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 This study investigates the topology optimization problem using various optimization 
approaches, taking inspiration from the 99-line MATLAB code developed by Sigmund. The 
educational MATLAB code is based on the Solid Isotropic Material with Penalization (SIMP) 
model of the artificial material density method. The objective is to minimize the compliance 
function with a weight constraint, with the design variables being the densities of all elements. 
The aim is to identify a more efficient optimization technique as an alternative to the 
commonly used optimality criteria algorithm provided by other MATLAB built-in tools. Two 
types of optimization algorithms are examined: gradient-based methods such as Interior-
Point, Sequential Quadratic Programming (SQP), and Active-Set, as well as metaheuristic 
methods including the Genetic Algorithm. The results are verified and validated by comparing 
them with existing literature, demonstrating good agreement. Performance assessments are 
conducted to compare the results obtained from these algorithms in terms of quality and 
computational efficiency. The numerical findings indicate that the interior-point method 
outperforms the other investigated methods, although the optimality criteria algorithm 
remains the most efficient for solving topology optimization problems. 
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1. Introduction  

 
Over the past two decades, the topology optimization 

problem has been investigated by many researchers. The 
purpose of the optimization, in general, is to find the 
optimum layout or the optimum distribution of the 
material to meet the design requirements, with minimum 
weight and cost. Therefore, research centers and 
industrial sectors are increasingly attracted to 
implementing this technique because it helps to find 
competitive constructions in various fields such as 
bridges, cars, and aerospace structures. Topology 
optimization expanded in several disciplines, including a 
combination of structures, acoustic, fluid flow, heat 
transfer, material design, and aero-elasticity [1]. 

The topology optimization aims at minimizing the 
structure objective function within constraints.  

However, the type of the objective function and the 
constraints depends greatly on the type of the problem 
that needs solved. More specifically, in some 
applications, the weight is the most crucial parameter; 
therefore, the objective function focuses on minimizing 
the compliance within weight limits [2].  

While in vibration problems, avoiding resonance is 
the most important problem. The objective function, in 
this case, is to adjust the natural frequency of the 
structure within an acceptable range [1].  

Accordingly, in fixed-wing air vehicles, the wing 
flutter problem is always of big interest to aerospace 
designers. Increasing the vibration modes separation is 
another type of objective function. Constraints could be 
varied depending on the type of problem such as weight, 
strength, or heat [3]. 

Similarly, to the objective functions, constraints, and 
the boundary of the design variables; the optimization 
numerical approach is an important issue affecting the 
computational efficiency and the quality of the results.  

Optimality Criteria (OC) is a classical optimization 
tool for solving topology problems, It was first used by 
the Australian Michel in 1904 [4]. Bendsøe and Sigmund 
offer a definitive review of the topology optimization and 
OC problem for newcomers to the topic [5]. 

Besides OC, so many different types of approaches are 
found in the literature. However, this paper is not 
focused on reviewing the topology optimization as many 
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works in this field have done, such as review papers by 
[2,4, 6-9].  

In brief, Rozvany [4], compared numerical methods of 
structural topology between Evolutionary Structural 
Optimization (ESO), (or Sequential Element Rejections 
and Admissions) and SIMP. He found that the latter is a 
rigorously derived gradient method and requires fewer 
iterations. Furthermore, there is a wide range of 
applications.  

In addition, he reported that the disadvantage of SIMP 
is that the global optimum is not always found. While 
some recently published papers that focused on the ESO 
method found significant fundamental flaws, fully 
heuristic behavior, and computational inefficiency [4]. A 
different categorization of the topology optimization 
problem was made by Eschenauer et al. [7].  They 
included 425 references in their review and divided the 
topology problem into two different kinds of topology, 
namely the material or microstructure technique and the 
geometrical or macrostructure technique. 

Rozvany [8] found that the OC is the oldest technique 
and most popular method. However, the disadvantage of 
OC is that may not yield a minimum weight design even 
for simple stress constraints. He examined and discussed 
alternative methods such as "hard-kill" methods, ESO, or 
the Adaptive Biological Growth (ABG) method as well as 
Generalized Stress Design (GSD) method [8].  

