells n°1 and n°3, mak-

ing all the current flow through the cells n°2 and n°4 (Figure 19b) 

and making those cells reach the SoC limits faster (Figure 19c). 

This increase of current flow increases the amount of heat released, 

as shown by the significant increase of temperature of these two 

cells up to 38-39°C (Figure 19d).  

3.3 Ageing results 

3.3.1 Calendar ageing 

To verify the relevance of our calendar ageing model, the simu-

lated data given by the model were compared with experimental 

data obtained from calendar ageing tests carried out on NMC and 

LFP batteries [10,24].  

First, the calendar ageing of a NMC battery was studied. The 

same battery characteristics were used as the one studied in the ref-

erence [24] : a 43 Ah NMC battery. Capacity loss data were gen-

erated for different temperatures (0°C, 25°C, 45° and 60°C) at a 

given SoC of 80% and those data were compared to the experi-

mental data presented in reference [24]. The comparison between 
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the experimental results and the simulated results is shown in Fig-

ure 20. It is shown that for temperatures close to the ambient one 

(45°C and 25°C), good correlation is obtained between the simu-

lated data and the experimental data. However, for higher or lower 

temperatures (0°C and 60°C), there is a significant gap between 

the 2 sets of data. This can be explained by the fact that our model 

was calibrated on a rather small temperature range. Among the hy-

potheses taken for the calibration, it was assumed that, for a given 

SoC level on a fixed duration, the evolution of performance degra-

dation (capacity loss and resistance increase) is linear with temper-

ature. When the temperature range is widened, this hypothesis be-

comes less accurate with a more significant error. However, the 

model and the tests give the same evolution for the performance 

degradation at the 4 different temperatures. The model can then be 

corrected by using a correction factor for the temperatures out of 

the calibration range (0°C and 60°C) determined with the experi-

mental data of Keil et al. [23]. The corrected curves (dashed lines) 

for these two temperatures are shown in Figure 20. A correction 

factor of 2 was applied in that case.  

Similarly, our simulation results were compared with the exper-

imental data obtained from the tests performed by Redondo et al. 

[10]. They studied the performance degradation of 2.3 Ah LFP 

cells due to calendar ageing. The studies were carried out at 30°C 

for different SoCs (30%, 65% and 100%). Using the same cell 

characteristics, capacity loss data were generated with our model 

and compared to the experimental data presented in that work. The 

comparison between the experimental results and the simulated re-

sults is shown in Figure 21.  

 

 
Fig. 20. Capacity loss as a function of time due to calendar ageing of a 

NMC cell at a SoC of 80% and at a temperature of 0°C (purple), 25°C 

(red), 45°C (black) and 60°C (green). Data obtained by experimental 

 tests (dots) and simulations with (dashed lines) or without (solid 
lines) a corrective factor. The capacity loss is expressed in p.u. 

(100%=1 p.u.). 
 

Good correlation is obtained between the simulated and the ex-

perimental data. The model and the tests give the same evolution 

for the performance degradation. However, a small gap between 

the experimental and the simulated data is observed. As previously, 

a corrective factor can be applied in the model to adjust this small 

error and get a better fit of the experimental data with the simula-

tion. A corrective factor of 1.33 was applied in that case. The cor-

rected curves are shown in Figure 21b. 
 

 

Fig. 21. Capacity loss as a function of time due to calendar ageing of a 
LFP cell at a SoC of 30% (purple), 65% (yellow), 100% (green) at 

30°C. Data obtained by experimental tests (dots) and simulated data 
(lines). Simulated data obtained without (a, solid lines) and with (b, 
dashed lines) applying a corrective factor. The capacity losses are 

expressed in p.u. (100%=1 p.u.). 

As a conclusion, our calendar ageing model can give a good es-

timation of a cell degradation when no current is applied. The sim-

ulation results are in good correlation with experimental data when 

the simulation temperature is maintained around an ambient tem-

perature. If the temperature is out of the ideal temperature range 

around the ambient temperature (5-45°C), the model can be cor-

rected with a correction factor. These defects are known pitfalls 

resulting from the use of an empirical strategy for the design of the 

model.  