He added that methods that rely on minimizing 
compliance may lead to a locally optimal solution. While 
Zero-order methods such as ESO are computationally 
efficient if a rapid design improvement is needed without 
necessarily finding the best solution [8]. Differently, the 
optimization problem methods were categorized into 
two types, analytical and numerical methods, by 
Zargham et al. [2] in their paper review. The numerical 
methods were also classified into three sub-
classifications: direct methods, such as mathematical 
programming; indirect methods, such as optimality 
criteria; and lastly metaheuristic methods, such as 
Genetic Algorithms (GA). They compared various 
algorithms in vibration problems and discussed the 
performance of algorithms such as the Global Convergent 
Method of Moving Asymptotes (GCMMA) algorithm, 
which was employed simultaneously to optimize for 
static loads and random excitations. In addition, the 
level-set method, was first used in 2005, showed promise 
for future applications. The most popular method applied 
was the SIMP. Lastly, they found that GA is easy to use but 
computationally inefficient [2]. This agrees with the 
conclusion of  Hajel and Lee 1995 [4]. 

GA was also implemented by Cardillo et al. [10] to 
solve multi-objective topology optimization using 
hybridization of partial solutions and also was compared 
with the OC algorithm. It is reported that optimization 
based on OC is more efficient than GA from a 
computational point of view in spite of the fact that GA 
has a higher capability in finding the global optimal 
solution. 

Literature regarding topology optimization, 
highlighting the development from 2000 to 2012, was 
surveyed by Joshua et al. [1]. Who also divided the 
problem into four categories as follows [1]: density-
based method (SIMP), Hard-kill methods evolutionary 

ESO, Boundary variation methods (Level set and phase 
field), and then finally a new biologically inspired method 
based on cellular division rules. 

Sivapuram and Picelli [11] demonstrated the 
possibility of using the Integer Linear Programming 
(ILB) method to solve the topology optimization 
problems using binary variables, the constraints, and 
objective functions are linearized using Tylor’s first-
order approximation. 

In the same subject, Hassani and Hinton [6] focused 
their review on topology optimization homogenization 
theory. 

Educationally, Challis et al. [12] introduced a simple 
MATLAB code, 129 lines, inspired by the educational 
paper 99-line-code work by Sigmund [13]. The code 
implements the level set method. The educational report 
88 line code by Andreassen et al. [14] which also was 
inspired by the 99-line code by Sigmund [13] where the 
improvement was made by pre-allocating arrays and 
vectoring loops. A Benchmark case study for 7500 
elements was introduced. In their code, the Heaviside 
filter was used. 

Talischi et al. [12] used a MATLAB tool to solve 
topology optimization. The finite element mesh was 
established using unstructured polygonal finite element 
meshes. 

In order to reduce the computational time, Parallel 
programming was used by several researchers and found 
an efficient solution [1]. 

Wang et al. [15] used an enhanced the Genetic 
Algorithm (GA) to solve topology optimization using 
discrete variable density void/solid elements. The 
enhancement depended on the knowledge of the 
topology optimization problem. In order to solve element 
connectivity problems, an image-processing-based 
connectivity analysis was developed and implemented. 

Wang et al. [15] also introduced a comparison 
between the enhanced GA with the SIMP method. They 
concluded that GA generates better solutions but with 
higher computational costs.  

Another optimization method is the Conservative 
Convex Separable Approximations (CCSA). Introduced 
by Svanberg [16], it is capable of solving nonlinear 
inequality constraints.  It was applied to a very large 
number of design variables. Talischi et al. [12] 
implemented a MATLAB code to solve topology 
optimization using unstructured polygonal finite 
element meshes. Technical Description of the Method of 
Moving Asymptotes (MMA) first described and 
implemented by [17]. The SIMP method is first 
introduced by [5,18]. Several different approaches such 
as OC methods, Sequential Linear Programming (SLP) 
methods or the MMA by Svanberg [17] and others. 

It was found that involving methods, such as Interior-
Point, Sequential Quadratic Programming, SQP, or 
Active-Set method, as an optimization scheme is possible 
to solve topology optimization. 

Based on the literature review, it is worthwhile to test 
the efficiency and compare these methods in solving the 
topology optimization problem. Therefore, in the first 
section, a statement of the standard topology 
optimization problem will be defined. Then, a brief 
definition of the used scheme is introduced. Definitions 
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of two case studies found in the literature will be 
illustrated with graphical results. The next chapter 
presents the numerical analysis of those two cases using 
the tested schemes coded by MATLAB and followed by 
discussions and conclusions. 

 

2. Statement of the standard topology optimization 
problem: 
 

Consider domain structure modeled using the well-
known finite element method as shown in Equation 1: 
 

{𝐹} = [𝐾]{𝑈} (1) 
 

where, [𝐾] is the global stiffness matrix, {𝑈} is nodal 
displacement vector, {𝐹} is nodal applied forces. After 
applying the boundary conditions, the displacement 
vector can be calculated as shown in Equation 2: 
 

{𝑈} = [𝐾]−1{𝐹} (2) 
 

Assuming 𝑥𝑒 is the density of the element (e), and 
then the compliance function 𝐶(𝑥) as a function of the 
densities penalized by the power law can be calculated as 
shown in Equation 3: 
 

𝐶(𝑥) = ∑𝑥𝑒
𝑝
𝑈𝑒
𝑇𝑘𝑒𝑈𝑒

𝑁

𝑒=1

 (3) 

 
where, N is the total number of elements, 𝑝 is the 

penalty parameter, and equal to 3 as a typical value used 
by others, 𝑈𝑒 is the nodal displacements vector of the 
element (e), 𝑘𝑒  is the local stiffness matrix of the element 
(e).  

The total volume of the structure as a function of the 
artificial densities of the elements can be calculated as 
shown in Equation 4: 
 

𝑉(𝑥) = ∑𝑥𝑒 . 𝑣𝑒

𝑁

𝑒=1

 (4) 

 
Thus, the standard topology optimization using the 

SIMP method can be determined as shown in Equation 5: 
 

[
 
 
 
 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐 𝑡𝑜 

{
 
 

 
 
∑𝑥𝑒 . 𝑣𝑒

𝑁

𝑒=1

≥ 𝑓𝑉𝑜

𝐿𝐵 ≤ 𝑋 ≤ 𝑈𝐵 }
 
 

 
 

]
 
 
 
 
 

 (5) 

 
where, 𝑉𝑜 is the base volume, 𝑓 the fraction of the 

weight (volumetric fraction), LB and UB are the lower 
and upper bound of the densities respectively; LB values 
are normally taken as 0.003 instead of zero values in 
order to avoid singularity in the calculation of the global 
stiffness matrix while UB values are unities. Obviously, 
the objective function is nonlinear. While the constraints 
are linear inequalities.  

The gradient function can be calculated as shown in 
Equation 6: 
 

𝜕𝐶(𝑥)

𝜕𝑥
= ∑𝑝. 𝑥𝑒

𝑝−1
𝑈𝑒
𝑇𝑘𝑒𝑈𝑒

𝑁

𝑒=1

 (6) 

 
Some schemes can perform better if the hessian 

function is provided, which can be derived from the 
gradient function by derivative respect to density 
variables as shown in Equation 7: 

 

𝜕2𝐶(𝑥)

𝜕𝑥2
=∑(𝑝 − 1). 𝑥𝑒

𝑝−2
𝑈𝑒
𝑇𝑘𝑒𝑈𝑒

𝑁

𝑒=1

 (7) 