3.3.2 Cycle ageing 

After being calibrated thanks to the data of Gao et al. [13], the 

model was compared to experimental data obtained at different 

temperatures published by Jalkanen et al. [12]. In their work, they 

investigated the performance degradation of 40 Ah NMC cells at 

a given cycling rate of 1C at different temperatures (25°C, 45°C 

and 65°C). Simulations were made with our model using the same 

cell characteristics. The comparison between the experimental and 

the simulated data is shown in Figure 22. At 25°C, similar evolu-

tions of the capacity loss and resistance increase are obtained with 

the simulations compared to the experimental data. A rather good 
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correlation is obtained between the experimental and the simulated 

data at this temperature. However, a significant gap is observed 

between the experimental and the simulated values after a large 

number of cycles, both for the capacity loss and the resistance in-

crease. The model is then adjusted by modifying the Ac and Ar val-

ues, to 7648 and 4203 respectively. The corrected simulated values 

show a much better correlation with the experimental data, regard-

less of the number of cycles. At 45°C, similar evolutions are ob-

served for the experimental and the simulated data but with a more 

important gap between the values at large number of cycles. The 

model is then adjusted by modifying the Ac and Ar values, to 2264 

and 4452 respectively. At 65°C, a similar evolution is observed for 

the experimental and the simulated data with an even more im-

portant gap between the values at large number of cycles for the 

capacity loss. For the resistance increase, a slightly better correla-

tion is observed between the experimental and the simulated data 

for less than 1000 cycles. 
 

 

Fig. 22. Capacity loss (a, c, e) and resistance increase (b, d, f) of NMC 
cells after cycling at 1C at 25°C (a, b), 45°C (c, d) and 65°C (e, f). 
Simulated data, before (solid lines) and after applying a correction 

factor (dashed lines), compared to experimental data (dots) obtained 
from the study of Jalkanen et al. [12] The capacity losses and re-

sistance increases are expressed in p.u. (100%=1 p.u.). 

After 1000 cycles, the resistance increase is less important ex-

perimentally than the one obtained by simulation. In that case, the 

model is adjusted by modifying the Ac and Ar values, to 1922 and 

8044 respectively.  

Globally, the model gives larger values of capacity loss and re-

sistance increase than the experimental data regardless of the tem-

perature. In order to model properly the behavior of large capacity 

Li-ion battery cells that can be found in the automotive industry, it 

was chosen to adjust the model according to the experimental re-

sults presented in the work of Jalkanen et al. [12], as they have 

been studying cells with larger capacities than those of Gao et al. 

[13], previously used to calibrate the model. As shown previously, 

this modification was necessary to obtain simulation results show-

ing good correlation with the experimental data of Jalkanen et al. 

[12].  

4. Conclusion 

In this paper, an overall simulation analysis and an evaluation of 

a new and accurate lithium-ion battery model is provided. This 

model comprises a simulation of the battery cell relaxation period 

with ageing predictions and a cell-failure/disconnection mode. Us-

ing the Kirchhoff laws and the Dual Polarisation equivalent circuit 

model (R + RC + RC circuit), the overall behavior of the battery 

pack is obtained from those of the individual cells. This type of 

model gives a strong dynamic response to the voltage and gives a 

good approximation of the chemical behavior of a real battery. The 

relaxation process was also modelled thanks to the equivalent cir-

cuit model. This phase is often neglected in empirical modellings, 

which often causes an error in the state of charge estimation for the 

BMS for instance, thus affecting its accuracy. For the battery pack 

ageing model, the degradation can be modelled on a long-time 

scale and with exposure to a fast sampling of values (in the order 

of seconds), contrary to many current models that need much 

longer calculation times to predict the battery ageing. The ageing 

model comprises a calendar ageing model and a cycle ageing 

model, both calibrated thanks to experimental data. Simulations 

are then carried out and compared to other experimental data to 

verify the reliability of the model. The model gives good results, 

with good correlation with experimental data when the simulation 

temperature is maintained around an ambient temperature. How-

ever, when the simulation temperature is too far from the ambient 

temperature (lower than 5°C or larger than 45°C), the model must 

be corrected by setting up correction factors. Modellings of cell 

failures were also implemented. Unlike the modellings available 

in the accessible literature, the failure mode presented here is not a 

predictive model (to predict when the failure will happen) but it 

offers a direct response for the regulation of the battery in case of 

a cell disconnection (random or programmed). To improve the 

model further, more literature work will be carried out so that var-

ious technologies (LFP, NMC, NCA) can be better distinguished 

within the battery pack’s model results. An experimental approach 

will also be carried out to validate these proposed models.  
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