 
3. Optimization algorithms 
 

In order to compare the efficiency of different 
optimization schemes, this study investigated two 
categories of optimizers: gradient-based algorithms and 
heuristic methods. The first category, gradient-based 
algorithms, includes 'Interior-point', 'SQP' (Sequential 
Quadratic Programming), 'SQP-legacy', and 'active-set'. 
These algorithms utilize gradient information to guide 
the optimization process towards the optimal solution. 
On the other hand, the second category comprises 
heuristic methods or non-gradient-based approaches, 
with the genetic algorithm being one of the prominent 
examples. Heuristic methods employ techniques 
inspired by natural processes or behaviors to explore the 
solution space without relying on explicit gradient 
information. By examining both gradient-based and 
heuristic methods, this study aims to provide insights 
into their respective strengths and weaknesses in solving 
topology optimization problems. 

It is important to give a brief description of these 
schemes. The 'Interior-point' algorithm is an 
optimization algorithm used to solve nonlinear convex 
problems that are subject to nonlinear inequality 
constraints. It was first utilized by John von Neumann in 
1948 for linear programming [19]. During the 1960s, it 
gained popularity for solving nonlinear constrained 
objective functions and was pioneered by Fiacco and 
McCormick [19]. Over the years, from 1979 to 2003, the 
method underwent significant development and became 
the most efficient and reliable method for solving large-
scale problems. The 'Interior-point' algorithm is widely 
available in software packages such as MATLAB, among 
others. Notably, it has demonstrated high efficiency in 
handling spar matrix problems [20–22]. 

To enable the implementation of various optimization 
algorithms, a general MATLAB subroutine was 
developed. The subroutine is structured as follows: 

 
function [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD, 
elapsedTime]=runfmincon(strMethod) 
global nelx nely   volfrac   
% linear constraints 
    A = [];     b = []; 
    Aeq = [];   beq = []; 
    % initial guess 
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    x0(1:nely*nelx) = volfrac; 
    lb(1:nely*nelx)=0.001; 
    ub(1:nely*nelx)=1.0; 
% nonlinear constraints 
    nonlincon = @nlcon; 
     options = 
optimoptions('fmincon','Algorithm',strMethod ... 
                                    ,'ConstraintTolerance',1e-6 ... 
                                    ,'StepTolerance',1e-6 ... 
                                    ,'FunctionTolerance',1e-6 ... 
                                    ,'OptimalityTolerance',1e-10 ... 
                                    ,'MaxFunctionEvaluations',1000000 ... 
                                    ,'MaxIterations',1000 ... 
                                    ,'SpecifyObjectiveGradient',false ... 
                                    ,'SpecifyConstraintGradient',false ... 
                                    ); 
 
tic; 
% Call fmincon to run the optimization using the specified 
algorithm 
    [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD, 
elapsedTime] = ... 
        
fmincon(@objectiveMAC,x0,A,b,Aeq,beq,lb,ub,nonlincon,o
ptions); 
  elapsedTime= toc; 
    x = reshape(X,[nely,nelx]); 
end 
 

The code provides a general MATLAB subroutine for 
implementing the optimization algorithms. The 
subroutine sets up the necessary constraints, initializes 
the variables, and defines the options for the 
optimization algorithm using optimoptions. The fmincon 
function is then called with the objective function 
objectiveMAC, the initial guess x0, and other parameters. 
Finally, the solution is reshaped into a matrix x based on 
the dimensions specified by nely and nelx.  

To use the routine, the value of the strMethod 
parameter has to be set to one of the available options: 
'Interior-Point', 'sqp', 'sqp-Legacy', or 'Active-Set', 
depending on the desired optimization method. For 
example; the following two lines: 

 
strMethod=’SQP’; 

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD]=runfmincon

(strMethod); 

is used to utilize the SQP algorithm. By incorporating 
those lines of code, users can harness the capabilities of 
those algorithms to optimize their objective functions, 
subject to the specified constraints. The subroutine 
encapsulates the necessary functionalities, including 
constraint handling and option settings, to facilitate the 
application of the SQP algorithm in MATLAB. 
 
3.1. Sequential quadratic programming (SQP) 
 

Sequential Quadratic Programming (SQP) is a popular 
optimization algorithm widely used to solve 
optimization problems where the objective function 
needs to be minimized or maximized, subject to 

nonlinear inequality constraints. It is considered one of 
the most effective approaches in optimization due to its 
ability to handle a wide range of problems efficiently 
[22–24]. The SQP algorithm operates by iteratively 
solving a series of quadratic sub-problems that 
approximate the original nonlinear optimization 
problem. At each iteration, the algorithm constructs a 
quadratic model of the objective function and the 
nonlinear constraints around the current iterate. The 
quadratic model is then minimized or maximized to 
obtain a new iterate, which is expected to improve the 
objective function value while satisfying the constraints 
[22–24]. 

The quadratic sub-problems in SQP involve solving a 
quadratic programming (QP) sub-problem at each 
iteration, which is a mathematical programming problem 
with a quadratic objective function and linear 
constraints. These QP sub-problems are typically easier 
to solve compared to the original nonlinear problem, 
allowing for efficient convergence towards the optimal 
solution [22–24]. 

One of the advantages of SQP is its ability to handle 
both small and large-scale optimization problems. It is 
particularly suitable for problems with nonlinear 
inequality constraints, where it can effectively handle the 
nonlinearity and provide feasible solutions that satisfy 
the constraints [22–24]. 

Overall, SQP is a powerful optimization algorithm that 
combines the benefits of quadratic programming and 
sequential approximation techniques. Its iterative 
nature, quadratic model generation, and effective 
handling of nonlinear constraints make it a widely used 
method for solving optimization problems in various 
fields, including engineering, economics, finance, and 
operations research [22–24]. A detailed explanation of 
the SQP algorithm can be found in the textbook by 
Fletcher [23,24]. 

 

3.2. SQP-Legacy 
 

SQP-Legacy is a variant of the Sequential Quadratic 
Programming (SQP) algorithm. It shares similarities with 
the SQP algorithm in terms of its approach and 
methodology. However, SQP-Legacy is typically 
characterized by longer computation times and higher 
memory requirements compared to the standard SQP 
algorithm. Despite these considerations, SQP-Legacy can 
still be a valuable optimization approach in certain 
scenarios [25]. For example, it may be preferred when 
compatibility with legacy code or systems is a priority. 
Additionally, in cases where the problem size is relatively 
small or the computational resources are not a major 
constraint, SQP-Legacy can provide satisfactory results 
[25]. 

It's important to note that SQP-Legacy should be used 
judiciously, considering the specific requirements and 
constraints of the optimization problem at hand. If 
computational efficiency and faster convergence are 
critical, it may be worthwhile to explore alternative 
optimization algorithms or more recent versions of SQP. 
Nonetheless, SQP-Legacy remains a viable option that 
can be employed effectively in appropriate situations, 
leveraging its established methodology and capabilities 
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for solving optimization problems with nonlinear 
inequality constraints [25]. 

 

3.3. Active-Set 
 

Active-Set is an optimization algorithm used to solve 
the optimization problem within inequality constraints. 
If an objective function is subject to inequality 
constraints, 𝐿𝑖(𝑥) ≥ 0, given a point x in the solution 
space, if any constraint satisfies an equality, 𝐿𝑖(𝑥) = 0, it 
is called active at x. Thus the solution can be developed 
as follows: first solve the equality constrain defined by 
the active-set, then compute the Lagrange multipliers, 
then constraints with negative Lagrange multipliers are 
removed, then search for infeasible constraints, repeat 
the previous steps until enough approaching the final 
solution with negligible change  [21].  

The Active-Set algorithm effectively combines the 
concepts of feasibility and optimality to find the optimal 
solution within the inequality constraints. By iteratively 
adjusting the active set based on the current point's 
active constraints and Lagrange multipliers, the 
algorithm seeks to optimize the objective function while 
satisfying the inequality constraints [21]. The textbook 
Numerical Optimization by Jorge Nocedal and Stephen J. 
Wright 2006 explained this technique in more details 
[21]. 
 
3.4. Genetic Algorithm 
 

The Genetic Algorithm (GA) is a heuristic 
optimization algorithm based on the principles of 
evolutionary theory, specifically the concepts of natural 
selection and genetic inheritance [26]. In this method, a 
population of random solutions, often referred to as 
individuals, is generated and evaluated based on their 
fitness or objective function value. Each individual 
represents a potential solution to the optimization 
problem [26]. 

The GA mimics the process of biological evolution by 
allowing the individuals to evolve and reproduce through 
a selection process. This selection process involves 
competition among individuals, where the fittest 
individuals have a higher chance of reproducing and 
passing on their genetic information to the next 
generation. This concept is commonly referred to as the 
"survival of the fittest." [26]. 

The Genetic Algorithm was first introduced by John 
Holland in 1970 and has since become a widely used 
optimization technique. In the book "Genetic Algorithm" 
by Kramer [27], detailed explanations of the algorithm's 
principles and implementation are provided [26]. 

In this work, GA programming is tested using the 
MATLAB built-in function, gamultiobj. This tool allows 
for the optimization of a user-defined objective function. 
Both nonlinear equality and non-equality constraints are 
allowed. Additionally, upper, and lower bounds are 
possible to set for the state variables. 
 
4. Code Validation 

 
4.1. Case Study 1 
 

For comparison with the existing literature, two case 
studies were conducted in this report. The first case 
study, originally reported by Sigmund [13], involved a 
cantilever beam modeled using finite element plane 
stress analysis. The beam was clamped from the left side, 
as shown in Figure 1. The mesh used for this analysis 
consisted of 32 elements horizontally and 20 elements 
vertically. In Sigmund's study, a volume fraction of 0.4, a 
power penalty of 3, and a filter radius size of 1.2 were 
employed. The optimization algorithm used in this case 
study was coded in MATLAB following Sigmund's 99-line 
code. The results obtained from this code are presented 
in Figure 1. 

 

 
Figure 1. Case study 1, the topology optimization results of a cantilever beam and concentrated load by Sigmund [10] 

 
Additionally, Sigmund [13], suggested other possible 

optimization methods such as Sequential Linear 
Programming (SLP) and the Method of Moving 
Asymptotes (MMA). However, in this work, a different 
family of optimization algorithms was implemented 
using the MATLAB package and the 'fmincon' function. 
These algorithms are gradient-based schemes and have 
been briefly described in the introduction chapter. The 
purpose of using these algorithms was to verify their 

performance and identify the most efficient schemes for 
the two case studies conducted in this report. 

Aguilar et al. [28] conducted a similar case study as 
depicted in Figure 2. The study involved a plate with 
dimensions of 40 x 30 cm and a meshing density of 32x24 
using isoperimetric plane stress elements. The 
optimization method employed in their study was the 
Genetic Algorithm (GA). The results obtained using the 
GA for this case study are also presented in Figure 2. 
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Figure 2. Case study 1 for the beam that introduced by Aguilar et al. [25], [26]. 

 
4.2. Case Study 2 

 
The second case study, as presented by Sigmund [13] 

and Andreassen et al. [14] is illustrated in Figure 3. The 
figure displays the right-hand half of a simply supported 
beam subjected to a downward load at the top-central 
point. Due to the symmetry around the vertical axis at the 

central line, only one half of the beam was analyzed to 
obtain the results. The density distributions depicted in 
the figure were generated using the following 
parameters: a mesh with 60 elements, consisting of 20 
elements in the horizontal direction and 20 elements in 
the vertical direction; a filter radius of rmin = 1.5; and the 
volumetric ratio was 0.5. 

 

 
Figure 3. Case study 2, MATLAB 88-lines code case study results by Andreassen et al. [11] and by Sigmund [10]. 

 
 
5. Results  
 

The numerical results of the two case studies were 
replicated in this study using six different algorithms 
implemented in MATLAB code, as described in detail in 
Appendix A. The computational costs, measured in terms 
of computation elapsed time, were compared to assess 
the quality of the results. The quality of the results was 
evaluated using grayscale graphs, where higher density 
regions were represented by black color. 

For the Genetic Algorithm (GA), the following 
parameter values were chosen: a Crossover Fraction of 
0.8000, a Population Size of 200, and Uniform Mutation 
with a value of 0.0500. The fitness function utilized in the 
GA was the same as the one employed in all the other 
algorithms. It is worth noting that, unlike other routines, 
this particular routine does not require a gradient 
function. 

 

5.1. Case Study 1 
 

The results of Case Study 1, which focused on a beam 
modeled using the finite element method with plane 
stress state, are presented in Figure 4. The beam was 
subjected to specific boundary conditions, where all 
nodes along the left-hand edges were assigned 
constrained degrees of freedom. Furthermore, a unity 
vertical force was applied to the bottom right node to 
induce loading. 

 

 
Figure 4.  Base structure of a clamped beam subjected 

to load at the tip. 
 

The following parameters were utilized for Case 
Study 1: a tolerance of 1e-6 for constraints, a tolerance of 
1e-10 for optimality, and a total of (nel * nely) = (32x20 
= 512) four-node elements in the plane stress analysis. 
The boundary condition was specified as fixeddofs = 
[1:2*(nely+1)], and the applied force was identified as 
F(2*(nelx+1)*(nely+1),1)=-1.0. The volume fraction was 
set to 0.4. It is worth noting that the absolute values of 
dimensions and loads did not affect the density 
distributions, so unity dimensions and loads were 
considered. Table 1 presents the results obtained from 
different optimization algorithms for Case Study 1. The 
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first column indicates the name of the algorithm, the 
second column displays the computational elapsed time 
using a desktop computer (the same computer for all 
cases), the third column denotes the number of 
iterations, and the fourth column shows the value of the 

objective function. The fifth column provides the count of 
objective function calculations. Specifically, Table 2 lists 
the results of the genetic algorithm scheme, including the 
number of generations and the count of objective 
function calculations. 

 
Table 1. The analysis results of case study 1 using different optimization algorithms. 

Method Time 
[sec] 

Iteration Objective 
Function 

Function 
Count 

Results 

Optimality criteria 
by 99-line code 
Sigmund [10] 

 

2.14 71 57.35 71 

 

Interior Point 10 48 59.9 30801 

 

Sequential 
quadratic 

programming SQP 
51 17 106 10984 

 

SQP-Legacy 63 18 104 11630 

 

Active-set 4420 74 263 47627 
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Table 2. The analysis results of case study 1 using genetic algorithm. 

Method Time [sec] Generations 
Objective 
Function 

Function 
Count 

Results 

Genetic 
Algorithm 

3060 663 230 132801 

 
 

 
By inspecting the graphical results of the density 

distribution in the domain, it is evident that there is a 
good agreement with the results shown by others, which 
validates the MATLAB code and the implementation of 
the optimization tools. However, some methods did not 
perform as well due to the nature of this type of 
application. A comparative analysis of the results can be 
seen in Table 1 and Table 2. 

The interior-point method stands out due to its 
superior performance in terms of both result quality and 
computational efficiency. It achieves a low objective 
function value of 59.9, which is very close to the value 
calculated by the optimal configuration (OC) as 57. 
Additionally, the elapsed time for the interior-point 
method is the lowest at 10 seconds. The SQP method also 
yields relatively close results, with an elapsed time of 51 
seconds and an objective function value of 106. However, 
the objective function value is approximately 60% higher 
compared to the interior-point method. On the other 
hand, the results of the Active-Set and Genetic Algorithm 
methods are significantly poorer. 

For instance, the genetic algorithm takes 3060 
seconds to reach an objective function value of 230, 
which is much higher (worse) than the minimum 
achieved by the interior-point method. Similarly, the 
Active-Set method performs poorly in terms of 
computational costs and reaching a minimum. To 
facilitate further comparisons, another case will be 
analyzed and presented next. 

 
5.2 Case Study 2 
 

The results of Case 2, depicted in Figure 3, are 
presented here, involving a simply supported beam that 
is symmetric about a vertical axis at the midpoint and 
loaded downward at the central point-top. MATLAB 
optimization tools were used with the following data: a 
mesh of (nelxnely) = (60x20 = 1200) elements in the 
horizontal and vertical directions, a filter radius of rmin 
= 1.5, and a volumetric ratio of 0.5. The boundary 
conditions were defined as fixeddofs = 
union([1:2:2(nely+1)],[2*(nelx+1)*(nely+1)]), and the 
applied force was given as F(2,1) = -1. 

The results obtained through optimization using the 
same set of techniques are summarized in Table 3 and 
Table 4. The quality of the algorithm results is illustrated 
using grayscale graphs, with the highest density 
represented as black. The tables include the name of the 

optimization algorithm in the first column, the 
computational elapsed time on a normal desktop 
computer in the second column, the number of iterations 
in the third column, and the value of the objective 
function in the fourth column. The fifth column indicates 
the number of objective function calculations. The results 
of the genetic algorithm are presented separately in 
Table 2. 

Expectedly, the numerical results for Case Study 2 
once again demonstrate that the Interior Point algorithm 
outperformed the other tested algorithms in terms of 
computational efficiency and achieving global 
optimization results. However, it is worth noting that the 
OC method is still faster and produces better results. 
 

6. Conclusion  
 

In conclusion, this work focused on solving the 
topology optimization problem for domain structures 
using MATLAB and built-in optimization tools. The 
approach followed the structural modeling similar to 
Sigmund’s 99-line code (2001), utilizing the finite 
element plane-stress method and compliance as the 
objective function. The densities of the elements were 
considered as design variables, and the power law was 
used to weigh the densities. 

Several optimization algorithms, including Interior-
Point, SQP, SQP-legacy, Active-Set, and Genetic 
Algorithm, were implemented in MATLAB for 
comparison and validation. Two case studies from the 
literature were reproduced using these methods, and the 
results were compared with published results. Overall, 
the obtained results showed good agreement with the 
literature. 

Among the tested algorithms, the Interior-Point 
method demonstrated superior performance in terms of 
both computational efficiency and result quality. It 
achieved acceptable results with reasonable 
computational effort required. On the other hand, the 
Genetic Algorithm exhibited low computational 
efficiency, and the Active-Set method yielded the worst 
results both in terms of computational expense and 
result quality. 

It was observed that providing analytical gradient 
and Hessian functions reduced the number of iterations 
required for convergence. However, it is important to 
note that some methods, especially heuristic approaches 
like the Genetic Algorithm, do not rely on gradient 
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functions. Therefore, for problems where gradient 
functions are unavailable, it is advisable to use heuristic 
approaches. 

In summary, this study successfully implemented and 
validated various optimization algorithms for topology 
optimization of domain structures. The Interior-Point 
method emerged as the most efficient and effective 
approach, while the Genetic Algorithm and Active-Set 
method showed limitations. The findings highlight the 

importance of considering algorithm selection and 
availability of gradient functions when solving topology 
optimization problems. 
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Table 3. The analysis results of case study 2 using different optimization algorithms. 

Method 
Time 
[sec] 

Iteration 
Objective 
Function 

Function 
Count 

Results 

Optimality 
criteria by  

99-line code 
Sigmund [10] 

 

7 94 203 94 

 

Interior Point 31.6 41 288 49318 

 

Sequential 
quadratic 

programming 
SQP 

341 7 416 8463 

 

SQP-Legacy 258 7 416 8463 

 

Active-set 2037 190 345 57585 

 
 

 
Table 4. The analysis results of case study 2 using genetic algorithm. 

Method 
Time 
[sec] 

Generations 
Objective 
Function 

Function 
Count 

Results 

Genetic 
Algorithm 

10004 688 562 137801 
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